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A New Research Initiative at CMU-SV

% Research Vision:
“Distilling Human Mobility Data into Valued Services for Societal Good”

% Research Horizon: pmmmmmms F N \

1-2 years 2-3 years 3-5 vears \ 5-10 vears
Industry product Nearer-term Longer-term
Industry R&D academia research academia research

% Research Approach:
% In-situ deployment of end-to-end experimental systems

& Research Theme:

> Human mobility data from industry partners
>  Behavior models and predictive intelligence
>  Services for mobile users, communities, and enterprises
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Human Mobility Analytics and Services Systems

SENSING ANALYTICS

Data from diverse Behavior models and Diverse forms of useful
sensing platforms: predictive intelligence: & specialized services:
> Human sensing > Mobile population > Mobile users services
> \Vehicle sensing > Connected vehicles > Public services and
> Environment sensing > Transportation systems policy management
> Infrastructure sensing > Wireless networks > Enterprise business
intelligence
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“Human Mobility Analytics and Services:
Insights from a Ride-Sharing Service”

John Paul Shen & Abhinav Jauhri
ECE Department, CMU (Silicon Valley Campus)
November 17, 2016 (Traffic21 Seminar)

ABSTRACT:

This talk presents some initial results and insights from our collaboration with a global ride sharing service company. Through this
collaboration we have access to ride request data from 400+ cities in the world. We focused on ride requests from the top 40 cities
and developed a space-time graph model that captures the spatial and temporal variations of ride requests in a city. Based on this
graph model, we can characterize the “poolability” of a city (i.e. the % of ride requests that can be pooled). Many cities exhibit
potential poolability in the 30% range. We are developing a ride pooling algorithm that can exploit this potential, with the goal of
reducing the number of vehicles on the roads and potentially alleviating city traffic congestions.
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http://youtube.com/v/SwPdy3vEQ5I

u” \.)emc ° \A".S S/
£

4b~5.\v \ Salnt Dehis Ue'Bourget
e

“R \ m icneuve

b{S ?]-9 3 Drancy
~AiQ|éres -Sur- Samt O ubervnlluers \ .

.—-—Smne Bobngny\
| Ch’,s

R
Noisy-le-¢
. Romainville
Ues Liga? /—I

gnole& .
. * Montreul

& o. 3onte

. |
X amt Mande N
e N

|

... . Char!mon- >

7Y \ 18P ONPrwrs Jeinyi
MO""OUFQ wit 1lvry - Sem? Pe

' .
mart / A ueil p Maisons-Alfort
Bagneux ! ». e ‘g L .
' } Vulls;unf \ Alfortyille
: Vitry-sur-Seine o
-Robinson ’ retei
I \L'Hay-les-Rose;' Soum=23 §

| J ' 3 ST __.{24 i /\\

Distribution of ride requests at 2pm in Paris
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Distribution of ride requests at 4am in Paris
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Distribution of ride requests at 11am in Hyderabad
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Distribution of ride requests at 8pm in NY Distribution of ride requests at 3am in NY
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Average Ride Requests per Hour

City
Paris
Hyderabad
New York

San Francisco

Hourly Average

3.5K
1.5K
7.7K
6.4K

Recent emergence of ride-sharing services is transforming human mobility and transportation in major cities of the
world (Buzzfeed 2016). In December 2015, Uber Technologies, Inc. reported completion of a billion rides (Fortune
2015) within five years since it started operations. Didi alone in China reported 1.4 billion ride requests in 2015 (Wired
2016). They are expecting to reach 6 billion ride requests in 2016. There is huge potential for such services to transform

urban transportation and automotive industries.
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Ride Requests in New York
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http://www.youtube.com/watch?v=uc602Ppg3BM

Ride Requests in San Francisco
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http://www.youtube.com/watch?v=dZ8euDSIE8E

Ride Requests in Shenzhen
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http://www.youtube.com/watch?v=rVmL30uQqP8

Ride Requests in Paris
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http://www.youtube.com/watch?v=53ZG-T4Nu3w

Ride Requests in London
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http://www.youtube.com/watch?v=PBLU7m1OwEo

Ride Requests in Mexico City
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http://www.youtube.com/watch?v=33bRPiavYc0

Observation 1: There is significant variability in
the ride request patterns from city to city, and
across space and time within each city.
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All major ride-sharing services are introducing “ride pooling” to
reduce number of vehicles needed on the roads and to increase
the overall efficiency of ride-sharing services.

el

Travis Kalanick: - \ ‘.
5
; o~

Uber's plan to get more, m

people into fewer cars Didi Kuaidi, China’s Dominant Taxi App Firm, Launches
TED2016 - 19:18 - Filmed Feb 2016 1 Carpooling serVice

Jon Russell (@jonrussell,

CrunchBase

Didi Chuxing -

2012

Founded in 2012, DiDi is the world's largest mobile
transportation service platform, offering a broad
range of mobile technology-based transportation
options across over 400 major Chinese cities,
including taxi hailing, private car hailing, Hitch (social
ride-sharing), Chauffeur, DiDi Bus, DiDi Test Drive,
and DiDi Enterprise Solutions. As the leader in China's
sharing economy initiative, DiDi ...

One driver, one rider, one less car on

lic Transport; A P p
the road
Waze Carpool is an easy way for everyone to Cheng We
2 http://v
: i ot ; 0 Full profile for Didi Chuxing
Uber launched a nonprofit car-pooling service in China called People’s Uber last year, and 1 RaelorDid Ehure
now its hiegest rival — and China's largest ride-charine service — has fallowed <uit with a
Help each other out Spend less money Make the most of a Support a greener
on commute costs drive that's commute with fewer
happening anyway = cars on the roads
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Each Ride Request: <t,s,d>
What is “Ride Poolability”? Proximity Constraints for Pooling:

delta(t) < 5min
delta(s) < 100m

at most 100 meters apart in delta(d) < 1000m
terms of pick up locations

Destination
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Ride Poolability Profile for Paris
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Ride Poolability Profile for Hyderabad
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Ride Poolability Profile for New York
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Ride Poolability Profile for San Francisco
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Ride Poolability Profile for Shenzhen
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Ride Poolability Profile for London
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Tezontepec

Ride Poolability Protile for Mexico City

: Sahagun City

Coacalco
Ecatepec

OOOOO

iconcuac

Tlalnepantla;
Texcoco

Naucalpan
Mexico City

Ciudad Monte Tlaloc
Nezahualcoyotl
Huixquilucan LS Pas
egollado

JARDINES DEL
PEDREGAL

CONFIDENTIAL 2016/11/17 Carnegie Mellon University 26




Ride Poolability Profile for Shanghai
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Observation 2: There is similar variability in the
ride poolability profiles from city to city, and
across space and time within each city.
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Question 1: Is there a rigorous model that
can capture both the spatial and temporal
variations of ride request patterns in a city?
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Ride Request Graph (RRG)
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(a) Four ride requests distributed (b) Corresponding Ride Request
spatially over a map Graph with four nodes (marked
by red boxes) and directed edges.

Multiple instances of RRG can be created at every time instance, let’s say every 5 minutes.
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Densification Power Law (DPL)

Time-evolving graph like Arxiv citation graph, the Patent citation graph,
and many others share a common property i.e. DPL.
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Image source: Chakrabarti, D., & Faloutsos, C. (2006). Graph mining: Laws, generators, and algorithms. ACM computing surveys (CSUR), 38(1), 2.
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Densification Power Law property of RRG

Suppose, we have N(t) nodes, and E(t) edges at time t, and if at t+1, N(t+1)
= 2*N(t), what will be E(t+1)?

E(t) = C* N(t)°

ot C=0.451, alpha=1.031 ot C=0.384, alpha=1.054 ait C=0.293, alpha=1.098 ot C=0.294, alpha=1.104
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Question 2: What is the correlation, if any,
between the ride request patterns of a city
and the ride poolability profiles of that city?
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DPL and Ride Poolabilit

C=0.451, alpha=1.031

", it C=0.384, alpha=1.054 i C=0.293, alpha=1.098 it C=0.294, alpha=1.104
. 10“? 5 10“:: 5 10“; s 10‘;
3 | 3 | 3 | 3 |
c 10°} 2 101"E . 10 B 1011:;
’ I Nodemcount ’ l ’ i Nodemcount ’ i ’ I Nodemcount ’ ] ’ i Nodemcount ’ |
City Mean | Minimum | Maximum
- . . ‘1 Hyderabad 2.23 0.84 7.41
Alpha is correlated with ride poolability s el o oo
due to the “human community” effect. New York | 4.48 1.70 7.84
San Francisco | 5.48 2.50 9.16
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Auto generation property of DPL graphs

=> Graphs exhibiting DPL can be automatically generated
=> Auto generation is based on a small number of parameters

Desiderata for auto generation of RRGs

-> Generated graphs should match graphs extracted from real data
=> Should exhibit the same human community effects

=> Use as few parameters as possible to do auto generation

-> Should be efficient and scalable
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Question 3: Is it possible to auto generate
RRGs that exhibit the same DPL metrics as
those RRGs extracted from actual real data?

CONFIDENTIAL 2016/11/17 Carnegie Mellon University 36
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Figure 4: DPL plot from real data (top row) and synthetic data (bottom row) for four cities. The red line is the least square fit

of the form y = Cx®, where y and = are number of edges and nodes respectively. % =~ 1.00 for all of them.



Question 4: Is it possible to create an accurate
ride-request predictive system based on the

analysis of extensive historical data?

Question 5: Can such a ride-request
predictive system lead to optimal
ride-pooling algorithm and service at the city

scale?
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MjointVenture
SILICON VALLEY NETWORK

LY OF
PALO ALTO
Bay Area Fair Value Commuting:

st & MOBILITY ON DEMAND
roject soummary ‘ . e e .
An FTA MoD Sandbox Demonstration Project e Federal Transit Administration

Link to this google doc: http://bit.ly/FVCsummary

WHY: In pursuit of climate protection and traffic congestion relief, state/regional/local objectives
have converged for 15% per-capita VMT reduction and 2X transit/biking.

WHAT: In pursuit of regional objectives, our solution has the potential to reduce Bay Area
SOV commute share from 75% to 50%. Our technology/policy solution is called Fair Value
Commuting (FVC) and consists of five components:

Fair Value
Commuting
[ | | I , 1
ECTR MobAg Feebate Gap-Fill Systemic
Sl R ' Mobilty Aggregation workpleca. parking fecbate | New commute options Slaizels
T integrate T
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Promising avenues for future research. Some research questions:

1. If the ride pooling proximity constraints, both temporal and spatial, can be
relaxed, is it possible to significantly improve ride poolability?

2. Can the pattern of temporal and spatial variation of ride poolability be
leveraged to create intelligent predictive ride pooling algorithms?

3. Can we rigorously characterize the relationship between ride poolability
and ride request graph densification power law factor?

4. s it possible to use the space-time graph model extracted from historical
data to perform real-time traffic congestion prediction and alleviation, as
well as real-time accurate travel time prediction?

2016/11/17 Carnegie Mellon University 4o




History of CMU in Silicon Valley

Epoch 1: 2002 — 2008 (School of Computer Science)
> Full-time & Part-time MS degrees in SE & SM

Epoch 2: 2008 — 2014 (College of Engineering)
> MS degrees in SE & SM; INI MS bi-costal degrees; ECE MS & PhD degrees

Epoch 3: 2014 — 2020 (College of Engineering)

> Electrical & Computer Engineering (ECE): MS, MS-SE, & PhD
> |Information Networking Institute (INI): MSIT-IS, MSIT-MOB, MSIT-SM
> |Integrated Innovation Institute (lll): MS-SM, MS-TV

Current CMU-SV Total: ~300 MS; ~40 PhD; ~20 Faculty; ~20 Staff
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HUMANS Industry Partnership Program

> Membership categories:

v Founding Members: S500K/year (4-year commitment)
v/ Associate Members: S250K/year (2-year commitment)

> Represented industries:

Telecomm Infrastructure
Wireless Carrier

Mobile Hardware

Cloud Infrastructure
Transportation Systems

> Membership benefits:

Direct access to faculty and PhD students (including internships & consulting)
Access to pre-published research results (quarterly updates & annual reviews)
Access to prototype software and tools (internal evaluation and commercialization)
Non-exclusive royalty-free licenses to all IP generated through this initiative

SNSNSNKS

=W
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Human Mobility Analytics and Services Initiative

/7

% Leadership:
> Executive Director: Ole Mengshoel

>  Research Director: John Paul Shen
>  CMU Advisors: Raj Rajkumar, Dan Siewiorek, Jonathan Cagan, Burcu Akinci, Matthew

Sanfilippo
¢ Founding ECE Faculty Members:

> lan Lane: Spoken Dialog systems and Embedded Speech Technologies
>  Ole Mengshoel: Data Analytics, Recommendation Engines, Inferencing
> John Paul Shen: Mobile & Cloud-Edge Computing, Connected Vehicles
> Pei Zhang: Sensor Networks, Cyber Physical Systems, Mesh Networks

s Affiliated CEE Faculty Members:

> Hae Young Noh: Context-Aware Smart Structures, Statistical Signal Processing
> Zhen (Sean) Qian: Intelligent Transportation Systems, Travel Behavior

CONFIDENTIAL 2016/11/17 Carnegie Mellon University 43




Expertise: Machine Learning for Smart HCI

Speech and Interaction Technologies Group:
Inter-disciplinary research group looking at the intersection of....

Machine Learning

Distributed Machine Learning, Continuous Learning,
Signal Processing, Speech Recognition, Image
Processing, Automatic Model Optimization

Heterogeneous Computing

Machine Learning on Heterogeneous Computing:
CPU, Multicore CPU, Manycore GPU, fPGA, DSP

Human-Computer-Interaction

Speech and Multimodal Interaction, Context-Modeling, Cognitive Load
Estimation, Spoken Language Understanding in Situated Environments

CONFIDENTIAL 2016/11/17 Carnegie Mellon University 44



Expertise: Data Analytics & Machine Learning

Algorithms
Machine learning =
Stochastic optimization BAT2
Inference, compilation

Models

Probabilistic graphical models
Bayesian networks

Markov chains

Matrix factorization

Applications (and Experiments)

Recommender systems
Networks: computer, telecom, social, ...
Mobility : Vehicles, devices, ...

Science: Earth sciences , medical, ...
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Live Maps and Mixed Reality

Next Generation 3D Interactive Maps
Visual, Local, and RT Event Searches
Live maps as a Platform for MR Apps

Connected Vehicles

Vehicle/Mobile Device Interoperability A —
Vehicles As Sensing/Cloud Platforms P L.

Leverage ride-hailing service as platform

Access Smartphone applications .|

Federated Personal Computing p——— = B
Multi/Cross-Device Seamless FPC UX /=28 1 i
Mobile/Cloud Computing Convergence : _

Connected car as personal mobile server A 2 N e —
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http://cityscene_nokiaworld2010_720p.mp4
http://odymldemo_dec_9_11.wmv

Expertise: Sensing & Cyber Physical Systems

Internet of Things (drones, wearable, and devices)

Device localization
Wearable muscle fatigue/activity inferencing
Automatic device configuration and deployment

Building as Sensors
Infer people’s characteristics (weight/height, etc.)
Occupant health status (depression, happiness)

Location/status/movement of people, and machines
Hybrid model

Applications (and Experiments)
10,000, taxi-based pollution monitoring in Shenzhen
Elderly health monitoring in Vincentian Homes
Baby Monitoring at Colorado Medical Center
Consumer tracking at major retailers
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Expertise: Context-Aware Smart Structures

Buildings as Sensors
within: occupant identity/location/health status
(walking ability, stroke, etc.)
self: structural health monitoring (damage
diagnostics & prognostics), energy management
around: surrounding traffic, earthquake, etc.

Vehicles as Sensors
within: driver pose/movement/breathing/heartbeat
around: road/railway/bridge/air pollution monitoring s

Applications (and Experiments)
Elderly health monitoring in Vincentian Homes
Seismic damage diagnosis and risk analysis
Train based Pittsburgh light rail asset monitoring
10,000, taxi-based pollution monitoring in Shenzhen
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Expertise: Intelligent Transportation Systems |~%|

Sean Qjan

Travel Behavior NGRS
Data mining N b bt 85
Game theory
Network flow modeling

System Optimization
Non-linear optimization
Stochastic control
Large-scale system simulation
Transportation economics

MAC®®®

Mobility Data Analytics Center

Carnegie Mellon University

Applications (and Experiments) ) s
Multi-modal: roadway, transit, parking, ... gy = 0 @MW <
Agencies: Incident, traffic management, air quality, M o Lol A e

pricing, road closure, HOV/HOT... T T e TR
Private sector: routing, sharing, facility allocation... . _ A\
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