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Motivation

» Human mobility modeling and understanding.

v

Ubiquitous mobile devices for sensing at scale.
» Global presence and availability of ride-sharing services.

» Extensive real ride request data from a ride-sharing service.

v

Potential of large-scale sensing and analytics for societal good.
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Part 1. Modeling




Ride Request Definition

Each ride request is defined by:
1. Time of request: t=<timestamp>
2. Pickup location: s=<latitude, longitude>
3. Dropoff location: d=<latitude, longitude>



Temporal Pattern of Ride Requests

volume of ride requests
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Figure: Similarity in the weekly pattern of ride requests in San Francisco



Temporal & Spatial Pattern of Ride Requests

Video
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Observation: There is significant variability in the ride
request patterns from city to city, and across space and
time.
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Question: Is there a rigorous model that can capture the
variations of ride request patterns in a city?
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Temporal Evolution of Graphs

Densification Power Law:
» networks are becoming denser over time

» the number of edges grow faster than the number of nodes —
average degree is increasing

E(t) o N(t)" (1)
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Graph Densification

» Densification Power Law:

E(t)oc N(t)*

Densification exponent: 1 <a<2:

» a=1: Linear growth - constant out-degree
» o =2: Quadratic growth - clique

Let's look at some real graphs!
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Densification: Physics Citations

» 1992: 1,293 papers, 2,717
citations

E(t) Apr 2003/
: / » 2003: 29,555 papers,

{ 1.69 352,807 citations
» For each month m, create a

graph of all citations up to

- Edges month m.
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Image source: Leskovec, KDD, 2005.
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Densification: Graph of the Internet

» 1997: 3,000 nodes, 10,000

E(t) edges
| » 2000: 6,000 nodes, 26,000
§jm edges
g0 y » One graph per year.

e e e
Number of nodes N (t)

Image source: Leskovec, KDD, 2005.
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Densification: Ride Request Graph

107

Edge count

C=0.294, alpha=1.104

~

° 10" 10°

107
Node count

Figure: n=5 minutes

» Non-peak hour: 662 nodes,
383 edges

» Peak hour: 7269 nodes,
7361 edges

» One graph for every n
minutes.
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Ride Request Graph
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(a) Four ride requests distributed spatially (b) Corresponding Ride Request Graph
over a map with four nodes (marked by red boxes) and
directed edges.

Figure: Transformation of ride requests, in a particular time interval, into
a directed ride-request graph (RRG).
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Densification: Ride Request Graph

Densification implies community effect:

16



Carnegie Mellon

Densification: Ride Request Graph
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Densification: Ride Request Graph

Densification implies community effect:

» Few nodes with high degree
» Many nodes with low degree
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Number of nodes with k in-degree would be « 1/k¢
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Densification: Ride Request Graphs
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Modeling

Summary: RRGs provide a rigorous model to characterize ride
requests over time.

18
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Part 2: Placement Problem
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Question: Where should drivers go after droping off
passengers?

20
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Problem Definition

Let's say at time snapshot t, n vehicles drop-off riders at djs:

PRESIDIO OF SAN
FRANCISCO

d,
VANDS END 4
SAN
FRANCISCO

ds

BEACH

dy

dy d3

Figure: d;'s denote drop-off points in SF downtown at a time snapshot.
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Problem Definition

Let's say at time snapshot t, n vehicles drop-off riders at djs:

PRESIDIO OF SAN
FRANCISCO

7 d,
VANDS END e
SAN
FRANCISCO!

ds

BEACH

?
el

7
dy d3
?

Figure: d;'s denote drop-off points in SF downtown at a time snapshot.
Red marks (7) denote possible placements.

Question: Where should the n vehicles be placed s.t. pickup times
for requests at time period t+1 are minimized? There are

numerous possiblities!
21
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Assumptions

» Drivers don't get tired; willing to pick-up immediately after a
drop-off.
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Assumptions

» Drivers don't get tired; willing to pick-up immediately after a
drop-off.

» Instead of finding exact placement locations, we discretize
space into equally sized small nodes/grids:

LFQRT POINT NS MARITIME NHP

PRESIDIO OF AN
FRANCISCO

VANDS END'

FRANCISCO

SR

Problem is simplified to finding a node to place a vehicle.
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Approach

Online Learning: Data points are arriving over time, and a
decision needs to be made on the fly without knowing what will
happen in the future.

Decision timescale is as kept as low as three minutes.
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Approach

Online Learning: Data points are arriving over time, and a
decision needs to be made on the fly without knowing what will
happen in the future.

Decision timescale is as kept as low as three minutes.

An online learning approach which chooses actions such that the
total rewards are close to the best action in hindsight.

FVO\N POIN EJHS \ ;;WR\FV’\\;JE&?‘JA:
e 7
VANps eno d%
RS Consider the scenario at time snapshot t =1:
ocdan .
s > d,] is is the ith drop-off at the jth
time snapshot
Vi > p{ is placement of ith drop-off in the
i j time snapshot
1
dl
D¢
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Approach

Online Learning: Data points are arriving over time, and a
decision needs to be made on the fly without knowing what will
happen in the future.

Decision timescale is as kept as low as three minutes.

An online learning approach which chooses actions such that the
total rewards are close to the best action in hindsight.

FORT POINT NHS | MARITIME NP

PRESIDIO OF sAN p2 X
FRANCISCO 2

s eno d%
FRANQISCO
ocdin At time snapshot t =2, we realize how good
- were our placements:
> Only p% was a good placement
ef »  Reward: rp=1

1
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Approach

Online Learning: Data points are arriving over time, and a
decision needs to be made on the fly without knowing what will
happen in the future.

Decision timescale is as kept as low as three minutes.

An online learning approach which chooses actions such that the
total rewards are close to the best action in hindsight.

FORT POINT NHS RITIME NHP

i
3,2
pespoor i b3 p3)

FRANCISCO

ipse d2 |43
FRANQISCO
i
1 In hindsight, we could have received rewards:
rp+r3=4
ufpl
24 41
dl dl
DLy Cr
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Reward Percentage Definition

Reward percentage is defined for every time snapshot:

#good__placements;
R(t) = 2
(t) F#dropoffs;_1 (2)

24
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Placement Problem - Random Selection

Randomly choose from the allowable placements.

25
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Placement Problem - Random Selection

Randomly choose from the allowable placements.
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Placement Problem - Poisson Process

Choose the allowable placement which maximizes the probability of
pickup.
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Placement Problem - Poisson Process

Choose the allowable placement which maximizes the probability of
pickup.
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Follow The Leader

On each time snapshot t=1,2,...,

» For each drop-off d € {1,2,---,n}, pick a set of
constrained actions Ay such that |[Agl= m.
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Follow The Leader

On each time snapshot t=1,2,...,

» For each drop-off d € {1,2,---,n}, pick a set of
constrained actions Ay such that |[Agl= m.

» Choose action a€ Ay with maximum reward r¢[a], where
r¢[a] = total reward for action a so far.

A slightly modified version of the algorithm is instead of using r¢[a],
we could use total rewards for k previous time snapshots only.
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Placement Problem - Follow the leader
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Placement Problem - Follow the leader
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Placement Problem - Optimal
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Placement Problem - Optimal
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Placement

Observation: Placement of vehicles at granular geo-locations
is a hard problem.

30
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Part 3: Poolability
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Poolability Definition

Each ride request defined by < t,s,d >. Pool ride requests if:

1. At<m time units

32



Poolability Definition

Each ride request defined by < t,s,d >. Pool ride requests if:
1. At<m time units
2. As< S distance units

32



Poolability Definition

Each ride request defined by < t,s,d >. Pool ride requests if:
1. At<m time units
2. As< S distance units
3. Ad< D distance units

32



Carnegie Mellon

Poolability Definition

Each ride request defined by < t,s,d >. Pool ride requests if:
1. At<m time units
2. As< S distance units
3. Ad< D distance units

Poolability is the percentage of ride requests poolable. For
simplicity, we discretize time into buckets.

32



Poolability Example

Assume all 3 requests came within 5 minutes.
Case 1: 3 vehicles for 3 requests.

d3
A

/ i

52/

s1 > d;

S3
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Poolability Example

Assume all 3 requests came within 5 minutes.
Case 1: 3 vehicles for 3 requests.

d3
A

d>

S2
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Poolability Example

Assume all 3 requests came within 5 minutes.
Case 2: 2 cars for 3 requests. Poolability =66.6%

d3
A

/ *

51 di

S3
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Poolability

N
o

Sacramento
°

-
o

Santa Rosa
o

S
Poolability

v

CALIF

Figure: Left: Poolability for a week of data. Right: Boundary of the city
of San Francisco.
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Poolability Experiements

Three metrics to analyze poolability:
» Savings:
» Total distance covered.
» Total number of vehicles used.
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Poolability Experiements

Three metrics to analyze poolability:
» Savings:
» Total distance covered.
» Total number of vehicles used.

» Cost: Added travel time.
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Poolability Savings: San Francisco

% of all requests

{HDHHTTHHHFHFH

Trip length (Km)

(a) Percentage distribution of trip distances; Mean distance: 8.83km
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Poolability Savings: San Francisco

% of all requests

i ‘ { M “ ‘Hﬂﬂﬂ?ﬂ T [ ST — —

Trip length (Km)

(a) Percentage distribution of trip distances; Mean distance: 8.83km

% of total distance saved

etk

Trip length (Km)

(b) Percentage distribution of reduction of travel distances
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Poolability Savings: New York

% of all requests

“Trip length (km)

(a) Percentage distribution of trip distances; Mean distance: 6.98km

% of total distance saved

“Trip length (Km)

(b) Percentage distribution of reduction of travel distances
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Poolability Savings: Los Angeles

% of all requests

“Trip length (km)

(a) Percentage distribution of trip distances; Mean distance: 9.88km

% of total distance saved

“Trip length (Km)

(b) Percentage distribution of reduction of travel distances
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Poolability Savings: Chicago

% of all requests

ZW H‘Hﬂjﬂﬂﬂfmp

Trip length (Km)

(a) Percentage distribution of trip distances; Mean distance: 8.14km

% of total distance saved

3 HHH“HHHWM g a— |

Trip length (Km)

(b) Percentage distribution of reduction of travel distances
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Poolability Savings: Vehicle Reductions

H g g

# of vehicles saved
# of vehicles saved

3

" g 0 g

s ) i o " g 0 g 3 5 O

X E x %
Time Time

(a) San Francisco; Mean 4 hour reduction: (b) New York; Mean 4 hour reduction:
853 739

Figure: Vehicle reduction plot over time for a week.
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Poolability Cost: Travel Time

City ‘ Mean ‘ 95th Percentile
San Francisco | 38.49 374
New York 49.34 397
Los Angeles 1.70 274
Chicago 25.70 377

Table: Travel time cost (seconds) due to poolability with
At =5min,As=100m, Ad =1000m
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Poolability

Observation: Simple pooling algorithms can yield good sav-
ings given the observed distribution of travel distances with
minimal overhead of travel times.
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Part 4a: Our story
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The Plot of Our Story

Act 1 Model temporal and spatial patterns of mobility.

44
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Act 1 Model temporal and spatial patterns of mobility.

Act 2 Improve placement of vehicles.
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The Plot of Our Story

Act 1 Model temporal and spatial patterns of mobility.
Act 2 Improve placement of vehicles.

Act 3 Study potential of poolability.
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Part 4b: Discussion
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Question: Is there a self-similar pattern spatially on how
humans move?
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Question: How can we rigrously model, and predict about
human mobility patterns both temporally and spatially?
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Questions?

48



	Modeling
	Modeling

