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Motivation

Control and Risk Quantification

Optimal and Safe Control of high-dimensional stochastic systems
Performance requirement

(e.g. certain formation)

Optimal control

Safety requirement

(e.g. no collision)

Safe control



Challenges

• Need to estimate value function and safety probability

• Scale exponentially with system dimension

• Solving corresponding high-dimensional partial differential equations (PDEs) is hard

Image source: Greif, Constantin. "Numerical methods for hamilton-jacobi-bellman equations." (2017).
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Challenges

• Need to estimate value function and safety probability

• Scale exponentially with system dimension

• Solving corresponding high-dimensional partial differential equations (PDEs) is hard

Can we do this efficiently?
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Proposed Method: Overview

Overall diagram:

Goal: Efficient estimation of optimal value function / safety probability 
of high-dimensional stochastic systems in one unified framework

Theoretical guarantee: no information loss

Automatic feature identification

Improved sample complexity
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Problem Statement (Optimal Control) 

System description:

Running-cost function:

Optimal value function:

Stochastic differential equation (SDE)

Quadratic cost on control

Minimum expected cumulative cost
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Low-dimensional Feature

Definition of operation:

Definition of variables:

Upper bounds and lower 
bounds for the fixed feature:

One-dimensional feature:   smooth function 
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One-dimensional Process

Upper bounds and lower 
bounds for the fixed feature:

Matched upper and lower bounds 1-dimensional stochastic process representation

No information loss
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Stochastic Process to PDE

1-dimensional stochastic process representation 2-dimensional PDE

Let

Path integral control

Feynman-Kac formula

(logarithmic transformation of the value function)

(running-cost function as feature)
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Multi-dimensional Feature

Low-dimensional stochastic process representation Low-dimensional PDE

Let Path integral control

Feynman-Kac formula

Extension to multi-dimensional features:

Comparison theorem
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Example

System dynamics:

Running-cost function:

Features:

Matched upper and lower bounds:

Reconstruction of running-cost function:
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Example

PDE whose solution will 
give value function:

3D system -> 2D feature
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Physics-informed Learning

Solve PDE with PINN

Penalize dissatisfaction of the PDE

Penalize difference between 
prediction and training data

Lu, Lu, et al. "DeepXDE: A deep learning library for solving differential equations." SIAM review 63.1 (2021): 208-228.
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Automatic Feature Finding

Find features using auto-
encoder like neural network

Comparison Theorem loss
Penalize difference between upper and 
lower bound 

Reconstruction loss
Penalize difference between reconstructed 
and actual running cost function
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Experiments
Smoother and more accurate prediction Better sample complexity

Accurate identification of features with the auto-encoder NN
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Conclusion

Overall diagram:

Goal: Efficient estimation of optimal value function / safety probability 
of high-dimensional stochastic systems in one unified framework

Theoretical guarantee: no information loss

Automatic feature identification

Improved sample complexity
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Thanks for Listening!

arXiv paper:

Contact: zhuoyuaw@andrew.cmu.edu 
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