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Abstract—Autonomous vehicles are increasingly introduced
into our lives. Yet, people’s misunderstanding and mistrust have
become the major obstacles to the use of these technologies.
In response to this problem, proper work must be done to
increase public’s understanding and awareness and help drivers
rationally evaluate the system. The method proposed in this
paper is a virtual reality driving simulator which serves as a
low-cost platform for autonomous vehicle demonstration and
education. To test the validity of the platform, we recruited 36
participants and conducted a test training drive using three dif-
ferent scenarios. The results show that our simulator successfully
increased participants’ understanding while favorably changing
their attitude towards the autonomous system. The methodology
and findings presented in this paper can be further explored
by driving schools, auto manufacturers, and policy makers, to
improve training for autonomous vehicles.

Index Terms—Autonomous Vehicle, Virtual Reality, Training,
Education.

I. INTRODUCTION

A. Background & Motivation

Autonomous vehicles (AVs) have been gaining unprece-
dented attention as the society eagerly expects a revolution in
the transportation industry. While this technology will require
a true leap of faith from drivers, little work has been done to
increase the public’s understanding and awareness. Research
has shown that the public has a natural tendency to resist AVs
as it expects them to be much safer than human driven vehicles
before considering their use [1], [2]. Similarly, AV related
malfunctions and accidents tend to be overly dramatized in
the media which further jeopardizes public opinion [3].

As we continue with the technological development of AVs,
it is unlikely that in the near future, AVs will be universally
adopted and completely outperform human drivers. Yet, while
the SAE level 5 of automation still need years of development,
drivers could already take advantage of the assistance features
at level 1 and 2. Models based on economic and technological
prediction have shown that by 2045, level 1 autonomy will
be adopted by over 90 percent of the U.S. vehicle fleets but
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the adoption rate of level 4 varies from 24.8 percent to 87.2
percent [4]. Despite the social, economic, and technological
challenges, AVs have the potential to: significantly reduce
traffic accidents, increase traffic efficiency, add environmental
benefits, and provide increased mobility options [5], [6].

In order for society to fully accept AVs and enjoy their
benefits, work must be done to increase the public’s under-
standing and trust [7]. However, “it is not enough to just
trust and use AVs ... one must trust them appropriately and
use them properly” [8]. Blinded mistrust towards AVs will
cause a waste of their benefits but undoubted trust can lead
to serious and even fatal accidents [9]. Trösterer et al points
out that lessons can be learned from the pilots’ interaction
with the flying automation system. From their study, one pilot
claimed that “The automatic functions are very, very reliable,
very, very good, very, very sensitive as well, but not 100%”
[10]. Therefore, it is reasonable to suggest that, in the current
condition of imperfect AVs, a certain amount of alertness and
training will be needed. To that extent, Revell et al. explored
the Perceptual Cycle Model by having six UK drivers interact
with a Mercedes S Class equipped with level 2 assistance
features in the real traffic. A lot of drivers’ frustration was
observed and there was clearly a lack of synergy between the
drivers and the vehicle [11]. This further shows that training
can play a beneficial role during drivers’ initial interaction
with AVs. However, one must remember that on-road training
carries some level of risk, and potentially requires a safety
operator, which can be costly and time-consuming. Moreover,
such training is subject to traffic, weather, and geographical
conditions and may not provide the most comprehensive
evaluation [12].

B. Simulator Study

To solve the above problems, we propose a driving simulator
which stands up as a cost-effective, time-efficient, and com-
pletely safe platform to help drivers get familiarized with the
capabilities of AVs. Driving simulators allow for the testing
of different scenarios that might be too dangerous or risky
to attempt in the real world [13]. They can be combined
with deep learning and machine learning models to create
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Fig. 1. Simulator demonstration: left monitor shows CARLA server first
person driver’s view which is also displayed in the VR headset; right monitor
shows the CARLA client third-person tracking view which is provided by the
CARLA client by default.

probabilistic rare case events with high accuracy [14], [15].
They are also accessible to people from all backgrounds and
with varying driving skills.

This work is a continuation of our previous drive right effort
which aimed at increasing public’s understanding and trust
towards AVs using a simulation educational platform [16]. Our
previous study has shown that the simulator education could
effectively decrease participants’ perceived risk and increase
the perceived usefulness of AVs. In this study, we developed
a virtual reality (VR) driving simulator based on the open-
source simulator CARLA [17] which allows the user to sit in
the simulator chair, wearing an Oculus Quest 2 headset, and
interact with the vehicle as if it was a real one (Fig. 1). A pilot
human study was designed and a corresponding survey was
developed in an effort to investigate two research questions:
1. Does a driving simulator systematically change the drivers’
attitude to be more positive towards AVs and increase their
intention to use one? 2. Can a driving simulator be a good
tool for AV education and demonstration? To that effect we
recruited 36 licensed drivers for an interactive experiment and
summarized the findings in the next few sections.

C. Contribution

To the best of our knowledge, this work makes the following
contributes to the existing field:

• It is the first rigorous approach to deploy the CARLA
driving simulator into the VR framework. This effort
allows us to extend its driving algorithm validation pur-
pose with a human factor consideration. Our development
provides an easy-to-follow approach and facilitates the
use of CARLA on any VR headset. Full instructions are
available on our lab website [18].

• It is the first attempt with a holistic approach to use
AV systems that focus entirely on user experience and
interaction. In our simulator, everything is designed from
a user standpoint to help drivers form their own under-
standing of AVs in a vivid and immersive environment.

• We present the rationale of using a driving simulator
and show why it can be such an effective tool for

AV training and demonstration. It is our hope that the
results from our study will provide some guidance to auto
dealerships, sales forces, driving schools instructors, and
policy makers.

II. LITERATURE REVIEW

A great amount of effort has been made to influence the
public’s attitude towards AVs using a simulator. The goal of
our review is to explore what level of information and inter-
activity can inspire user adoption and maximize the benefit
of using an AV. In a general sense, these experiments can be
categorized into two groups: passive demonstration and active
interaction.

In a passive demonstration, the user receives information
from the autonomous system through various forms, but does
not attempt to take control of the vehicle. In [19]–[21],
researchers displayed pre-recorded real traffic scenarios with
animation and visual enhancement to mimic the condition of
an AV. The surrounding environment including cars, pedes-
trians, traffic signs and the AV’s planned movement were
marked up for explanation with a preview of the AV’s actions.
For example, Ha et al. manually controlled and recorded
the vehicle in a city car simulator. They showed the VR
environment to the participants while adding different levels
of explanation. The participants could change their focus and
point of view using the VR headset but could not interfere
with the AV control [22]. This approach has been shown to
be effective as the user can often gain a good understanding of
the AV’s working mechanism and form a rational expectation
of its actions. However, one drawback is that the excessive
information can cause increased user stress and mental work-
load, which partially offset the benefits of using an AV.

Another popular choice for information delivery is an-
thropomorphism, where the AV interface is designed with
human features, thus portraying the system as intelligent and
trustworthy [23]. In [24], the AV’s steering, acceleration, and
state information were represented using the robots’ eye color,
movement, and blinking rate. In [25], the AV used polite
speech strategy to gain drivers’ trust and favor, while in [26], a
combination of graphical and conversational user interface was
used. Results have shown that the anthropomorphic interfaces
can be an effective way to increase drivers’ confidence and
trust in AVs, and consequently, facilitate the adoption of the
technology. Nevertheless, The best way to implement the
anthropomorphic design is still up for debate.

In an active simulator setup, participants not only receive in-
formation but also actively try to interact with and take control
of the AV. The technology presented is usually an imperfect or
semi-AV, but the research scope varies. For instance, Park et
al. explored drivers’ adaptability and preference towards full
and semi-AVs using a fixed based simulator. They found that
quick interaction experience reduces anxiety and potential loss
of control [27]. Shi et al. collected data on the AV’s lateral
position, steering wheel angle mean, and standard deviation
to figure out the effect of driving styles on semi-AVs [28].
Ebnali et al. found that simulator training can significantly



Fig. 2. High level of detail Audi vehicle 3D model exterior and interior view.

increase users’ performance on semi-AVs in several aspects
such as the takeover time, speed, decision accuracy, trust, and
acceptance. A later experiment across three different platforms
showed that high-fidelity VR is the most effective tool for AV
demonstration and familiarization [29], [30].

III. DESIGN

A. CARLA

Various AV simulators have been developed by academia
and industry, of which, two state-of-the art ones support an
open license: CARLA [17] and the SVL Simulator [31].
The SVL Simulator suspended its service in January, 2022,
while the CARLA platform provides continuous support and
updates. CARLA was developed from the ground up to support
the training and validation of an autonomous driving system.
It has a rigorous collection of digital assets (maps, vehicles,
pedestrians) and a complete sensor suite (Camera, RADAR,
LiDAR, GNSS, IMU). With a flexible API and the integration
of ROS bridge, CARLA can be used to test various subsystems
of an AV [13]. In this study, we extended CARLA’s driving
algorithm validation focus with a human factor consideration.
By taking advantage of CARLA’s well constructed environ-
ment and the immersiveness of a VR headset, we reduce the
gap between the simulator and a real vehicle to support human-
centered AV studies.

B. CARLA VR

While the standalone CARLA package is built in the 3D en-
vironment, it does not come with the VR capability. Therefore,
the research team added the OpenXR plugin and rebuilt the
project to enable rendering on an Oculus Quest 2 headset. To

achieve this, the CARLA project source code and a CARLA-
customized fork of Unreal Engine 4 (UE4) were downloaded
from the official platform. Then, the UE4 was built using
the Visual Studio 2019, Windows 8.1 SDK, x64 Visual C++
Toolset, .NET framework 4.6.2. The CARLA server and client
were compiled using the x64 Native Command Tool. In this
setup, the project can easily accommodate another headset
in the future by replacing the path and performing the re-
compilation.

The default CARLA simulator only shows the vehicles in
the third-person’s view with a low level of detail for mesh
and texture. To use CARLA in the VR application in the
first-person view, a high level of detail vehicle with interior
modeling must be added. After searching and comparing a
variety of models, we selected an Audi A6 model from the
Car Configurator. This asset was developed by Epic Games
and supports a free license (Fig. 2) when working with UE4.
It decouples rendering and collision detection by using a high-
fidelity vehicle mesh while leveraging the simplified polygons
for collision check, which ensures high rendering quality
and significantly saves the computing power, allowing the
simulator to run smoothly.

A Logitech G29 steering wheel and pedal set is used along-
side the simulator. It supports two different modes: manual and
autonomous. In the manual mode, the user uses the steering
wheel to control the direction of the vehicle, and the throttle
and brake pedals to adjust the speed. The vehicle is assumed to
have automatic gear. Systematic tests showed that the elapsed
time from the user input to the simulator response took less
than 100 microseconds, which is below the human reaction
time. The autonomous mode can be triggered by pulling the
lever on the left side of the steering wheel. To exit, the user
can toggle the lever again or lightly press the brake pedal.
Note that in both the manual and autonomous mode, the
physical steering wheel perfectly mimics the position of the
virtual wheel in the simulated car model. This helps reduce
any sensing discrepancy between the physical wheel and the
simulation while minimizing the discontinuity during a driving
mode switch (Fig. 4).

C. Driving Mode

The goal of the study is to let drivers experience AVs
in an environment that feels as real as possible. The focus
is not to help designers improve the system but to help
drivers understand what it feels like to ride in an AV, how
they can interact with it, so that they can decide whether an
AV is a good fit for them. To that purpose, we developed
two driving modes in our simulator: manual and level 4
autonomous. By defining that the system is level 4, the AV
could: take in a destination input and navigate to that place
without intervention. While traveling, the AV is capable of:
adaptively adjusting its speed, performing emergency yield or
brake, and taking over other vehicles while maintaining safe
distances. The autonomous algorithms were developed based
on CARLA’s built-in modules but modified to support more
intelligent and reasonable behavior.



Fig. 3. Rural, city, and highway scenarios in the first person driver’s view
(from top to bottom).

During the drive, the driver could switch between the
manual and autonomous mode at any time. The researcher
did not attempt to gain complete control of the experiment,
but instead let each driver decide if they wanted to use the
autonomous mode and how they would like to use it. If an
autonomous mode was triggered in the case of an imminent
emergency, the system would try to make its best decision to
either yield or brake and steer the vehicle back to safety. Note
that our AV was set at level 4 mainly to fulfill the goal of
education and demonstration. If the system was set at level 5,
then there is no need for human interaction. On the contrary,
if the system was designed for level 2 or 3, it would require
constant human intervention, which jeopardizes user’s trust
and violates the initiative of the study. For future development
where a more faithful AV stack is required, CARLA can be
linked with the open-source software such as the Autoware
[32] and Apollo [33]. This will allow the vehicle to perform
in the simulator as it would do in real life.

D. Scenarios

Three scenarios were designed in our simulator: rural, city,
and highway. All scenario maps were imported from the
CARLA environmental asset with no further modification.
In addition, they were designed so as to guide users to

gradually get used to the interaction with the AV, understand
its capabilities, and start building confidence in it (Fig. 3).

The rural scenario is a representation of the suburban
environment, and consists mostly of trees, shrubs, one-lane
country roads, and stop signs at intersections. This scenario
serves as a familiarization step, in which the participants
actively control the vehicle with the steering wheel and pedals
in the manual mode, and let the vehicle drive itself in the
autonomous mode. Since the rural scenario enforces simple
road conditions and low vehicle speed, participants can get
used to the simulation environment and vehicle controls in a
relaxed setting. No other vehicles are added into the map to
help keep the tutorial clean and simple.

The city scenario is populated with buildings, traffic lights,
and complex road crossings. In this scenario, participants are
not required to drive, and are asked to turn on the autonomous
mode and watch the vehicle navigate by itself. The predefined
route guides the AV as it navigates several conditions such
as sharing the road with conventional vehicles, merging at
an unprotected intersection, waiting for traffic signals, and
yielding to pedestrians. Participants can resume manual control
at any time if they choose to handle an emergency situation.
The goal of this scenario is to show the capabilities of an
AV in a complex city environment to help participants further
increase understanding and trust.

The highway scenario is a three lane express road with no
crossings or cyclists. Several NPC vehicles were added with
varying velocities and driving behaviors. In this scenario, par-
ticipants can switch freely between manual and autonomous
mode. In addition, the AV supports three different behaviors:
cautious, normal, and aggressive. Different driving behaviors
have different acceleration, brake, and velocity profiles. In all
cases, the AV can automatically take over another vehicle that
is driving at a lower speed. For this scenario, participants were
encouraged to use AV to experience its different behaviors, and
they could change the behavior using the up & down buttons
on the steering wheel. These behaviors were not available
in the previous scenarios primarily for two reasons. First,
in the rural and city scenario, the vehicle has a relatively
low speed limit and different driving styles will not show
much difference. Second, we want to increase the complexity
of control one step at a time so that users would not get
overwhelmed by excessive simulation features.

IV. EXPERIMENTS

A. Participants

36 participants were recruited via email and social media.
In order to qualify for the study, they had to meet the
following requirements: be older than 18 years old and less
than 75; have a valid driver’s license and at least three months
of independent driving experience; have no police-reported
crash within the last year; have normal or correct-to-normal
vision and hearing (contact lens allowed); have no history of
migraine, claustrophobia, or motion sickness; not be pregnant;
and have no prior interaction with AVs level 3 or above.



TABLE I
FIFTEEN QUANTITATIVE SURVEY QUESTIONS.

TR1 I believe that autonomous vehicles can take me safely to my destination.
TR2 I believe that autonomous vehicles can handle most traffic conditions.
TR3 I believe that autonomous vehicles are as reliable as my own driving.
PR1 I am worried about the safety of autonomous vehicle technology.
PR2 I am worried about the interaction of an autonomous vehicle with conventional vehicles.
PR3 I am worried that autonomous system failure or malfunction may cause accidents.
PU1 Using an autonomous vehicle will allow me to conduct non-driving related tasks.
PU2 Using an autonomous vehicle will increase my driving safety and efficiency.
PU3 Using an autonomous vehicle will be useful when I am physically or mentally impaired.
PE1 Learning to operate an autonomous vehicle would be easy for me.
PE2 Interacting with an autonomous vehicle would not require a lot of my mental effort.
PE3 I think it is easy to get an autonomous vehicle to do what I want to do.
BI1 I intend to ride in an autonomous vehicle in the future.
BI2 I expect to purchase an autonomous vehicle in the future.
BI3 I plan to introduce autonomous vehicles to my family and friends.

Our participant group consisted of 18 males, 18 females
and had a mean age of 25.5 years. Participants were recruited
via convenience sampling from the university community and
were mostly students. A few elderly people were part of the
study. The participants were compensated with a $25 Amazon
gift card for taking part in the study. If they decided to quit
in the middle of the study for any reason, they were still
compensated. This study was approved by the Institutional
Review Board at the University of Pennsylvania (IRB Proto-
col#: 850824) and all participants gave their informed written
consent.

B. Survey

The effectiveness of our simulator was measured through a
survey instrument with quantitative and qualitative questions.
The quantitative part was based on several models, including
the Technology Acceptance Model (TAM) [34], Autonomous
Vehicle Acceptance Model (AVAM) [35], and the Universal
Theory of Usage and Acceptance of Technology (UTAUT)
[36]. Questions were developed with regard to five categories:
Trust (TR), Perceived Risk (PR), Perceived Usefulness (PU),
Perceived Ease-of-Use (PE), and Behavioral Intention (BI).
Each category consisted of three questions which were eval-
uated using the five-point Likert scale with 1 being strongly
disagree and 5 being strongly agree, while the category is not
explicitly shown (Table I).

TR has been identified as a key element that influences
human-machine interaction, with a direct link to people’s
mental adoption of the system and their intention to use it.
Different studies have pointed out that a lack of TR is the
most direct reason for not accepting the AV technology. In
that sense, a favorable initial TR is critical in overcoming the
potential risks and promoting the adoption of AVs [37]. PR
refers to the uncertainty in a given situation, and in an AV
case, unexpected behavior and loss of control. PR has been
shown negatively related to TR, and a strong PR of a negative

situation discourages the use of the technology [38]. PU can be
explained as the positive use-performance, while PE represents
the level of effort required to use a specific system. Both
measures can shape an individual’s favorable opinion towards
a technology [39]. BI is an individual’s intention to use an AV
and it has been shown that TR, PU, and PE have a positive
association with BI while PR has a negative relationship [40],
[41].

The qualitative part focused on the participants’ subjec-
tive feedback, including their experience using our driving
simulator, their opinion of using a driving simulator for
auto dealership demonstrations, and their view on using a
simulator at driving schools to assist with the conventional
vehicle education. Participants’ were encouraged to raise any
additional questions or share other comments in this section.

C. Procedure

Participants who contacted us and met the requirements
were invited to our research lab. Upon arrival, they read
and signed the consent form, and filled in the first part of
the survey including the fifteen quantitative questions from
five categories. Then, they watched a three-minute video
introduction to the five levels of automation which was an
explanation of the vehicle’s capabilities [42]. The video was
carefully selected so that it did not affect the participants’
attitude towards AV neither positively nor negatively. With
this background information, the researcher then explained
that the simulator AV was set at level 4. Participants then
took a seat in the simulator setup as shown in Fig. 1 and
tried all three scenarios. In each scenario, they were asked to
drive along a predefined route, but with the freedom to switch
between the manual and autonomous mode at any time. After
the participants finished all three scenarios, we administered
the second part of the survey, which carried the same fifteen
quantitative questions plus the qualitative part.



Fig. 4. Logitech steering wheel functionality explanation.

V. ANALYSIS

A. Wilcoxon Signed-Rank Test

The means and standard deviations of the five categorical
measurements before and after the simulator were shown in
Table II. For each category, the value is an unweighted average
of its three questions. In addition, Cronbach’s α coefficient
was computed to validate the internal consistency of each
category. The results have shown that the average ratings
for all categories improved after the simulator demonstration,
which means that participants’ opinions towards AVs in gen-
eral shifted towards the positive direction.

To verify that the changes in participants’ attitude were
statistically significant, a Paired-Samples T Test was initially
proposed. However, a Chi-Square Test showed strong evidence
(p < 0.01) that the difference between the experimental data
was not normally distributed and violated the test assumption.
Therefore, a Wilcoxon Signed-Rank Test was applied to test
the data statistical significance. It is shown that after the
simulator experiment, there was a significant increase in TR
(N = 27, p < 0.01), a significant decrease in PR (N =
33, p < 0.05), a significant increase in PU (N = 31, p <
0.05), a significant increase in PE (N = 28, p < 0.01), and a
significant increase in BI (N = 21, p < 0.01). The significant
improvement in all categories confirmed our hypothesis on the
effectiveness of the simulator.

B. Internal Consistency

The Cronbach’s α coefficient showed different results be-
fore and after the simulator experiment but remained mostly
consistent for each category. TR received a score of 0.75 both
before and after the simulator study, meaning that trust is a
consistent measure and can be bonded to a certain standard.
PR initially received a score of 0.69 and increased to 0.82,
indicating that participants’ evaluations on risk became better
aligned across different perspectives. PE received a score of
0.52 before and 0.57 after, showing that the internal connection
among the questions is only moderate and does not change
much due to the simulator. Similarly, BI received high scores
around 0.8, suggesting that participants’ opinions were aligned

TABLE II
MEAN, STANDARD DEVIATION, AND CRONBACH’S α OF THE FIVE

CATEGORICAL MEASUREMENTS

Pre Simulator Post Simulator
M SD α M SD α

TR 3.12 0.77 0.75 3.60 0.78 0.75
PR 3.44 0.75 0.69 2.95 0.84 0.82
PU 3.53 0.65 0.03 3.90 0.79 0.67
PE 3.35 0.73 0.57 3.72 0.71 0.52
BI 3.63 0.84 0.78 3.98 0.76 0.82

in terms of purchasing, riding, or introducing an AV. The
counter-intuitive part lied in PU, which initially showed no
connections among the questions with a score of 0.03 but
increased to 0.67 after the simulator trial. To explain this, we
took a deeper look and found that many participants originally
gave a score of one for PU1, which asked about AV assisting
them conducting non-driving related tasks. In comparison, they
gave high scores for PU2: AV helps increase driving safety
and efficiency, and PU3: AV helps drivers that are physically
and mentally impaired. The high inconsistency showed that
although participants agreed on AV’s safety assistance, they
were concerned in handing over control while focusing on
other tasks. After the simulator experiment, however, partic-
ipants built a sense of what AV felt like and became more
confident in its performance, which helped align the measures
and contributed to a higher Cronbach’s α.

C. Correlation

Our results show that TR has a moderate positive correlation
with BI (0.457 before the simulator and 0.535 after the
simulator), PR has a moderate negative correlation with BI
(-0.385 before and -0.236 after), PU has a moderate positive
correlation with BI (0.381 before and 0.315 after), and PE
has a moderate positive correlation with BI (0.355 before and
0.317 after). None of the correlation coefficients appear to
be quite weak or strong, but all seem consistent before and
after the simulator study with some reasonable fluctuation. The
result matches the literature review and survey design as shown
in Section IV-B.

VI. DISCUSSION

A. AV Behavior Choice

After the highway mode, participants were asked about
whether they liked to stick to one AV behavior or use all
three behaviors (cautious, normal, aggressive) interchangeably.
About half of the participants stated that they prefer the avail-
ability of all three behaviors, so that they could decide which
one to use based on the timing of things, safety perception ,
and level of comfort. Another group answered that it would be
nice to have all three choices, but they would almost always
use the aggressive one. The remaining participants said that
they just wanted aggressive behavior, and according to them,
if the AV was designed to prioritize safety, “why not drive as
fast as you can?”



B. Driver’s Background
We also found that drivers’ evaluations on AVs were depen-

dent on their own perceived driving skills. Participants who
claimed to have a lot of driving experience tended to not
trust the AV: they described the AV as safe but rigid, and
definitely not a match for their own driving. On the contrary,
participants who drove little and were concerned with their
own driving safety showed higher interest in AV and praised
its safety feature. From this observation, we can reasonably
infer that people who are more dependent on AV and who
can benefit most from it will be more willing to embrace the
technology, while people who heavily rely on and enjoy their
own driving will be reluctant to accept it. This finding is also
supported by [43] which states that “loss of driving pleasure”
and “the desire to exert control” make drivers more negative
towards AVs [44].

C. Simulator for AV Demonstration
The researchers discussed with the participants the use of

the simulator for AV demonstration. A typical example would
be at auto dealerships, and most participants stated that they
definitely would want some simulation experience to help them
make the choice. While it is agreed that driving simulators
cannot provide the physical motion and the sense of alertness
as in real traffic, they come with their unique advantages.
First, a driving simulator is not constrained by the available
conditions during a test drive, and grants the flexibility to
adjust weather, lighting, traffic, and geographic parameters.
Second, the simulator experience can take an extensive period
for a thorough evaluation of the system with zero damage
and cost. Third, a real test drive may not always be feasible,
for instance, during an auto show, a tech exhibition, or an
academic conference, while the simulator is much easier to
carry around and can be set up at different places. Overall,
driving simulators, with unique advantages, can complement
the goal of AV demonstration.

D. Simulator for AV Education
Driving simulators can also be used for driver’s education.

We anticipate two types of users: those with a valid driver’s
license and those without. During our study, many participants
pointed out that just because someone holds a valid driver’s
license does not mean they should be legally allowed to use
an AV. Currently, due to limited knowledge and experience,
drivers tend to blindly trust or mistrust AVs and often use
them with overconfidence or little confidence. As a coun-
termeasure, AV specified training and qualification would be
recommended, and a driving simulator would make a solid
platform for education delivery. For those without a driver’s
license, a simulator can also be a good tool to practice driving
skills, and the user can learn to drive a conventional vehicle
while interacting with AV features.

VII. CONCLUSION

We presented in this work a virtual reality simulator and
an interactive driving experience to improve people’s under-
standing and trust of autonomous vehicles. To that effect,

we adapted the open-source driving simulator CARLA and
designed several scenarios. A study with 36 participants
showed that our simulator successfully improved their attitude
towards autonomous vehicles in terms of trust, perceived
risk, perceived usefulness, perceived ease-of-use, and cor-
respondingly behavioral intention. Several limitations exist.
First, our small number of participants cannot represent all
age, gender, and population groups. Future study will require
a greater number of participants with varying backgrounds
to achieve more comprehensive and objective analysis. Also,
the simulation environment needs to be enhanced to support
higher fidelity and user interactivity. Third, our customized
AV stack may not be a faithful representation of a real vehicle
and will require further development. Overall, We presented
the rationale of using a simulator at driving schools, auto
dealerships, and other places. The simulator and human study
presented in this paper can act as an innovative, pioneering
effort to promote safe autonomous vehicle education, training,
and demonstration.
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