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Abstract
Unlike commercial ride-sharing, peer-to-peer
(P2P) ride-sharing has been subject to limited
research—although it can promote viable solutions
in non-urban communities. This paper addresses
the core problem in P2P ride-sharing: the matching
of riders and drivers. We elevate users’ preferences
as a first-order concern and introduce novel notions
of fairness and stability in P2P ride-sharing. We
propose algorithms for efficient matching while
considering these user-centric factors. Results
suggest that individually rational, fair and stable
solutions can be obtained in reasonable computa-
tional times, and can improve baseline outcomes
based on system-wide efficiency exclusively. The
proposed approach can be further enhanced via
external incentives.

1 Introduction
By providing more flexible commuting options than public
transportation and private vehicles, on-demand ride-hailing
and ride-sharing platforms have become increasingly popu-
lar in urban areas. However, the availability and affordabil-
ity of on-demand transportation remain much more limited
in sub-urban and rural areas. In practice, an overwhelming
majority of commuting trips rely on self-driving with private
vehicles. An increasingly popular option to promote alterna-
tive forms of mobility in non-urban areas lies in peer-to-peer
(P2P) ride-sharing: by bringing together commuters travel-
ing along similar routes at similar times, P2P ride-sharing can
enhance mobility while reducing the costs of transportation,
traffic congestion, and greenhouse gas emissions. Moreover,
P2P ride-sharing can also improve access to basic needs for
disadvantaged populations with limited car ownership.

To be successful, P2P ride-sharing platforms require effec-
tive algorithms to match rider requests with available drivers.
The topic of matching in ride-sharing platforms has attracted
considerable research interest in recent years [Ozkan and
Ward, 2017; Bertsimas et al., 2019; Santi et al., 2014; Bei
and Zhang, 2018; Alonso-Mora et al., 2017], building upon
related problems such as the dial-a-ride problem (DARP)
[Cordeau, 2006; Parragh et al., 2010] and the vehicle rout-
ing problem with time windows (VRPTW) [Cordeau et al.,

2007], matching in spatial-temporal networks, and is some-
times studied jointly with the topic of pricing [Bimpikis et al.,
2016]. However, there is only limited research for P2P ride-
sharing without direct payments from riders to drivers [Ma-
soud and Jayakrishnan, 2017], which can provide viable solu-
tions for a community, e.g., the community of residents from
close-by regions and employees of the same company, featur-
ing drivers who have their own travel plans and are willing to
share part of their trips with riders. Moreover, most existing
work in matching in P2P ride-sharing only considers the flex-
ibility windows of the drivers and riders (“users”, henceforth)
as constraints and ignores users’ preferences and incentives
for participation. In addition, the predominant objective used
in this setting is to minimize total costs (e.g., travel costs and
inconvenience costs). However, such approaches do not cap-
ture the impact of matching decisions on individual users, in-
cluding the fairness among users and whether or not the users
will accept the matching outcome. In this paper, we address
these limitations.

In contrast to previous work, we focus on matching riders
and drivers in P2P ride-sharing without payment and study
the problem from a user-centric perspective, with the objec-
tive of balancing system-wide efficiency and user satisfac-
tion. We elevate users’ preferences as a first-order concern
by considering the users’ preferred travel times and mod-
eling drivers’ altruism—motivated by the community-based
P2P context. Furthermore, we explicitly consider the fairness
and stability of the matching outcome. Fairness is formal-
ized by guaranteeing that every rider is matched with at least
a threshold probability. Stability is formalized by guarantee-
ing that users have no incentive to reject the current matching
and take an alternative transportation option on his own or
engage in independently shared rides outside of the platform.
We develop a multi-objective framework that quantifies the
trade-offs between efficiency, fairness, and stability.

This paper makes the following contributions. 1) We ex-
tend the RTV framework from [Alonso-Mora et al., 2017] to
incorporate users’ preferred times in P2P ride-sharing; the re-
sulting model is computationally complex, and we propose a
pruning algorithm to enhance its performance. 2) We formal-
ize the notions of fairness and stability in P2P ride-sharing
building upon a user utility model that incorporates altruism;
we further propose an enhanced notion of B-stability that al-
lows for the use of external incentives (e.g., coupons) to sta-



bilize the matching. 3) We analyze the price of fairness and
stability, showing that the price of fairness and stability can
be arbitrarily large, and moreover, fairness can result in a very
unstable market without external incentives. 4) We design al-
gorithms for computing efficient solution given fairness and
stability constraints and evaluate them through extensive ex-
periments. Results show that solutions with enhanced fair-
ness and stability can be found in shorter, or equivalent, com-
putational times as solutions based on efficiency objectives
exclusively. Furthermore, suitable external incentives can re-
sult in fair and stable outcomes.

2 Related Work
As ride-sharing has become a prominent aspect of urban
transportation, it has also attracted extensive research atten-
tion [Furuhata et al., 2013; Berbeglia et al., 2007]. This paper
focuses on matching users in P2P ride-sharing and is differ-
ent from most existing work due to the characteristics of P2P
ride-sharing—including users’ preferred travel times, max-
imum detour times, and altruism. In addition, we add the
notions of fairness and stability to the model.

Well-studied notions of fairness include max-min fair-
ness [Bertsimas et al., 2011] and envy-freeness [Bogomol-
naia and Moulin, 2001], in both deterministic and randomized
resource allocation and assignment problems. In a probabilis-
tic setting, [Liu and Knightly, 2003] limits the probability that
the difference in individual user’s utility larger than a thresh-
old. Recent work on randomized online matching analyzes
the marginal probability of a pair of items being matched to
demonstrate the fairness of the matching [Cohen and Wajc,
2018]. In this paper, we propose a novel notion of fairness
based on the max-min marginal probability of an individual
user being matched that combines these ideas.

Stability is well studied in two-sided matching [Manlove et
al., 2002; Iwama and Miyazaki, 2008]. In ride-sharing, mon-
etary mechanisms have been proposed to achieve stability
[Bistaffa et al., 2015]. However, the notion of stable matching
in ride-sharing without payments is not studied until recently
[Wang et al., 2017] and only a simple setting with unit capac-
ity for drivers is analyzed in detail—which contrasts with our
own setting where each driver can dynamically pick up and
drop off multiple riders.

Finally, our multi-objective framework relates to the no-
tions of the price of fairness and the price of stability in re-
source allocation [Bertsimas et al., 2011; Anshelevich et al.,
2008]. To our knowledge, the joint relationships between ef-
ficiency, fairness, and stability have not been studied. We
address this question in the context of P2P ride-sharing.

3 Efficient Matching with User Preferences
In this section, we first define the P2P ride-sharing problem,
and present our matching algorithm that incorporates user’
preferred time when maximizing system-wide efficiency.

3.1 Model
Let R be the set of riders. A rider r is characterized by his
origin or, destination qr, a time window Wr = [τer , τ

l
r] de-

scribing the earliest possible departure time and latest pos-

sible arrival time, and value of the trip νr. In addition, we
consider the rider’s preferred departure time τ?r ∈Wr and his
maximum acceptable detour time ∆r.

LetD be the set of drivers. A driver d ∈ D is characterized
by his origin od, destination qd, time window Wd = [τed , τ

l
d],

value νd, preferred departure time τ?d , and maximum accept-
able detour time ∆d —all defined as for the riders. In ad-
dition, we denote by kd the capacity of driver d ∈ D (i.e.,
number of seats in his vehicle).

Let V := {oi ∪ qi : i ∈ R ∪ D} be the set of locations
containing all users’ origins and destinations. We consider
a finite, discretized time horizon [T ] := {1, 2, 3, ..., T}. Let
time(u, v) ∈ Z≥0 be the shortest travel time from u ∈ V
to v ∈ V . If any two users’ origins and/or destinations
are co-located, we construct two different nodes in V with
time(·) = 0. Let timei := time(oi, qi) be the user i’s de-
fault travel time.

If a rider r is not matched, he can complete the trip with a
cost λr (≤ νr), which can be seen as the cost of an alternative
transportation mode. If rider r is matched, he incurs a cost
Crtt′ when he gets picked up at time t ∈ Wr and dropped off
at time t′ ∈ [t + timer, τ

l
r]. In this paper we consider the

following cost model, which is inspired by [Alonso-Mora et
al., 2017; Wang et al., 2017]

Crtt′ := crdev · |t− τ?r |+ crtrl · (t′ − t),
Cdtt′ := cddev · |t− τ?d |+ cdtrl · (t′ − t),

where crdev (resp. cddev) is the cost per unit of deviation and
crtrl (resp. cdtrl) is cost per unit of traveling time experienced
by rider r (resp. driver d). It follows the natural assumptions
that the more the user deviates from their preferred time and
the more they detour, the higher the cost.

A driver-schedule is an ordered sequence of node-time
pairs describing how a single driver travels. For exam-
ple, ((od, 0), (or, 3), (qr, 5), (qd, 10)) is a driver-schedule that
starts at time 0, picks up a rider r at time 3, drops r off at time
5, then arrives at the driver’s destination at time 10. A stop is
a node in a driver-schedule. A driver-schedule is feasible if it
starts with a driver’s origin, ends with his destination, travers-
ing a subset of riders’ origins and destinations and satisfying
constraints associated with travel times and time window. Let
S = 2R be the set of all possible subsets of riders. We say
a (d, S) pair where d ∈ D and S ∈ S is compatible if there
exists a feasible driver-schedule for driver d to pick up and
drop off all riders in S.

A schedule is a collection of feasible driver-schedules, one
for each driver in D, with each rider shown up in at most one
driver-schedule. Let Π be the set of all possible schedules.
Given a schedule π ∈ Π, denote by Sπd the subset of riders
that driver d is matched to. Let SπD = ∪d∈DSπd be the set of
riders that are matched under π. Let dπr be the driver that rider
r is matched to (which may be null if r is not matched). Let
Sπr be a subset of riders that are matched to the same driver
with r (including r) in π . We denote by tπr and tπr the time
when r is picked up and is dropped off respectively. tπd and
tπd are defined similarly for a driver d.

A matching is an assignment of driversD to subsets of rid-
ers S such that each driver is assigned to exactly one subset,



and each rider is assigned to at most one driver. Let M be
set of all possible matchings. Each schedule π ∈ Π defines
exactly one matching, and a matching M ∈ M may corre-
spond to multiple schedules. Thus, we sometimes use π ∈ Π
to refer to a matching and a schedule simultaneously. SMd ,
dMr , SMr are defined in a similar way as Sπd , dπr , Sπr .

The objective of the matching problem is to find an optimal
schedule π∗ that minimizes the total cost in the system, i.e.,

π∗ = arg min
π∈Π

∑
d∈D

∑
r∈Sπd

Crtπr tπr
+
∑
d∈D

Cd
tπd t

π
d

+
∑

r∈R\SπD

λr

Let cdS be the minimum cost of driver d satisfying riders in
S, i.e. cdS = min

π:π∈Π,Sπd=S
Cd
tπd t

π
d

+
∑
r∈S C

r
tπr t

π
r

if (d, S) is

compatible; otherwise cdS =∞. Then the system’s objective
is equivalent to

minπ∈Π

∑
d∈D cdSπd +

∑
r∈R\SπD

λr (1)

3.2 Algorithm for Efficient Matching
We describe our algorithm that finds the optimal schedule π∗
at a high level. We defer the details of our algorithm to the
Appendix1. We follow the Request-trip-vehicle (RTV) frame-
work proposed in [Alonso-Mora et al., 2017], a state-of-art
framework for large-scale matching in ride-sharing and in-
stantiate it for our problem setting.

The RTV framework has three main parts: (a) construc-
tion of all compatible (d, S) pairs; (b) computation of the
minimum cost (cdS) for each compatible pair (d, S); and
(c) computation of the cost-minimizing matching. The main
challenge in applying the framework to our problem lies in
(b). Since we incorporate the novel aspect of users’ preferred
times, existing approaches cannot be directly applied and we
propose a novel algorithm TripCost for computing cdS .

More specifically, in part (a), for each driver d ∈ D, we in-
crementally construct a list of subsets of riders that are com-
patible with d by gradually increasing the size of the subset.
In each step, we add one rider to an existing compatible sub-
set S of size h−1, getting a subset S′ of size h. If the subsets
of S′ with h− 1 riders are all compatible with d, i.e., already
in the list, algorithm TripCost of part (b) is called to further
verify the compatibility of S′. When no more subsets with
size h can be constructed, we will construct subsets with size
h+ 1. Let E ⊆ D ×R be the set of compatible (d, S) pairs.

For part (b), we develop TripCost(d, S), a novel tree-
search based algorithm to compute cdS . Each node of the
tree represents a partial route, i.e., an ordered list of stops that
the driver needs to visit, with the root representing the origin
of the driver. In each step in the tree-search, we compute a
lower bound of the cost of a full route that extends the current
partial route by checking the must-visit stops remaining to be
visited, and prune the branch if it is worse than the optimal
solution found so far. Each leaf node represents a full route,
and we need to determine the optimal timing to visit each
stop. For this purpose, we design a dedicated MILP based on
a constructed time-location graph with duplicated edges.

1https://www.dropbox.com/s/3lodwdqkiy081j6/p2p.pdf?dl=0

We also use two pruning methods to improve TripCost.
First, we develop dynamic programming (DP)-based ap-
proach to compute a tighter lower bound of the route at the
leaf node before computing TripMILP, which enables us to
avoid unnecessary MILP computations. Intuitively, each DP
states contain a location and a time, and it computes the mini-
mum cost to reach the location at that time based on previous
states. Second, for each (d, S) pair, we learn promising routes
from the optimal schedule found for (d, S′) where S′ ⊂ S
and (d′, S) where d′ 6= d. By getting these routes before the
tree search, the pruning efficiency increases significantly.

In part (c), we use a standard MILP for matching prob-
lem (same as in [Alonso-Mora et al., 2017]) to find the cost-
minimizing matching given the cdS for all the compatible
(d, S) pairs. The variables used in the MILP include xdS and
yr. xdS = 1 if (d, S) is matched and 0 otherwise; and yr = 1
if rider r is unsatisfied and 0 otherwise.

4 Modeling Fairness and Stability
We now introduce notions of fairness and stability, beyond
total cost. We define user utility and develop an algorithm for
a fair and stable solution based on user preferences.

Utility model
Each rider’s utility is defined to be (the value of the trip) −
(the cost they suffer). If rider r is picked up at t and dropped
off at t′, his/her utility is Ur = νr − Crtt′ . If the rider is not
matched, then Ur = νr − λr. We assume that drivers are
altruistic, i.e. a driver gains additional utility proportional to
the utility gained by his passengers. Thus the driver’s utility
is defined to be (the value of the trip) + (altruistic utility)
− (the cost they suffer). We define two utility functions for
a driver. Let Ud := νd − Cdtt′ be a driver’s base utility. Let
Ũd := Ud+ρd

∑
r∈Sd Ur be a driver’s altruistic utility where

ρd is the altruistic factor of the driver d and Sd is the subset of
riders matched to d. If driver d is not matched, then they incur
a cost of cdtrl · (timed) and their (base or altruistic) utility is
Ud = νd − cdtrl · timed.
Proposition 1. The cost minimization problem is equivalent
to maximizing the sum of base utilities.

The idea is that
∑
r∈R νr +

∑
d∈D νd is independent of

π, so utility maximization problem becomes equivalent to
cost minimization. However, if we consider altruistic util-
ity the problem is no longer equivalent. Therefore, we only
focus on the cost minimization and social welfare maxi-
mization problems, where social welfare is defined to be∑
r∈R Ur+

∑
d∈D Ũd. Throughout the paper, we focus more

on the cost-minimization problem; however, utilities are used
to define stability and individual rationality and all algorithms
are can be easily extended for social welfare maximization.

Fairness Model
Many P2P systems are long-term systems; therefore, we con-
sider probabilistic matching where the probability of choos-
ing a matching can be seen as a frequency of the matching
over different days. Let p` be the probability that we choose
matching M ` ∈ M. Let ϕMr be the probability of rider r be-
ing matched in the matchingM . Let ϕr :=

∑
M`∈M p` ·ϕM`

r



be the probability that rider r is matched in our probabilis-
tic matching, acorss all possible matchings. Let Cost(M `)
be the total cost of matching M `, i.e. Cost(M `) =∑

(d,S)∈M` cdS +
∑
r 6∈M` λr. Then the expected cost of a

probabilistic matching is
∑
M`∈M p` · Cost(M `),

We formalize fairness by maximizing the lowest probabil-
ity of matching, across all riders in the system. In other words
we want to maximize minr∈R ϕr. Note that, if there exists a
rider r that cannot be feasibly matchec, then the value is al-
ways 0. Thus we only focus on riders that can be matched to
a driver. Let now assume thatR be the set of feasible riders.
Definition 1. A probabilistic matchingM is θ-fair if ϕr ≥ θ
for all riders r ∈ R.

We look at two fairness problems, namely computing cost
minimizing solution subject to θ-fairness, and computing the
fairest solution, i.e. maximum possible θ.

We also quantify the price of fairness, denoted by PoF.
PoF is defined as the loss in the system’s cost when fairness
considerations are included. If the cost-minimizing solution
already maximizes fairness, then PoF = 1, otherwise PoF
increases as the loss increases.

Definition 2. PoF = maxMF
Cost(MF )
Cost(M∗) , whereM∗ are the

cost-minimizing (probabilistic) matchings, and MF is the
fairest (probabilistic) matching.

Stability Model
We now turn to stability. Note that our fairness definition fo-
cuses at the rider level. But forcing a driver to satisfy riders—
for fairness considerations—may result in unstable outcomes.
We first define stability at the individual-level.
Definition 3. A user is individually rational (IR) if he/she
does not get worse utility by participating in the matching
system. In other words, the rider is IR if Ur ≥ νr − λr, and
the driver is IR if Ũd ≥ νd − cdtrl · timed.

We extend the idea of IR to the group level by considering
ex-post stable matching. We want to ensure there’s no group
of users that can benefit by deviating from participating. The
traditional stable matching definition is defined by preference
[Gale and Shapley, 1962]. We can implicitly define prefer-
ence using the utility function.
Definition 4. We say (d, S) �i (d′, S′) if uidS > uid′S′ for
i ∈ ({d}∪S)∩({d′}∪S′), where uidS is i’s utility in matching
(d, S).
Definition 5. We say (d, S) is a blocking pair of M if (d, S)
is currently not matched in M but (d, S) �d (d, SMd ) and
(d, S) �r (dMr , S

M
r ) for all r ∈ S.

Definition 6. We say a matching M is stable if there is no
blocking pair (d, S).

Note that the IR constraint is a special case of stability
when the blocking pair is (d, ∅) and (null, r) for all drivers
d ∈ D and all riders r ∈ R.
Definition 7. We say a probabilistic matching is ex-post sta-
ble if for any possible outcome of our probabilistic matching,
the matching is stable.

The price of stability (PoS) is defined similar to PoF.

Definition 8. PoS = maxMS
Cost(MS)
Cost(M∗) , whereM∗ are the

cost-minimizing (probabilistic) matchings, andMS is a sta-
ble (probabilistic) matching.

A (probabilistic) matching that is fair and stable simultane-
ously may not exist. To resolve this concern, one may provide
external incentives with a total budget ofB to enhance stabil-
ity. Practically, these external incentives may take the form of
coupons provided by the platform to the users. We, therefore,
introduce the notion of B-stable matching.

Definition 9. A matching M is B-stable if ∃β ∈ R|D∪R|≥0

where
∑
i∈D∪R βi ≤ B and for all (d, S) pairs that are cur-

rently not matched in M , there exists a user i ∈ S ∪{d} such
that

βi + uidMi SMi
+ ε ≥ uidS

(Recall uidS is i’s utility in the matching (d, S)).

5 Efficiency-Fairness-Stability Trade-offs
We now extend the algorithm from section 3.2, to incorporate
fairness and stability. We also provide theoretical results on
the trade-offs between efficiency, fairness, and stability.

5.1 Fairness
We provide an LP to compute a θ-fair probabilistic match-
ing. Let M1, ...,Mη be all possible feasible matchings. Let
m be the indicator function such that m`

i = 1 if user i ∈M `.
Let variable p` be the probability of choosing the matching
M `. Let θ be the threshold probability. Recall Cost(M `)
is the cost of the matching defined by

∑
(d,S)∈M` cdS +∑

r 6∈M` λr. Then the following LP computes min-cost prob-
abilistic matching subject θ-fairness.

min
p

∑
`∈[η] Cost(M

`)p` (2)

s.t.
∑
`∈[η]m

`
ip
` ≥ θ ∀i ∈ R (3)∑

`∈[η] p
` = 1 (4)

p` ≥ 0 ∀` ∈ [η] (5)

Note η can be exponentially large. Thus instead of enu-
merating all M1,...,Mη from the beginning, we follow the
standard column generation method and incrementally add
matchings one by one. In each iteration, we solve the pri-
mal LP with a subset of matchings and obtain dual variables
w of constraint (3) and α of constraint (4). Then we solve
the slave problem to decide the matching to be added to the
primal. We aim to find a matching that maximize M `, s.t.∑
im

`
iwi + α−Cost(M `), which is equivalent to minimiz-

ing Cost(M `)−
∑
i∈M` wi. It can be found by replacing cdS

with cdS −
∑
i∈S∪{d} wi in the matching MILP.

One missing piece is to find an initial feasible matching to
bootstrap the column generation, which can be done solving
the following LP, again through column generation. Note that
θ = 0 is a feasible solution for the LP (6), thus there is a triv-
ial feasible solution to bootstrap the column generation for
it. Denote the optimal solution for the LP (6) by p0 and θ0.
Then θ0 is the maximum level of fairness that any probabilis-
tic matching can achieve. Therefore p0 provides a feasible



matching to the LP (2) or LP (2) is infeasible.

max
p,θ

θ (6)

s.t. (3)− (5) (7)

Proposition 2. The Pareto frontiers characterizing the trade-
off between fairness (θ) and efficiency (Cost) are piecewise
linear in P2P ride-sharing problem.

The proof follows from global sensitivity analysis from
[Bertsimas and Tsitsiklis, 1997]. However, the Pareto fron-
tier may contain an exponential number of points. We also
present an algorithm that finds a δ-approximate Pareto fron-
tier by computing 1

δ + 1 points (δ = 0 achieves the exact
Pareto frontier). We defer the algorithm and the definitions to
the Appendix.

Proposition 3. There exist problem instances where PoF =
C for any C ≥ 1.

Consider the following system with two riders r1, r2 with
λr1 = λr2 = ε, and one driver d. The driver suffers cost of
1 − ε when only satisfying r1, and suffers cost of C when
he satisfies r1 and r2. Cost minimizing solution is to only
satisfy r1 and obtain total cost of 1. However, fairest solution
of satisfying all riders result in cost of C for any C ≥ 1.
5.2 Stability
Additional pruning methods are added to ensure IR. We add
the IR constraints to the TripMILP to prune more infeasible
(d, S) pairs. Details are deferred to the Appendix.

For stability, we define the following constraints for all
(d, S) to ensure that the matching is stable. In the algorithm,
we pre-compute �i for all users i ∈ D ∪R, then add follow-
ing constraints to the matching MILP.∑

(d,S′)
�d(d,S)

xdS′ +
∑
r∈S

∑
(d′,S′)
�r(d,S)

xd′S′ +
∑
r∈S:
∅�r(d,S)

yr + xdS ≥ 1

Proposition 4. There exist problem instances where PoS =
Ω(λ · |R|), where λ is the unsatisfied cost of a user.

The high-level idea is that one highly-demanded driver
might prefer to satisfy only one rider, which may incur a huge
unsatisfactory cost. But the cost-minimizing solution always
matches the driver with more riders to avoid cost surge. (This
also shows that the social welfare maximizing solution may
not be stable.) Furthermore, θ-fair solution is not ex-post sta-
ble, ∀ θ > 0. The fairness constraint matches the driver to
a different rider with positive probability, causing instability.
The detailed proof is deferred to the Appendix.

For achieving a B-stable matching, we add more con-
straints to the matching MILP. We introduce new variables
βi for all i ∈ D ∪ R. βi indicates how much external in-
centive is allocated to user i. Let S+ := S ∪ {d} be the set
of users in (d, S). We also introduce variables µidS for all
i ∈ S+ and (d, S) ∈ E . µidS = 1 if user i βi-prefers his cur-
rent matching over (d, S). The matching is stable with our
external incentive if for all feasible pairs (d, S), there exists
user i ∈ S+ such that i βi-prefers his/her current matching
over (d, S). Let Ei be set of feasible pairs (d, S) ∈ E such

that i ∈ S+. Then, adding the following constraints to the
matching MILP to give a B-stable matching.
βi +

∑
(d′,S′)∈Ei u

i
d′S′xd′S′ + ui∅yi ≥ u

i
dS · µidS

∀(d, S) ∈ E ∀i ∈ S+∑
i∈d∪S µ

i
dS ≥ 1 ∀(d, S) ∈ E∑

i∈D∪R βi ≤ B
6 Experiments
In this section, we experimentally test our model and algo-
rithms. All MILPs and LPs are solved by Gurobi Optimizer
on a machine with 3.1 GHz Xeon E5 desktop with 16 GB
RAM. All graphs are averaged over 10 instances except for
special case experiments.

We used problem instances that simulate a typical neigh-
borhood in a morning rush hour. We used a 50 × 50 grid
graph. time is defined to be the Euclidean distance rounded
up to an integral value. Users are drawn based on 5 differ-
ent types. Different types of users are described in Figure 3.
Travel costs (citrl) are set to 3 per minute, and deviation costs
(cidev) are set to 1 per minute. All drivers have a capacity of
kd = 4, and altruistic factor of ρd = 1.2. The value of the
user i is set to νi = citrl · timei · U [1, 2.5], where U [a, b]
denotes uniform distribution over interval [a, b]. Most of the
experiments are done in this setting with varying changes as
we describe below.

Figure 1 compare the performance of the algorithms in dif-
ferent settings. Figure 1(a) show the effects of pruning. The
experiments were run without IR constraint, and a driver to
user ratio of 1:4. The results show that our scheduling al-
gorithm can scale up to 80 users within 2 hours. Also, our
pruning method decreases runtime by nearly an hour with 60
users. Figure 1(b) shows how runtime changes as the ratio
changes. The experiments were done with 50 agents as we
vary the driver to user ratio. Results show that the runtime is
largest with a ratio of 1:5. The ratio corresponds to the time
when drivers can potentially pick all riders up with full capac-
ity. Figure 1(c) shows the runtime when we add the IR con-
straint and stability constraint. The results show that adding
an IR constraint and stability constraint reduces the runtime
significantly. Adding such constraints reduces the number of
feasible matchings; therefore, the algorithm can scale up to
a significantly larger number of users (110 users within 30
minutes). This suggests that considering IR and stability en-
hances both the practical benefits of the solution and the scal-
ability of the algorithm. Figure 1(d) shows the runtime for
our fairness algorithm. Even though the fairness algorithm
uses our baseline algorithm, the runtime did not increase sig-
nificantly. The fairness algorithm can still scale up to 140
users within 2 hours. Results show that the column genera-
tion method does not increase the runtime significantly.

In Figure 2, we look at the trade-offs between altruism,
fairness, stability, and efficiency. Figure 2(a) shows the ef-
fects of the altruistic factor (ρ) on total cost and satisfied rider
utilities. As drivers become more altruistic, drivers are will-
ing to satisfy more socially beneficial riders. Therefore, as
the altruistic factor increases, the total cost decreases and sat-
isfied rider utilities increase. Furthermore, even small altruis-
tic factors of 0.5 can achieve a solution with a very low cost.
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Figure 1: Scalability experiments of different algorithms and setting.
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Figure 3: The figure describes our experimental setting. The gray ?
region correspond to the neighborhood, i.e. every user’s origin. Each
region correspond to different type of user’s destination, percentage,
and latest departure time. For example, There are 40% of type A
users. Each type A user i’s destination is drawn from left bottom
corner, τei drawn from [7:00,7:12], τ?i drawn from [τei ,7:12], τ li =
7:12+timei. Where 7:00 is the earliest possible departure time of
all users, and maxu,v∈V time(u, v) is 1 hour.

Figure 2(b) shows PoS and PoF with different numbers of
users (4, 20, 40, 60 with driver to user ratio of 1:4). Even
though we showed theoretically that PoS and PoF can be ar-
bitrarily large, in practice incorporating fairness and stability
considerations results in added costs of only 3% and 2%, re-
spectively.

Figure 2(c) and 2(d) show the trade-off between fairness,
stability and cost efficiency. We constructed a special in-
stance with big PoF to better understand the trade-off. The
instance contains 1 very flexible driver and 4 riders. The cost
of satisfying a rider is set to 10 (both rider and driver would
suffer a cost of 10). Furthermore, the driver may suffer ex-
tra travel costs between satisfying riders. The base cost cor-
responds to the costs of the driver and riders not participat-
ing in the matching system. Figure 2(c) shows that enforc-
ing higher fairness probabilities could result in a total cost in
excess of the base cost. The example shows that enforcing
fairness probability of at least 2/3 is more costly than leaving

all users unmatched. Furthermore, higher external incentives
decrease the price of stability and enable the stable matching
to achieve higher fairness probability. More specifically, Fig-
ure 2(c) shows the stable solution can only achieve fairness
probability of 0.5. However, providing external incentives of
10, 27, 83 can achieve fairness levels of 2/3, 3/4, 1, respec-
tively. These results show that even limited external incen-
tives (equal to the cost of satisfying one rider) can achieve a
reasonable fairness guarantee (2/3).

7 Conclusion
Unlike prior work, this paper focuses on user-centric match-
ing in P2P ride-sharing. (a) We propose a model that incorpo-
rates users’ preferred times; (b) we incorporate fairness and
stability in our P2P ride-sharing model; (c) we provide the-
oretical and experimental results showing trade-offs between
fairness, stability, and cost efficiency. While, in theory, the
price of fairness and the price of stability can be arbitrarily
large, experimental results show that fair and stable solutions
can be obtained through moderate efficiency losses and in rea-
sonable computational times.

Finally, we point out two potential future research di-
rections. The first one is to design mechanisms to ensure
incentive-compatibility, i.e., ensuring that there are no misre-
ported values or misreported preferred times associated with
uncoordinated incentives. Another direction is to study the
trade-offs between fairness and stability in a broader area.
Although the notion of fairness has been studied in many
different contexts, there is little work investigating both fair-
ness and stability in complex systems. Ultimately, incorporat-
ing both fairness and stability in analytic models can achieve
more socially beneficial solutions and practical results.
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A Notation Table

Notation Description
T Time horizon
R Set of riders
D Set of drivers

or/d, qr/d Origin, Destination of a rider/driver.
Wr/d Window of a rider/driver.
τer/d Earliest departure time for a rider/driver.
τ lr/d Latest arrival time for a rider/driver.
τ?r/d Preferred departure time for a rider/driver.
∆r/d Maximum detour time for a rider/driver.
νr/d Value gain by complete trip.
kd Capacity of the driver d
ρd Altruistic factor for the driver d

S = 2R Set of all possible subset of riders.
E Set of all feasible (d, S) paths
cdS Cost of driver d satisfying S ∈ S
λr Unsatisfied cost of rider r

time(u, v) Distance from node u to node v.
timer time(or, qr); Distance from or to qr.
Crtt′ Total cost for the rider r with picked-up

time t and dropped-off time t′.
c
r/d
dev , cr/dtrl Deviation/travel cost per unit time.
Π/M set of all schedules/matchings.
π schedule; Ordered (stop,time) pairs
M matching; assignment of D to S
ω route; ordered stops

S
π/M
d Set of riders that driver d is matched in π/M .
d
π/M
r The driver that rider r is matched in π/M .
S
π/M
r The set rider r is matched in π/M .
N(ω) Possible next stop of the route
ωend The last node in the route
ω + u Add node u at the end of ω
r(v) rider that the node v corresponds to
nxtωv The node that’s next to v in ω.

Pasω(v) The set of riders in the car at node v ∈ ω

B Omitted Algorithms
In this section we will describe omitted algorithms.

B.1 Construction of RTV-graph
RTV-graph construction requires construction of RV-graph,
decomposition then the construction of RTV-graph.

RV-graph:
We first compute RV-graph as following: For all pairs of
(d, r) we check whether the driver d can pick up the rider
r and drop off within both of their time windows. If they are
feasible we add an edge between d and r. Furthermore, for
each pair (r1, r2), we check whether any virtual driver can
pick up both riders and drop them off within their time win-
dows. If they are feasible we add an edge between r1 and
r2.

Decomposition:
Then we run the decomposition algorithm, we decompose the
instance into several smaller sub-problems. In other words,
we try to find a subset of driversD ⊆ D, such that all feasible
riders of D is not feasible with any other driver d′ ∈ D \D.
If the problem is decomposable, we solve each sub-problem
separately/independently. The decomposition allows our al-
gorithm to run in parallel.

RTV-graph
RTV graphs has 3 types of nodes, we have driver nodes for
all driver d ∈ D, trip nodes for all (feasible) subset of riders
S ⊆ R, and rider nodes for all rider r ∈ R.

We first add an empty trip. We have edge between d and
empty trip for all d ∈ D. Then we add trip S of size 1. We
have edge between r and S if r ∈ S. And we have an edge
between S and d if (d, S) is feasible. Let S1 be set of the
feasible trip of size 1. Similarly, we will maintain a feasible
trip of size i as Si.

For trip size i ∈ {2, ..., |R|}, for each trip S′ ∈ Si−1, add a
rider r from feasible rider S1. Let S = S′∪{r}. If |S| < i and
any subset of S with size i− 1 is not in Si−1 then continue to
next rider in S1. Otherwise compute TripCost(d, S)

Algorithm 1 Construction of RV-graph

1: vRV ← D ∪R
2: ERV ← ∅
3: for each rider r ∈ R do
4: for each driver d ∈ D do
5: if TripCost(d, {r}) is feasible then
6: ERV ← ERV ∪ (d, r)
7: w((d, r))← TripCost(d, {r})
8: for each rider r′ ∈ R do
9: d← (o = or, q = qr,W = Wr, k = 1)

10: if TripCost(d, {r′}) is feasible then
11: ERV ← ERV ∪ (r, r′)
12: else
13: d← (o = or′ , q = qr′ ,W = Wr′ , k = 1)
14: if TripCost(d, {r′}) is feasible then
15: ERV ← ERV ∪ (r, r′)

16: return RV-graph = (vRV , ERV ).

B.2 TripCost(d, S)

Now we will describe TripCost(d, S). It contains Tree-
Search part the MILP part.

Let N(ω) := {or : or 6∈ ω ∩ r ∈ S} ∪ {qr : or ∈ ω ∩ qr 6∈
ω ∩ r ∈ S} be the possible next stop of the route. Let ωend
be the last node in the route. Let ω + v be the function that
adds v at the end of ω.

Tree Search
TripMILP
Let zvt = 1 if the driver goes to vth node in ω at time t. Let
grtt′ = 1 if the user r is picked up at time t and dropped off
at time t′. Let crtt′ := crtrl(t

′− t) be the corresponding travel
cost, where ωr is the partial route start from or and end at qr.
Let cvt := c

r(v)
dev |t−τ?r(v)| be the corresponding deviation cost.



Dynamic Program for TripCost(d, S)

Q(v, t) = c
r(v)
dev

(
|t− τ?r(v)|

)
+ min
t′∈

[
t+ω ,τ

l
nxtωv

]
cdtrl · (t′ − t+ω ) +

∑
r′∈Pasω(v)

(1 + ρd)c
r′

trl · (t′ − t+ω ) +Q(nxtωv , t
′)

 (8)

(where t+ω := t+ time(v, nxtωv ))

Algorithm 2 Construction of RTV-graph

1: E ← ∅, V ← D ∪R ∪ S
2: for each driver d ∈ D do
3: Si = ∅ ∀i ∈ {1, ..., |R|}
4: [Add trips of size one]
5: for e = (d, r) ∈ ERV do
6: S1 ← S = {r}.
7: E ← E ∪ {(r, S), (S, d)}.
8: [Add trips of size two]
9: for all {r1},{r2} ∈ S1 and (r1, r2) ∈ ERV do

10: if TripCost(d, {r1, r2}) is feasible then
11: S2 ← S = {r1, r2}.
12: E ← E ∪ {(r, S), (S, d)}
13: w((S, d))← TripCost(d, {r1, r2})
14: [Add trips of size i]
15: for i ∈ {3, ..., |R|} do
16: for all S1 ∈ Si−1 and {r} ∈ S1 do
17: S ← S1 ∪ {r}
18: if |S| < i or ∃Si−1 ⊆ S of size i-1 s.t. Si−1 6∈
Si−1 then

19: continue
20: if TripCost(d, S) is feasible then
21: Si ← Si ∪ S
22: E ← E ∪ {(ri, S)} ∀ri ∈ S.
23: E ← E ∪ {(S, d)}
24: w((S, d))← TripCost(d, S)

25: Sd ← ∪i∈[|R|]Ti
26: return G = (V,E).

Algorithm 3 Tree-Search(d, S, ω)

1: if w(ω) > c∗dS then
2: return False
3: [σ is at the leaf node]
4: if |ω| = 2 · |S|+ 1 then
5: ω′ ← ω + qd
6: τω′ ← τω + time(ωend, v)
7: if τω′ > τ lr(ωend) then
8: return False
9: w(ω′) = TripMILP(ω′)

10: if c∗dS > w(ω′) then
11: c∗dS ← w(ω′)
12: return c∗dS
13: [σ is at the intermediate node]
14: for v ∈ N(ω) do
15: ω′ ← ω + v
16: if Pasω′(v) > kd then
17: continue
18: τω′ ← τω + time(ωend, v)
19: if τω′ > τ lr(ωend) then
20: continue
21: w(ω′) = w(ω) + cdtrl · time(ωend, v) +∑

r∈Pasω(v)(1 + ρ′d) · crtrl · time(ωend, v)

22: w(ω′) = Tree-Search(d, S, ω′)
23: if c∗dS > w(ω′) then
24: c∗dS ← w(ω′)
25: return c∗dS
26: return c∗dS



Let T (v) be the set of feasible time for the node v. Let v(r)
be the mapping of an user r to the corresponding origin node,
i.e. or. Let v′(r) be the mapping of an user r to correspond
destination node, i.e. qr. Let t+ω := t + time(v, nxtωv ). We
define same variables for driver nodes as well.
• Let S+ = S ∪ {d} be the set of all users in the route.
• Let Cd(z, g) be the driver d’s cost with vari-

ables z and g, i.e.
∑
v∈{od,qd}

∑
t∈T (v) cvtzvt +∑

t∈T (od)

∑
t′∈T (qd) cdtt′gdtt′ .

• Let Cr(z, g) be the rider r’s cost,
i.e.

∑
v∈ω\d

∑
t∈T (v) cvtzvt +∑

r∈S
∑
t∈T (or)

∑
t′∈T (qr) crtt′grtt′ .

• Let ud(z, g) be the driver d’s utility, i.e. ρd ·
∑
r∈S(νr−∑

t∈T (or) cortzort −
∑
t∈T (or)

∑
t′∈T (qr) crtt′grtt′) +

νd−
∑
t∈T (od) codtzodt−

∑
t∈T (od)

∑
t′∈T (qd) cdtt′gdtt′ .

• Let ur(z, g) be the rider r’s utility, i.e. νr −∑
t∈T (or) cortzort −

∑
t∈T (or)

∑
t′∈T (qr) crtt′grtt′

• Let Υ be set of tuples (r, t, t′) that are not feasible due
to maximum detour constraint, i.e. (r, t, t′) ∈ Υ for all
r ∈ S+, t ∈ T (or), and t′ ∈ [t+ ∆r + timer, τ

l
r]

If we finish one tree branch, we get the minimum cost of
the branch. If this computed value is less than cost of any
node in the tree, we can safely prune that node, because lower
bound of the branch is bigger than the value we computed
already. In fact, we can stop the algorithm when min weight
node is bigger than minimum cost we computed. We can
continue the process until we solve or prune all tree branches.
cdS is set to minimum cost among all tree branches.

min
z,g

Cd(z, g) + (1 + ρ′d) ·
∑
r∈S

Cr(z, g) (9)

s.t.
∑
t∈T (v)

zvt = 1 ∀v ∈ ω

(10)

grtt′ ≤ zort ∀r ∈ S+, t ∈ T (or), t
′ ∈ T (qr)

(11)

grtt′ ≤ zqrt ∀r ∈ S+, t ∈ T (or), t
′ ∈ T (qr)

(12)∑
t∈T (or)

∑
t′∈T (qr)

grtt′ = 1 ∀r ∈ S+

(13)

zvt ≤
∑

q∈[t+ω ,τ
l
nxtωv

]

znxtωv q ∀v ∈ ω, t ∈ T (v)

(14)
ur(z, g) ≥ νr − λr ∀r ∈ S

(15)

ud(z, g) ≥ νd − cdtrl · timed (16)

grtt′ = 0 ∀(r, t, t′) ∈ Υ
(17)

zvt, grtt′ ∈ {0, 1} (18)

B.3 Dynamic Programming for TripCost(d, S)
Dynamic programming table consist of Q(v, t) for all v ∈ ω
and t ∈ Wd, observe ω consist of 2 · (d + |S|) nodes, one
for origin and one for destination. The value of Q(v, t) is
the minimum cost we can get by going to v (correspond to
pickup or drop-off) at time t. Let r(v) be the rider the node v
correspond to. Let nxtωv be the node that’s next to v in ω. We
say v <ω v′ if v appears before v′ in ω. Let Pasω(v) := {r :
or <ω v and v <ω qr} be the set of riders that are currently
in the car when we arrive at node v. This set can be easily
obtained by going through the route. Let τev be the earliest
time for node v, i.e. if v = or then τev = τer ; if v = qr then
τev = τer +timer. τ lv is similarly defined as the latest time for
node v. The value of Q(v, t) can be computed by following
equation.

After solving all Q(v, t), the value Q(od, τ
e
d ) is the min-

imum deviation cost and travel cost following ω. Then the
total cost would be distance cost of the branch + Q(od, τ

e
d )

Algorithm 4 TripDP(ω)

1: v ← ωend (i.e. qd)
2: for t ∈ [τed + timed, τ

l
d + timed] do

3: Q(v, t) = 0

4: for v ∈ ω in inverse order do
5: for t ∈ [τev , τ

l
v] do

6: Q(v, t)← (8)

7: return Q(od, τ
e
d )

We use dynamic programming to obtain lower-bound solu-
tion of the leaf node. Solving dynamic programming before
the MILP can reduce number of times we compute MILP sig-
nificantly.

B.4 Pruning Methods
Our solution approach might solve exponential number of
MILPs and size of S can be exponentially large. To over-
come such inefficiency we add pruning methods to speed-up
our algorithm. Our main bottleneck is that our tree-search is
exploring exponentially many leafs that are not optimal. Such
phenomena happens when the first leaf node we found was far
away fro optimal. Our pruning method try to predict a path
that are promising to be an optimal solution. Therefore, the
promising gives better upper-bound to reduce number of leaf
nodes we search.

When we compute (d, Sk) for some set Sk of size k, we
already computed (d, Sk−1) for all set Sk−1 of size k − 1.
Our first pruning method try to learn from (d, Sk−1) to pre-
dict promising path for Sk. We also predict a promising path
from (d′, Sk) for all d’ that are similar to d. We say d and
d′ are similar if their L∞-norm of origin and destination is
within ε for small enough ε. In many P2P platform, there are
many drivers with similar origins and destination; therefore,
our pruning method can be very powerful in many real-world
setting.

B.5 Matching MILP
Let Γr ⊆ S to be set of all subsets that r belongs to, i.e.
Γr = {S ∈ S|r ∈ S}.



min
x,y

∑
d∈D

∑
S∈S

cdSxdS +
∑
r∈R

λryr (19)

s.t.
∑
d∈D

∑
S∈Γr

xdS + yr = 1, ∀r ∈ R (20)

∑
S∈S

xdS = 1 ∀d ∈ D (21)

xdS ∈ {0, 1} ∀d ∈ D, S ∈ S (22)
yr ∈ {0, 1} ∀r ∈ R (23)

B.6 δ-approximate Pareto Frontier
We say a set of points F is a δ-approximate if for all points
(c∗, θ∗) in actual Pareto frontier F∗, we have a point (c, θ) ∈
F such that 1)

√
(c− c∗)2 + (θ − θ∗)2 ≤ δ, i.e. `2 norm is

less than δ.
We can first compute the maximum θ using the LP (6). Let

θmax be the maximum θ we can achieve. Then run the LP (2)
for all θ = δ · i for all δ · i ∈ [0, θmax] and i ∈ N.

Theorem 1. The algorithm gives δ-approximate Pareto Fron-
tier.

This shows that any point between (c1, θ1) and (c2θ2) is
also feasible. Since θ1 > θ∗ − δ and c∗ ≥ c1, the segment
(c∗, θ∗− δ)-(c∗, θ∗) and (c1, θ1)-(c2θ2) must intersect at one
point p. and the point p is feasible and within δ-ball around
the point (c∗, θ∗); therefore, our algorithm δ-approximate any
Pareto Frontier point.

C Omitted Proof
In this section we will provide omitted claims and proofs in
the main paper.

C.1 Riders are automatically IR
Claim 1. Riders are individually rational in cost-
minimization solution.

Proof. Suppose for a contradiction that a rider r is getting
utility lower than νr − λr in the efficiency optimal schedule
π∗. Then consider a schedule π′ where r is not matched and
everyone else is matched the same as π∗. In other words, we
are picking up and dropping off all riders at the same time, but
we are just not picking up the rider r (This schedule may con-
tain unnecessary waiting). It is easy to see that π′ is a feasible
schedule. All stop, time pairs stay the same, so time window
constraint satisfies. Drivers are picking up same or less riders,
thus the capacity constraint satisfies. For each rider r′ 6= r, he
is experiencing exactly the same deviation and distance trav-
eled, so his utility is the same. Utility for each driver that did
not pick up r stays the same, because his schedule and the
riders that he picks up stays the same. These holds for both
welfare maximization and efficiency maximization.

We only need to consider the utility for the driver d who
picked up r in π∗. For efficiency maximization, Ud(π∗) =
νd−Cdtt′ . recall we are considering the same schedule as π∗,
i.e. the driver is going to exactly same stops at exactly same
times. Therefore, he suffers exactly same deviation cost and

travel cost, thus we have Ud(π′) = Ud(π
∗), i.e. the driver

is getting the same utility. Everyone except r is getting same
utilities and r is getting better utility in π′, thus π∗ is not an
efficiency optimal schedule.

The claim is not true for social welfare maximization.
Consider the following example with 1 driver d and 2 rid-
ers (r1, r2). All of their origin is at location a and all of
their destination is at location b. Suppose time(a, b) = 5,
νd = νr1 = νr2 = 10, ρd = 1/2, Wd = [0, 5], τ?d = 0,
Wr1 = Wr2 = [0, 6], τ?r1 = τ?r2 = 1. All user’s deviation
cost and travel cost is 1 (i.e. cdev = ctrl = 1).

Then only feasible schedule for the driver is leaving ori-
gin at time 0, and arriving at time 5. If he chooses to pick
both riders up, then the riders suffer the deviation cost of
1. Therefore, each rider’s utility is νr − Crtt′ = 10 − 6 =
4. Note νr − λr = 5, thus the schedule is not individ-
ually rational for the riders. The utility for the driver is
νd − Cdtt′ + ρd

∑
r∈Sd Ur = 10 − 5 + 1

2

∑
r 4 = 9. Thus

we get social welfare of 4 + 4 + 9 = 17. Whereas, only in-
dividually rational solution is not picking up any rider which
gives social welfare of 5 + 5 + 5 = 15. This shows the riders
may not be individually rational in social welfare maximizing
solution.

If νr = λr∀r ∈ R, then the claim holds for the SW maxi-
mization.

C.2 Proof of Proposition 5.1
Proof. Consider the following example with 1 driver and m
riders. The driver d has very flexible window and capacity of
2. We have m−2 riders that has strict and narrow window so
that satisfying them give cost of Q, and cannot be satisfied 2
of them simultaneously. More formally we have rider ri with
window [i, i+m] and the timer = m for all i ∈ [3,m]. The
driver can satisfy any of them with his flexible window , but
cannot satisfy two of them simultaneously due to their strict
window. We also have 2 more riders r1 and r2 that can be
satisfied together, but if the driver satisfy r1 only, then he gets
total cost of ε. Whereas satisfying (r1, r2) together gives cost
of Q.

First we will look at cost minimizing matching. The driver
can just satisfy the rider r1, and gets the cost of ε. However,
in this matching all other riders are not satisfied even though
they are feasible. Therefore, this matching is not fair for the
riders.

The most fair solution is when the driver satisfies all riders
with probability 1

m−1 . This matching can be obtained by sat-
isfyingm−2 riders with probability 1

m−1 and satisfy (r1, r2)

pair with probability 1
m−1 . This results in cost of Q; there-

fore, gives the PoF = Q/ε.

The example also holds for arbitrarily big PoF when we
define the price based on utility model. Recall there exist
M∗ such that it’s a deterministic matching. If can select
M∗ as one of our matching with some probability p∗, then
we get PoF within p∗ factor when PoF is defined by utility
(maximizing problem). However, above example shows most



fair solution does not contain M∗, this implies even in utility
model, PoF can be arbitrarily big.

C.3 Proof of Proposition 4
Let SπD := ∪i∈DSπi be the set of riders that are matched to
any driver in D in the schedule π.

max
π∈Π

(∑
r∈R

Ur +
∑
d∈D

Ud

)
=

∑
r∈R

νr +
∑
d∈D

νd

−
∑
r∈SπD

Crtπr tπr
−

∑
r∈R:r 6∈SπD

λr −
∑
d∈D

Cd
tπd t

π
d

Note
∑
r∈R νr and

∑
d∈D νd are independent of π. There-

fore the above optimization is equivalent to the cost mini-
mization problem.

min
π∈Π

∑
d∈D

∑
r∈Sπd

Crtπr tπr
+
∑
d∈D

Cd
tπd t

π
d

+
∑

j∈R:j 6∈SπD

λj

On the side note, the social welfare maximization problem
can be described as following minimization problem.

min
π∈Π

∑
d∈D

∑
r∈Sπd

(1 + ρd)C
r
tπr t

π
r

+
∑
d∈D

Cd
tπd t

π
d

+
∑

j∈R:j 6∈SπD

λj −
∑
d∈D

∑
r∈Sπd

ρdνr

C.4 Proof of Proposition 5.2
Proof. Consider an example where d and r prefer each other
the most. But there’s r′ who live far away. and d′ who live
close to r but farther from r′ than d, and all matching result
in positive utilities for all of them. Suppose (d′, r′) cannot be
matched. Then SW maximizing solution would be (d, r′) and
(d′, r) but then (d, r) form a blocking pair. Same is true for
efficiency maximizing if νd > cdtrl ·time(d, r′). This can lead
to arbitrary big PoS. Suppose (d, r) gives each of them utility
of 2ε, and other matching gives them utility of 0. Whereas if
d′ or r′ is matched they get utility of Q (ρd′ = Q/ε). Then
SW maximizing matching matched (d, r′) and (d′, r) and get
total utility of 2Q, whereas only stable matching gives utility
of 2ε. Therefore we get PoS = 2Q/2ε = Q/ε.

C.5 Existence of B-stable Solution
Proposition 5. There exists B such that fairest solution is
B-stable.

Let U∗i be the utility that user i is gaining in the stable
matching. Let Ui be the utility that user i is gaining in the
fairest matching. We give each user i the incentive βi = U∗i −
Ui. Then all users are getting the same level of utility as in
the stable matching; therefore, the matching is B-stable for
B =

∑
i βi.

C.6 Omitted Stable Matching Proposition
Proposition 6. A stable matching exists if we assume rider’s
utility is non-increasing as number of riders in the same trip
increases, i.e. riders are not complementary.

Proof. We will follow standard GS algorithm, where riders
propose and drivers only accept at most one rider. By the
property in GS algorithm, all the matched riders are matched
with optimal driver among all 1-to-1 stable matching. Fur-
thermore, none of matched rider prefer match with 2 or more
riders, thus there’s no blocking pair containing 2 or more rid-
ers. Therefore, this form a stable matching.

D Different θr
We can also run the algorithm with heterogeneous riders. The
P2P platform may want to provide different probability guar-
antee for different riders. The system may want to benefit
users who provided benefit previously. Then we will have dif-
ferent threshold θr for each rider r ∈ R. Then the following
algorithm computes a feasible solution that satisfy threshold
constraints.

max
p,δz

z

s.t. δi ≤
∑
i

m`
ip
` ∀i ∈ R

z ≤ δi − θi ∀i ∈ R∑
`

p` = 1

p` ≥ 0

E NP-hardness
The P2P ride-sharing problem without deviation cost, capac-
ity, and IR constraint is still NP-hard. The problem can be
reduce from TSP problem.

For each node v in TSP problem, we have a rider r where
his origin and destination is v, and he has time window of
[0,∞] with νr =∞.

The driver has origin and destination at some vertex v. The
driver has ρ = ∞, with time window = [0,∞]. It is easy to
see that his valuation is maximized when he satisfy all riders.
Thus the problem becomes satisfying all rides subject to min-
imizing distance travlled. Note this solution is equivalent to
TSP problem.

F Discussion
We will discuss assumptions we made throughout the main
paper. We assumed λr ≤ νr, if λr > νr, then the rider would
not take the trip and experience utility of 0 when he is not
matched, because 0 > νr − λr. Then the cost of unsatis-
fied riders become

∑
r∈R:r 6∈§πD

min{λr, νr}. The algorithm
can extend to this case by replacing λr with λ′r, where λ′r :=
min{λr, νr}. We first replace (1) to minπ∈Π

∑
d∈D cdSπd +∑

r∈R\SπD
λ′r and utility of rider when he is not matched to

Ur = νr − λ′r. Note this also changes the definition of
Cost(M `) and individual rationality. Note new definition of
λ′ makes intuitive sense, if a rider’s alternative option is not
take the trip, then he suffer opportunity cost of λr = νr.



We assumed linear decomposible cost function. However,
users cost function may be more complicated than just a lin-
ear function. Since our optimization is based on MILP and
LP, our algorithm can be extended to any convex cost func-
tion with suitable convex solver.

Note our current model is vulnerable to misreported value.
Our algorithm relies on all users to report truthfully. If a rider
r reports a value νr = ∞, the algorithm will try to find a
matching that matches r with cost less than λr. One simple
approach is to redefine IR constraint to be Ur ≥ 0, However,
this does not align with our stable matching definition. We
leave the incentive-compatibility to the future direction.

Notion of envy-free allocation is very well suitable in P2P
ridesharing model. However, it is well known that envy-free
allocation may not exist in any discrete deterministic alloca-
tion; therefore, it does not exist in our model either. However,
EF1 allocation exists, and α-envy-free allocation exist and
randomized envy-free allocation exist. There are many envy-
free allocation that can be related to our setting and closely
related to stability of the market in driver’s side. We leave the
envy-free fairness as another potential future direction.
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