=

/ The 38th Annual AAAI
/"’ Conference on Artificial Special track on Safe, Robust and Responsible Artificial Intelligence (SRRAI)

Intelligence

Physics-informed Representation and Learning:
Control and Risk Quantification

Zhuoyuan Wang', Reece Keller!, Xiyu Deng’, Kenta Hoshino?, Takashi Tanakas3, Yorie Nakahira'

1Carnegie Mellon University
2Kyoto University
3University of Texas at Austin

Carnegie Mellon University



Motivation

Control and Risk Quantification

Optimal and Safe Control of high-dimensional stochastic systems
Performance requirement

(e.g. certain formation)

mmm)  Optimal control

Safety requirement

(e.g. no collision)

mmm) Safe control

Source: Andy Dean/stock.adobe.com.
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Challenges

* Need to estimate value function and safety probability
« Scale exponentially with system dimension

« Solving corresponding high-dimensional partial differential equations (PDEs) is hard
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Image source: Greif, Constantin. "Numerical methods for hamilton-jacobi-bellman equations." (2017). Carnegie Mellon University



Challenges

* Need to estimate value function and safety probability
« Scale exponentially with system dimension

« Solving corresponding high-dimensional partial differential equations (PDEs) is hard

heavy

Can we do this efficiently?
precise long-term trajectories

heavy computation and slow reaction
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Proposed Method: Overview

Goal: Efficient estimation of optimal value function / safety probability
of high-dimensional stochastic systems in one unified framework

Overall diagram:
Theoretical guarantee: no information loss

~

Low-dimension
Features

Comparison Theorem

| Auto-encoder like NN |

Feynman-Kac Formula
Automatic feature identification
Value Function
‘ Safety Probability

Improved sample complexity

High-dimension
System

Low-dimension
PDE
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Problem Statement (Optimal Control)

System description: dry = f (xy) dt + o (z¢) (uedt + dwy) x; € X CR"

Stochastic differential equation (SDE)

1
Running-cost function: w(a:t, ut) = C(CBt) + §||’UJ1&||2

Quadratic cost on control

T
Optimal value function: V(x,t) .— min EX / w(g;T,uT)dT + c(g;T) | Ty =T
u t

Minimum expected cumulative cost
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Low-dimensional Feature

Low-dimension

System

One-dimensional feature: smooth function p : R™ — R

Definition of operation: AV () (z) = @(:I:)f(x) + aaL.)(x)a(x)U—l—

0
Lae (20 <x>a<w>a<w>T) ,

Definition of variables: a(z) = Z ot (z)o] (x) (x) (x) b(z) = A%p(z)
. ik k ailiz 8333 a,(aj)
Upper bounds and lower a* (&) = sup a(z), @ (§) = x_pi(rgzg a(x)
bounds for the fixed feature: _zp(@)=¢ j
bt (€)= sup b(z), b (€)= inf b(z)
z:p(x)=¢ z:p(z)=¢

(
: High-dimension Comparison Theorem
|

Features
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- . \
One-dimensional Process f | :
| High-dimension Comparison Theorem Low-dimension
: System Features :
D R SR R —— 7
+ —_— - —_— ] f
Upper bounds and lower a” () x:§5?=§ alz), a” () a::pl(I:}:)zé a()
bounds for the fixed feature: bt(€) = sup b(z), b (€)= i(n§ é b(z)
z:p(z)=¢ Tp(®)=

Matched upper and lower bounds —>

1-dimensional stochastic process representation

No information loss

Assumption 2. We assume that the feature function p(x)
satisfies that a™ (&) = a= (§) = a(§) and b+ (&) = b (&) =
B(€), V€ € L.

Assumption 3. The functions o(€) and B(§) are globally
Lipschitz continuous in §¢ € I C R. Moreover, a(x) > 0,
Vz € R™

Theorem 4. Given Assumptions 2 and 3 hold, p(x:) with
x+ being sampled from system (1) is characterized by the
following stochastic process

&, = o (&) B (&) dt + +/a (&)dBy, (14)

with & = p(xo), and B, being a one-dimensional standard
Wiener process.
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. g \
Stochastic Process to PDE | Low-dimension | |
| Features I
: Feynman-Kac Formula |
Let V(z,t) = —log p(x,t) | v |
I Low-dimension I
(logarithmic transformation of the value function) \ PDE /l
§ = p(z) = ()
(running-cost function as feature) Feynman-Kac formula
1-dimensional stochastic process representation — 2-dimensional PDE
W (&, 1) :——(6 t) + (&, t)B(¢E t) (E t)
1 9%y
o(z,t) =E [exp €Td7' —&r | | &= + ia(ﬁ, )852 (&,t) — Ep(€,t) =0,

Path integral control

with initial (terminal) condition

e(&T) = exp(—éﬁ)-
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Multi-dimensional Feature

Extension to multi-dimensional features:

Let  p(z) = [p1(x),p2(2), - ,p(x)]’ Path integral control

Assumption 6. For value function estimation, we assume

the running-cost can be represented by the following func- Then
tion T
z,t) =E [ex —/ r(&-)dr —r =
(@) =€) =7 (p1(2), pa(2), -, Pr(2)) #le ) P ( , ") @)) & f]
where r : R¥ — R is a continuous function. ,
Low-dimensional stochastic process representation =) Low-dimensional PDE
. . Oy
ae? = o (67) B (617) dt + (s (¢17)dBLY ro— o —Gip=0, onR*x[0,T)

,T) =exp(—r(-)), onRF,
for i = 1,2,---,k that characterize p;(z), where B( Y (- T) p(=r("))

one-dimensional standard Wiener processes.
Feynman-Kac formula
Comparison theorem
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Example

System dynamics: dri = (r1 + x3) dt + o1 (urdt + dW7)
dCIJz = (332 — 333) dt + O'Q(UQ + dWQ)
drs = x3 dt + 0'3(’LL3 + de)

RUNN - 1 5o 1 5

unning-cost function: c(x) — 5(9,;1 + 3;2) + 5333,
Features: &L=pi(z) =21+ 22, & =po(x) =23
Matched upper and lower bounds: a1(1) =2, az(&) =1; p1(&) = %, Ba(&2) = &9

Reconstruction of running-cost function: r(§) — %g% + %5%
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Example
: : 8,u ou 1 ( Bzu)
PDE whose solution will 0 = il ez il
give value function: i «)AE) o5 2 al&) 0g?
1 2 ou 0%n  10%u
—(551 _52)'u_§_€13_§1_€23§2 o> _58—53

W&, T) = exp(— 56 — > 83)

3D system -> 2D feature
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Physics-informed Learning

Low-dimension I PINN > Value Function
PDE | Safety Probability

Physics model loss £, /

1 ! t — G F I

| 0‘ ‘ : Minimize
G © = wply + wdﬁd

) [95(6) t) == ‘75(5, t) / F(&’ t) F(€ t)}J

Datamodelloss £o o
\ Penalize difference between
prediction and training data

Solve PDE with PINN

()
ﬂ
S

|
S

|
53

Q)

Lu, Lu, et al. "DeepXDE: A deep learning library for solving differential equations." SIAM review 63.1 (2021): 208-228.
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Automatic Feature Finding

I

I
Find features using auto- \
encoder like neural network

Encoder
Po (m )

/ Lc.T.
Comparison Theorem loss

Penalize difference between upper and

lower bound

€)= suwp a@), a (€)= inf a(x)
x:p(z)=¢ z:p(z)=¢§

b*(§) = sup b(z), b (§)= inf b(z)
x:p(x)=E& z:p(z)=¢

14

High-dimension
System

Low-dimension

Decoder

9o (§)

\

N |

Auto-encoder like NN Features |
J

Lrc \

Reconstruction loss
Penalize difference between reconstructed
and actual running cost function

c(z) =71(§) =7 (p1(x), p2(), - - , P (7))

where r : R¥ — R is a continuous function.
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Experiments

Smoother and more accurate prediction Better sample complexity

§ 80 P S — — T
Ri29 = MC w/o dimension reducti
0.45 0,388 = —— w/o dimension reduction
0.4 0.386 g 60 —x— MC w/ dimension reduction
0.35 o . o —A— PINN w/ dimension reduction
0.3 0.384 % 40
1.2 1.2 g
; . g 20
=
& 0 | L —t—t ===
€2 £o 19" 1> 103 104 10° 106

sample complexity

Figure 3: Estimation of the exponential of value function at
t = 0.5 for a 1000-dimensional system by path integral MC
(left), and by the proposed method (right).

Figure 4: Percentage error of the estimated value function
with path integral MC.

Accurate identification of features with the auto-encoder NN

Network Architecture [16, 64, 128, 64, 16] [64, 64, 128, 64, 64] [64, 128, 128, 128, 64]
Representation Error (%) 0.007 0.011 0.009
Cost Reconstruction Error (%) 0.120 0.099 0.129

Table 5: Autoencoder-like network architecture for njayer = 9
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Conclusion

Goal:

Overall diagram:

Efficient estimation of optimal value function / safety probability
of high-dimensional stochastic systems in one unified framework

Theoretical guarantee: no information loss

~

Low-dimension
Features

Comparison Theorem

| Auto-encoder like NN |

Feynman-Kac Formula
Automatic feature identification
Value Function
‘ Safety Probability

Improved sample complexity

High-dimension
System

Low-dimension
PDE
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Thanks for Listening!

arXiv paper:

Contact: zhuoyuaw@andrew.cmu.edu
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