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INTRODUCTION41
Growing parking demand and limited spaces has become one of the major issues of urban trans-42
portation systems. During peak hours, "cruising for parking" is a common phenomenon in areas43
with dense population. In coping with this issue, numerous parking intervention and guidance sys-44
tems have been developed during the last few decades, among most of them, a reliable source of45
predicted future parking occupancies is one of the key factors to their effectiveness. By obtaining a46
reliable prediction of on-street parking occupancies, proper parking location recommendations and47
cruising strategies can be generated in advance, by sharing these information to en-route drivers48
vis mobile devices or Advanced Driving Assistance Systems (ADAS), drivers will cruise and park49
in a more efficient way.50

As for predicting short-term parking occupancy, most approaches in literature follow one51
of the following two paths: (1) Model individual driver’s stochastic arrival and departure behav-52
iors in a microscopic way(1–4). The distributions of the arriving/departure process are commonly53
assumed Poisson or Negative Exponential(5, 6), and usually evaluated via simulations. (2) Data-54
driven approaches, which utilize statistical models on historical and real-time observations to pre-55
dict aggregated parking occupancies in a msesoscopic manner, such as on street or block levels. In56
this study, we adopt the data-driven approach by incorporating multiple traffic-related sources with57
real-time and historical data, including historical parking occupancy, traffic status, road character-58
istics, weather and network topology, and predict short-term parking occupancy via a deep neural59
network method.60

In our method, we utilize parking meter transactions data instead of sensor data as the61
parking occupancy, which offers the following advantages: Since 95% of the on-street paid parking62
are managed by meters, a prediction model based on transactions is more adaptive and cost efficient63
than one based on parking sensors data. In our previous study, we have shown that the estimation64
of parking occupancy based on transactions can be calibrated to a satisfying level given a small65
amount of ground truth data(4), which can be collected manually or picked from sensor records66
in their best conditions. To model the complicated correlation as well as causality relationship67
between on-street parking occupancy, information from various traffic-related sources and network68
topology, we proposed a method of combining the graph based theories with a convolutional neural69
network. The temporal relationships of parking occupancies along with other traffic-related data70
are simulated via Long-Short Term Memory(LSTM), while their spatial correlations are model71
through graph-based CNN.72

METHODOLOGY73
Apart from parking occupancies, external traffic-related data sources can serve as indicators for74
future parking demand, such as speed, traffic counts, transit information, incidents and weather.75
Under certain scenarios, like abnormal congestions, nearby incidents or incoming snowstorms,76
information acquired from these sources are critical to the success of short-term occupancy pre-77
dictions. Multiple data sources are incorporate simultaneously in the network framework of our78
method, specifically, individual data source are first embedded separately in our framework, then,79
the embedded values are merged by a multi-layer decoder, which outputs the predicted occupan-80
cies. As a result, our network framework provides the flexibility that individual data sources can be81
attached or detached from the network without compromising the overall structure of the predic-82
tion model. This improves the generosity of model since not all the aforementioned data sources83
are available for a given location. Also, by evaluating the performance of different combinations84
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of input features, we can infer the effectiveness of each data source in occupancy prediction and85
find the most proper models.86

In the context of large scale road network with multiple data sources, the dimension of87
model input space is too high to be modeled by simple statistical methods. In our method, we88
propose a deep neural network by connecting graph CNN, LSTM and multi-layer feed-forward89
decoder. Such a structure can handle the high dimensional input space by modeling the non-90
linear correlations among spatial-temporal data sources and filtering out redundant information.91
Specifically, the spatial information is modeled through layers of convolutional neural network on92
graph (GCNN) (7, 8). The GCNN uses graph spectral theory (9) to filter the signal on localized93
sub-graphs, then uses the filtered signal as the features for the neural networks. The temporal94
information could then be captured through a recurrent neural network (RNN), in our case, Long95
Short Term Memory (LSTM) (10). Multiple data sources can be handled separately first by feature96
embedding and feature extractions for each data source, the extracted features are then combined97
as the input for a multi-layer decoder which yields the prediction of occupancies for each road link98
in the network. Specifications of the above modules in our model is discussed in the following99
subsections.100

Graph CNN101
In our method, the road network is modeled as a directed graph, with nodes being road link or102
parking locations, and edges transfer the traffic flow or parking demand among nodes. To model103
the spatial correlations among road links or parking block of the road network, graph convolution104
operations are used to conduct message passing on the graph. Since nodes in a graph are not105
homogeneous to pixels in an Euclidean structure(such as an image), it is critical to define the local106
reception field in order to perform the convolution operations. Thus, we utilize spectral filters on107
signals(7) to conduct convolutions on an directed graph. As explained below.108

Given a graph G = (V,E,W ), where V is the set of nodes, |V | = n, E is the set of edges109
and W ∈ Rn×n is the weight matrix for all pairs of nodes. We define a signal x ∈ Rn on the graph,110
where xi is the signal for node i. Define the normalized Lagrangian of the graph L= I−D−

1
2WD−

1
2 ,111

where D is the diagonal degree matrix with Dii = ∑ j Wi j. The eigenvalues of L are known as the112
frequencies of the graph, and the corresponding eigenvalues are known as graph Fourier modes.113
Thus by signal value decomposition, we have L =UλUT , where λ = diag([λ0, · · · ,λn−1]), U is114
the unitary eigenvector matrix.115

We can then define a convolution operator on graph G on the Fourier domain, the definition116
is presented in Equation 1.117

y = gθ (L)x =Ugθ (λ )UT x (1)118

We use localized filter so that the convolution operation on one signal only focuses on it119
neighborhoods. The localized filter shares the same ideas with tradition CNN on parameter sharing120
and connectivity localization. The localized polynomial filter is presented in Equation 2.121

gθ (Λ) =
K−1

∑
k=0

θkΛ
k (2)122

To enhance the computational efficiency, we apply Chebyshev expansion to the polynomial123
filters(11). By defining Tk(x) = 2xTk−1(x)−Tk−2(x) and Λ̃ = 2Λ/λmax− I, the polynomial filter124
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can be formulated as in Equation 3.125

gθ (Λ) =
K−1

∑
k=0

θkTk(Λ̃) (3)126

CASE STUDY OF PITTSBURGH DOWNTOWN127
To evaluate the performance of the proposed prediction model, we conducted a case study in Pitts-128
burgh downtown area, which contains 97 on-street parking meters scattered over the road network.129
Due to the availability of data sources, three types of data alone with the topology of the road130
network are used in this case study, including parking meter transactions, traffic speed and weather131
conditions. To evaluate the effectiveness of the proposed method as well as the contributions of132
each dataset, numerous experiments are conducted, results of the experiments are presented in this133
subsection. The proposed framework is implemented on PyTorch, all the experiments are con-134
ducted on a Linux workstation with two 1080Ti GPUs. All networks are trained by ADAM for135
1000 epochs or early stop if no improvement in 5 epochs. The performance of all networks are136
evaluated by the Mean-squared-error(MSE) of predicting parking occupancies of all street blocks137
30 minutes in advance.138

The training progress of the final model is presented in Fig. 1, the y-axle is the loss in139
log scale, notice the loss is measured in Mean Square Error of the block-wise occupancies after140
preprocessing, i.e. occupancies values in the range of [-1, 1]. As we can see, the proposed model141
converges quickly in the first 15 epochs, after that, the training loss continues to drop slowly while142
the testing loss starts to go up a little bit as the sign of over-fitting. Finally, the training progress is143
terminated at the 37th epoch triggered by early stopping.144

FIGURE 1: Model converge results

Comparison with baseline models145
Results of model comparison are shown in Table 1. For the 2-layered LSTM, the best result is
reached on a configuration of using 1024 and 256 as the dimensions for the first and second layers,
along with a dropout rate of 0.25; For the model of 3-layer LSTM, the best result is reached on
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TABLE 1: Comparisons between models

Model Train RMSE Test RMSE
GCNN+LSTM+FNN (proposed model) 3.17 4.02
2-layer LSTM 4.25 5.15
3-layer LSTM 5.61 6.34
LASSO 4.27 4.63
Historical Average 11.48 11.51
Last Observation 8.99 9.29

a 2048-512-128 network configuration with a dropout rate of 0.25. As for LASSO, the objective
function of optimization is shown in Eq. 4, Where X ,y,β being input features, occupancy ground
truth and model parameters, respectively. In LASSO, all spatial information are dropped as the in-
put being flattened into a one-dimensional vector. the optimization object of LASSO. In Historical
Average, historical occupancy observations of the same time and week-of-day are averaged as the
predicted value for individual blocks. In Last Observation, the current occupancy is used as the
predicted value for 30 minutes later.

min
β∈R
{ 1

N
||y−Xβ ||22 +λ ||β ||1} (4)

As we can see, the proposed network outperforms all baseline models with a significant146
margin, the closest one to our method is LASSO. Interestingly, the two multi-layer LSTM models147
are beaten by LASSO, as the linear regression model with L1 constrains, indicating that some com-148
plex deep neural network models are prone to failure when applied high-dimensional but small-149
sized dataset from real world. The GCNN, on the other hands, applies spectral filtering on the150
graph representation of road network to capture the core spatial correlations while bounding the151
model complexity by parameter sharing. Thus is more suitable for scenario with strong spatial152
correlations among features than other deep learning models like vanilla RNN.153

CONCLUSIONS154
In this paper, a deep learning model is proposed for predicting block-level parking occupancy in155
real time. The model leverages Graph-Convolutional Neural Networks (GCNN) to extract the spa-156
tial relations of traffic flow in large-scale networks, and utilizes Recurrent neural network (RNN)157
and Long-short term memory (LSTM) to capture the temporal features. In addition, the model is158
capable of taking multiple heterogeneously structured traffic data sources as input, such as park-159
ing meter transactions, speed, transit, weather, etc. The model performance is evaluated on a160
case study conducted in Pittsburgh downtown area. Parking meter transactions, traffic speed, and161
weather data along with road networks are used in the case study. The proposed model outperforms162
other baseline methods including multi-layer LSTM and Lasso with a testing Mean Square Error163
(MSE) of 4.02 spaces when predicting block-level parking occupancies 30 minutes in advance.164
The case study also shows that features of traffic speed and weather are effective in predicting165
parking occupancies.166
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