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Outline of this talk

Ï Part 0: Motivation

Ï Part 1: Modeling (Recap)

Ï Part 2: Placement

Ï Part 3: Poolability

Ï Part 4: Discussion
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Part 0: Motivation
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Motivation

Ï Human mobility modeling and understanding.

Ï Ubiquitous mobile devices for sensing at scale.

Ï Global presence and availability of ride-sharing services.

Ï Extensive real ride request data from a ride-sharing service.

Ï Potential of large-scale sensing and analytics for societal good.
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Part 1: Modeling
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Ride Request Definition

Each ride request is defined by:
1. Time of request: t=<timestamp>
2. Pickup location: s=<latitude, longitude>
3. Dropoff location: d=<latitude, longitude>
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Temporal Pattern of Ride Requests

Figure: Similarity in the weekly pattern of ride requests in San Francisco
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Temporal & Spatial Pattern of Ride Requests

Video
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Observation: There is significant variability in the ride
request patterns from city to city, and across space and

time.
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Question: Is there a rigorous model that can capture the
variations of ride request patterns in a city?
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Temporal Evolution of Graphs

Densification Power Law:
Ï networks are becoming denser over time

Ï the number of edges grow faster than the number of nodes –
average degree is increasing
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Temporal Evolution of Graphs

Densification Power Law:
Ï networks are becoming denser over time
Ï the number of edges grow faster than the number of nodes –
average degree is increasing

E (t)∝N(t)α (1)
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Graph Densification

Ï Densification Power Law:

E (t)∝N(t)α

Densification exponent: 1≤ α≤ 2:

Ï α= 1: Linear growth - constant out-degree
Ï α= 2: Quadratic growth - clique
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Graph Densification

Ï Densification Power Law:

E (t)∝N(t)α

Densification exponent: 1≤ α≤ 2:
Ï α= 1: Linear growth - constant out-degree
Ï α= 2: Quadratic growth - clique

Let’s look at some real graphs!
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Densification: Physics Citations

Ï 1992: 1,293 papers, 2,717
citations

Ï 2003: 29,555 papers,
352,807 citations

Ï For each month m, create a
graph of all citations up to
month m.

Image source: Leskovec, KDD, 2005.
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Densification: Graph of the Internet

Ï 1997: 3,000 nodes, 10,000
edges

Ï 2000: 6,000 nodes, 26,000
edges

Ï One graph per year.

Image source: Leskovec, KDD, 2005.
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Densification: Ride Request Graph

Figure: n = 5 minutes

Ï Non-peak hour: 662 nodes,
383 edges

Ï Peak hour: 7269 nodes,
7361 edges

Ï One graph for every n
minutes.
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Ride Request Graph

©OpenStreetMap contributors

s1

d1

s2

d2

s3

d3

d4

s4

(a) Four ride requests distributed spatially
over a map

©OpenStreetMap contributors

A B

C

D

(b) Corresponding Ride Request Graph
with four nodes (marked by red boxes) and

directed edges.

Figure: Transformation of ride requests, in a particular time interval, into
a directed ride-request graph (RRG).
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Densification: Ride Request Graph

Densification implies community effect:
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Densification: Ride Request Graph

Densification implies community effect:
Ï Few nodes with high degree
Ï Many nodes with low degree

Number of nodes with k in-degree would be ∝ 1/kc
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Densification: Ride Request Graphs

(a) San Francisco (b) New York

(c) Paris (d) Hyderabad
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Modeling

Summary: RRGs provide a rigorous model to characterize ride
requests over time.
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Part 2: Placement Problem
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Question: Where should drivers go after droping off
passengers?
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Problem Definition

Let’s say at time snapshot t, n vehicles drop-off riders at di s:

d4

d1

d2 d3

d5

Figure: di ’s denote drop-off points in SF downtown at a time snapshot.
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Problem Definition

Let’s say at time snapshot t, n vehicles drop-off riders at di s:

d4?

d1 ?

d2
?

d3

?

d5

?

Figure: di ’s denote drop-off points in SF downtown at a time snapshot.
Red marks (?) denote possible placements.

Question: Where should the n vehicles be placed s.t. pickup times
for requests at time period t +1 are minimized? There are
numerous possiblities!
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Assumptions

Ï Drivers don’t get tired; willing to pick-up immediately after a
drop-off.

Ï Instead of finding exact placement locations, we discretize
space into equally sized small nodes/grids:

Problem is simplified to finding a node to place a vehicle.
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Approach

Online Learning: Data points are arriving over time, and a
decision needs to be made on the fly without knowing what will
happen in the future.
Decision timescale is as kept as low as three minutes.
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Approach

Online Learning: Data points are arriving over time, and a
decision needs to be made on the fly without knowing what will
happen in the future.
Decision timescale is as kept as low as three minutes.

An online learning approach which chooses actions such that the
total rewards are close to the best action in hindsight.

d11

d12

p21

p22

Consider the scenario at time snapshot t = 1:

Ï dj
i is is the ith drop-off at the jth

time snapshot

Ï pj
i is placement of ith drop-off in the

j time snapshot
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Approach

Online Learning: Data points are arriving over time, and a
decision needs to be made on the fly without knowing what will
happen in the future.
Decision timescale is as kept as low as three minutes.

An online learning approach which chooses actions such that the
total rewards are close to the best action in hindsight.

d11

d12

p21p21

p22

X

p22

At time snapshot t = 2, we realize how good
were our placements:

Ï Only p21 was a good placement

Ï Reward: r2 = 1
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Approach

Online Learning: Data points are arriving over time, and a
decision needs to be made on the fly without knowing what will
happen in the future.
Decision timescale is as kept as low as three minutes.

An online learning approach which chooses actions such that the
total rewards are close to the best action in hindsight.

p31

d22

p32X

d21

X

At time snapshot t = 3:
Ï p31 and p32 were good placements

Ï Reward: r3 = 2
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Approach

Online Learning: Data points are arriving over time, and a
decision needs to be made on the fly without knowing what will
happen in the future.
Decision timescale is as kept as low as three minutes.

An online learning approach which chooses actions such that the
total rewards are close to the best action in hindsight.

d11

d12d22

d21

p31p21

p32p22

In hindsight, we could have received rewards:

r2 + r3 = 4
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Reward Percentage Definition

Reward percentage is defined for every time snapshot:

R(t) = #good_placementst
#dropoffst−1

(2)
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Placement Problem - Random Selection

Randomly choose from the allowable placements.
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Placement Problem - Random Selection

Randomly choose from the allowable placements.

(a) San Francisco (b) New York
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Placement Problem - Poisson Process

Choose the allowable placement which maximizes the probability of
pickup.
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Placement Problem - Poisson Process

Choose the allowable placement which maximizes the probability of
pickup.

(a) San Francisco (b) New York
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Follow The Leader

On each time snapshot t = 1,2, . . . ,

Ï For each drop-off d ∈ {1,2, · · · ,n}, pick a set of
constrained actions Ad such that |Ad |=m.

Ï Choose action a ∈Ad with maximum reward rt [a], where
rt [a] = total reward for action a so far.
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Follow The Leader

On each time snapshot t = 1,2, . . . ,

Ï For each drop-off d ∈ {1,2, · · · ,n}, pick a set of
constrained actions Ad such that |Ad |=m.

Ï Choose action a ∈Ad with maximum reward rt [a], where
rt [a] = total reward for action a so far.

A slightly modified version of the algorithm is instead of using rt [a],
we could use total rewards for k previous time snapshots only.
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Placement Problem - Follow the leader
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Placement Problem - Follow the leader

(a) San Francisco (b) New York

©
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Placement Problem - Optimal
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Placement Problem - Optimal

(a) San Francisco (b) New York

§
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Placement

Observation: Placement of vehicles at granular geo-locations
is a hard problem.
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Part 3: Poolability
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Poolability Definition

Each ride request defined by < t ,s ,d >. Pool ride requests if:
1. ∆t <m time units

2. ∆s < S distance units
3. ∆d <D distance units
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Poolability Definition

Each ride request defined by < t ,s ,d >. Pool ride requests if:
1. ∆t <m time units
2. ∆s < S distance units
3. ∆d <D distance units

Poolability is the percentage of ride requests poolable. For
simplicity, we discretize time into buckets.
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Poolability Example

Assume all 3 requests came within 5 minutes.
Case 1: 3 vehicles for 3 requests.

s1 d1

s2

d2

s3

d3

10
0m

10
00
m
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Case 1: 3 vehicles for 3 requests.

s1 d1

s2

d2

s3

d3
10
0m

10
00
m
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Poolability Example

Assume all 3 requests came within 5 minutes.
Case 2: 2 cars for 3 requests. Poolability = 66.6%

s1 d1

s2

d2

s3

d3

10
0m

10
00
m
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Poolability

Figure: Left: Poolability for a week of data. Right: Boundary of the city
of San Francisco.
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Poolability Experiements

Three metrics to analyze poolability:
Ï Savings:

Ï Total distance covered.
Ï Total number of vehicles used.

Ï Cost: Added travel time.
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Poolability Savings: San Francisco

(a) Percentage distribution of trip distances; Mean distance: 8.83km

(b) Percentage distribution of reduction of travel distances
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Poolability Savings: San Francisco

(a) Percentage distribution of trip distances; Mean distance: 8.83km

(b) Percentage distribution of reduction of travel distances
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Poolability Savings: New York

(a) Percentage distribution of trip distances; Mean distance: 6.98km

(b) Percentage distribution of reduction of travel distances
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Poolability Savings: Los Angeles

(a) Percentage distribution of trip distances; Mean distance: 9.88km

(b) Percentage distribution of reduction of travel distances
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Poolability Savings: Chicago

(a) Percentage distribution of trip distances; Mean distance: 8.14km

(b) Percentage distribution of reduction of travel distances
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Poolability Savings: Vehicle Reductions

(a) San Francisco; Mean 4 hour reduction:
853

(b) New York; Mean 4 hour reduction:
739

Figure: Vehicle reduction plot over time for a week.
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Poolability Cost: Travel Time

City Mean 95th Percentile
San Francisco 38.49 374
New York 49.34 397
Los Angeles 1.70 274
Chicago 25.70 377

Table: Travel time cost (seconds) due to poolability with
∆t = 5min,∆s = 100m,∆d = 1000m
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Poolability

Observation: Simple pooling algorithms can yield good sav-
ings given the observed distribution of travel distances with
minimal overhead of travel times.
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Part 4a: Our story
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The Plot of Our Story

Act 1 Model temporal and spatial patterns of mobility.

Act 2 Improve placement of vehicles.
Act 3 Study potential of poolability.
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Part 4b: Discussion
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Question: Is there a self-similar pattern spatially on how
humans move?
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Question: How can we rigrously model, and predict about
human mobility patterns both temporally and spatially?
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Questions?
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