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ABSTRACT

Vehicular mobile crowdsensing (MCS) enables a lot of smart city
applications, such as smart transportation, environmental mon-
itoring etc. Taxis provide a good platform for MCS due to their
long operational time and city-scale coverage. However, taxis, as a
non-dedicated sensing platform, does not guarantee high sensing
coverage quality (large and balanced). This paper presents ASC, a
system that actuates vehicular taxis fleets for optimal sensing cov-
erage quality while matching ride requests with taxis. We propose
a near-optimal algorithm that integrates 1) a mobility prediction
model that guides the selection of taxis to actuate and 2) a ride re-
quest prediction model to help match ride request with taxis, lower
incentive cost and improve taxi drivers’ motivation. Extensive sim-
ulation and real-world experiments in a testbed with 230 actuated
taxis show that our ASC can achieve up to 40% improvement in
sensing coverage quality improvement and up to 20% better ride
request matching rate than baselines approaches. In addition, to
achieve a similar level of sensing coverage quality, our ASC only
requires 10% of the baseline budget.
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1 INTRODUCTION

The rapid growth of mobile devices with powerful sensing units
has promoted the development of mobile crowdsensing (MCS), in
which spatially distributed participants collectively sense and share
data [1-3]. The extracted information from shared data can be used
to measure, map, analyze, or estimate any processes of interest,
which enlightens a lot of smart city applications, such as traffic
conditions, air pollution, noise level, etc [4-6].

Vehicle fleets are an important platform for MCS due to their
high mobility and large range. Especially, traditional taxis and new
forms of taxis (Uber, Lyft and Didi) operate throughout the city
with long operational time. These fleets enable large scale sensing
data with high spatiotemporal coverage and make a lot of urban
sensing applications feasible [7, 8].

Sensing coverage quality, which considers both amount and bal-
ance of data collection, is one of the key performance indices (KPI)
of the MCS system that influence the quality of the information
collection [9]. Good quality data collection requires both large and
balanced coverage in the spatial and temporal domain [10]. Large
coverage ensures sufficient information is collected, while balanced
coverage ensures informative data collection.
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As non-dedicated sensing platforms, MCS systems using taxis do
not guarantee good sensing coverage quality even with large num-
bers of taxis. This is because most taxis gather around busy areas,
like central business districts (CBDs), while little data are collected
in other areas [11]. A lot of past work has been done to improve
the sensing coverage quality. Auction-based or game-theoretical
mechanisms have been proposed to actuate MCS participants [12-
15]. These approaches require the participants to select and bid the
task. These approaches rely on a large number of rational partic-
ipants and incorporate all their preferences. As a result, they are
particularly sensitive to driver participation and attention. Further-
more, they do not incorporate the future mobility of the unselected
vehicles on the overall sensing coverage quality, which brings a lot
of uncertainty on the effectiveness of the sensing coverage quality
after actuation.

It is difficult to optimize sensing coverage quality in a vehicular
MCS with a limited budget due to two major challenges: high
uncertainty on actuation effectiveness, and conflicting goals
between the vehicle fleet and MCS platform.

e High uncertainty on actuation effectiveness: With limited bud-
get, only small percent of the whole vehicle fleet can be
actuated and the future mobility of the rest vehicles are
not considered. As a result, the effectiveness of actuation is
highly uncertain.

o Conflicting goals: As a non-dedicated sensing platform, taxis
make individual optimal decisions on looking for new ride
requests (customers), which makes them gather in the busy
areas with more ride requests. This leads to much fewer taxis
showing up and less data being collected at the rest parts of
the city. As a result, simply actuating taxis with a monetary
incentive causes high actuation cost and low motivation [16].

This paper answers the question: how can we efficiently actuate
non-dedicated sensing platforms (ride-based vehicles) to achieve
optimal sensing coverage quality with limited budget? We present
ASC, a system that actuates vehicular taxi fleets for optimal sensing
coverage quality through incorporation of matching ride requests
with taxis. ASC determines routes for all the available taxis through
two main steps. 1) The system first adopts a mobility prediction
model to forecast the near-future taxi destinations. The prediction
guides the system to decide which taxis to select for actuation
to achieve maximum sensing coverage quality improvement. The
system intends to spend budget on taxis, which are predicted to
head for busy areas (instead of those heading for sparse areas), and
actuates them to sparse areas. As a result, actuating one taxi brings
more sensing quality improvement. 2) ASC includes a ride request
prediction model to predict near-future ride requests across the city.
Based on this prediction, the system chooses routes to actuate taxis,
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which aims to improve the overall sensing coverage quality and
match the ride requests with the taxis. This not only lowers the cost
of actuation but also improves the motivation for the driver [16].
Utilizing these two key steps, the system sends the actuated routes
and corresponding monetary incentives to the selected taxis.

The main contributions of this paper are:

o A system that simultaneously optimizes the sensing coverage
quality while matching ride requests for the taxi fleets.

e Formulate the collaborative task and propose a near-optimal
algorithm, which integrates 1) a mobility prediction model
and 2) a ride request prediction model to lower incentive
cost and improve taxi drivers’ motivation.

e Evaluate the system with real city-scale deployment and
history trajectory data in the city of Beijing, China.

The remainder of the paper is organized as follows: Section 2
presents problem definition. Section 3 introduces our system overview,
key parts in the system, as well as the key algorithm. Section 4 dis-
cusses the experiments for system evaluation. Section 5 concludes
the paper respectively.

2 PROBLEM DEFINITION

In this section, we discuss the problem of optimizing sensing cov-
erage quality in vehicular MCS. Our actuation system is not depen-
dent on the particular applications and can be used for any type
of high-level vehicular MCS tasks. The preliminary definition is
firstly given. Then we describe the goal of our system. Finally, we
formulate the problem of optimizing sensing coverage quality.

According to spatial and temporal resolution setup (ds and d;),
the system discretizes the focus rectangle area into ny by ny con-
gruent grids (x;,y;) and time slices t.. The longitude, latitude and
time index is represented with x;, y; and t; respectively. It is no-
ticed that according to the average taxi speed, we set ds and d; so
that a taxi covers at most ds within d;.

2.1 Key Definitions

Worker: Denoting taxis fleet as C, each worker ¢ € C represents a
taxi carrying sensors for different applications. The worker runs
inside the map of target city and keep collecting data during the
trajectory. The spatial coordinate of c at time ¢ is denoted as (x7, y5)
and obtained by global positioning system(GPS).

Actuation period: The actuation period T = nd; denotes time
length for the selected taxis to finish the actuation route. For sim-
plicity but without loss of generality, we set T = 5d; in this paper.
The changing of n does not change the problem and solution.

Actuation Task: An actuation task for a worker c refers to a route
that we ask the worker to cover within an actuation period T. The
route consists of a sequence of coordinates for each d; during the
actuation period and expressed as

{(xcﬁ ycr)’ (xCT+dt’ ycr+dt)’ sees (XCT+T, ycT+T)} 5

where (x€;,y¢,) is the original location of the taxi ¢ when the
actuation task starts at time 7.

Actuation Availability: At the beginning of each actuation period
T, each worker c reports its actuation availability. An available
worker means there is no passenger on the taxi and the driver is
willing to follow the assigned trajectory with the given monetary
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incentive. A worker is called an "actuated worker" when it accepts
an actuation task, and a "non-actuated worker" otherwise.

Budget & Monetary Incentive: The budget R is the total amount of
money available to actuate workers during each actuation period.
When a worker c is assigned an actuation task, a monetary incentive
B(c) is also allocated. The total monetary incentives do not exceed
the given budget R.

Sensing Coverage: The sensing coverage A refers to the set of
data points collected by all workers during one actuation period T,
including both "actuated" and "non-actuated" workers.

2.2 Actuation Objective

The objective of actuation is to achieve optimal sensing coverage
quality (large and balanced) by actuating part of the vehicle fleets
with given limited budget. We define the sensing coverage quality
¢(A) as a combination of the total amount of sensed data and the
balance level of the sensed data distribution over the covered area.
The balance level represents how uniformly the sensed data are
distributed in both the temporal and spatial domains. We quantify
this using the entropy of the sensed data distribution. Thus, the
overall sensing coverage quality is obtained by the weighted sum of
the total amount of sensed data and the entropy of their distribution.
Eq. 1 shows mathematical formulation of ¢(A), where E(A) is
entropy of data distribution (data balance), and Q(A) is the number
of data points [10]. a € (0, 1) is tuned to be large when balancing
the data distribution is the main focus of the actuation task, and
small when the main focus is collecting a large amount of data.

P(A) = aE(A) + (1 - a)logQ(A). (1)

2.3 Problem Formulation

To optimize the sensing coverage quality ¢(A) with limited bud-
get R, the system needs to 1) select the "correct” taxis to actuate
that efficiently utilizes the budget and 2) plan the actuation task
routes for each selected taxi. Therefore, we give the mathematical
formulation of the actuation problem at time ¢ as:

max d(A) (2)
1(en) {(xbyb), .- (T, yl4T)}

c

s.50<x;, Snxds,t<t<t+T,i=1,..[C| (3)
0<ye, Snyds,t<t<t+T,i=1,..[C]| (4)
K —xl Y <dgt<T<t+Ti=1,..|C] )
vl —yS M <dgt<T<t+Ti=1,..[C| ©)
IC|
> Blei) - I(ei) < R )
i=1

I(c;) = 1 represents worker c; is selected for actuation and 0
vice versa. Eq. (3) and (4) constrains that the system only consider
workers’ mobility within the focus area. The Eq. (5) and (6) con-
strains that each worker covers at most ds within d;. The Eq. (7)
constrains that total monetary incentives do not exceed the given
budget R.

In our system, at the beginning of each actuation period T, taxis
automatically report their information including: taxi id, current
location, and actuation availability for the coming actuation period.
It is noticed that in our system only the taxis without passengers
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are available for actuation. In addition, drivers can always set their
availability to false if they are not willing to join. Based on the
reported information, tasks and monetary incentives are calculated
and assigned to selected available taxis. We assume taxis follow the
actuation task routes until the end of the the actuation period if
they accept them.

3 SYSTEM DESIGN

This section introduces how we design the actuation system to opti-
mize sensing coverage quality to address the two major challenges.
We first discuss how the system integrates the mobility prediction
model and the ride request prediction model in Section 3.1. We then
introduce the design of our monetary incentives in Sections 3.2.
Finally, the multi-incentive algorithm is described in Section 3.3.

3.1 System Overview

To optimize sensing coverage quality, we design our actuation
system based on two key observations: 1) The cost of actuating
one taxi depends on whether the system can match a taxi
with a ride request at the destination. If the system matches
the taxi with a ride request, the taxi driver is willing to accept
a lower monetary incentive since they can earn money from the
new rides [16]. 2) The sensing coverage quality after actuation
depends on selecting which taxis to actuate. We do not have
to actuate taxis that plan to head for sparse areas, as changing their
trajectories would not significantly improve the sensing coverage
quality. On the other hand, changing the trajectories of those that
plan to head for busy areas and actuating them towards sparse
areas improves sensing coverage quality more.

Therefore, we integrate two prediction models into our system.
The mobility prediction model forecasts the mobility of taxis, which
offers guidance for the system to wisely select which taxis to actu-
ate. To be specific, the system selects taxis heading for dense areas
and actuates them to sparse areas, which leads to higher sensing
coverage quality improvement with actuated taxi. The ride predic-
tion model forecasts the coming ride requests over the city. When
taxis are matched with ride requests, taxi drivers are willing to
accept a lower incentive. As a result, the cost of actuating a taxi is
lowered and more taxis can be actuated for better sensing coverage
quality with the same budget.

Figure 1 shows how we design the system to integrate the two
prediction models for actuation. Taxis report their real-time tra-
jectory data and whether they are available for actuation to ASC.
Unavailability can occur for two reasons: customers already riding
in taxis, or drivers’ unwillingness to be actuated. ASC calculates
1) which taxis to be actuated, 2) where they will be actuated, and
3) how much monetary incentive they are paid, and potential ride
request at the actuation destination. The results are sent back to
the taxis, thus actuating them to achieve sensing coverage quality
optimization.

The Pre-Processing module discretizes the focus rectangle area of
the city and the time with the given spatial and temporal resolution
(ds and d;). It is noticed that according to the average taxi speed,
we set ds and d; so that a taxi covers at most dg within d;.

The Vehicle Mobility Prediction module, which is trained by each
taxi’s history trajectory data, predicts taxi mobility. The prediction
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Figure 1: The figure shows the architecture of system.

output is fed to the Multi-Incentive Algorithm module to guide the
system to wisely select the taxis to actuate, which improves the ef-
fectiveness of the actuation. It is noticed that ASC allows differ-
ent mobility prediction models. For simplicity but without
loss of generality, this paper adopts a Markov based mobility
prediction model..

The Ride Request Prediction module predicts ride requests over
the city, whose results are sent to the Multi-Incentive Algorithm
module. Based on this prediction, the Multi-Incentive Algorithm
module selects routes for actuated taxis. The Ride Request Prediction
module uses historical ride request data, which can be derived from
taxi occupancy data, to train the ride request model. The system
framework allows for different ride request prediction models. For
simplicity but without loss of generality, this paper adopts a graph-
based ride request prediction model [17].

The Monetary Incentive Calculation module calculates the incen-
tive based on the selected routes from the Multi-Incentive Algorithm
module and the prediction from the Ride Request Prediction module.
The results are sent back to the Multi-Incentive Algorithm module
for further optimization.

The Multi-Incentive Algorithm module selects the taxis to be
actuated and designs trajectories for those taxis by collaboratively
considering 1) taxi mobility predictions from the Vehicle Mobility
Prediction module, 2) ride request predictions from the Ride Request
Prediction and 3) monetary incentive from the Monetary Reward
Calculation module. The details will be discussed in Section 3.3.

3.2 Monetary Incentive

The key idea of our monetary incentive design is to include the
probability of getting a ride request in the destination planned for
the actuated taxi. This can decrease the monetary cost for actuating
taxis by utilizing the underlying incentives of providing taxis a
higher chance to get passengers at the destination of assigned task.
In this way, we could actuate more taxis and better utilize the budget
to improve the sensing coverage quality.

The difference between taxis’ distribution and the ride request
distribution makes it possible to provide taxi a higher chance to
get passengers in sparse sensed area. Therefore, if we could actuate
the vehicles to the sparsely sensed areas with greater ride request
probabilities, the cost for actuating taxis would be decreased and
quality of sensing coverage will be improved. Meanwhile the utili-
ties of the taxis are ensured, and overall transportation efficiency is



SCOPE’19, April 15, 2019, Montreal, QC, Canada

ALGORITHM 1: Multi-Incentive Algorithm for Taxis and Tra-
jectory Selection.

Input: Current location xo, Budget R, Taxis availability, Ride
request model Request, Mobility prediction model P
Output: Actuated taxis ID, planned trajectory and monetary
incentive for actuated taxis
Initialize:
Select taxis and trajectory randomly until the budget is full
Output the initial feasible solution S based on actuated
L taxis and P for non-actuated taxis
while ¢ converges do
Select the grid with maximum taxis passing through
Take out the set of taxis S;,p which pass through the
maximum grid
Compute and rank the contribution of trajectories of taxis
belonging to S¢myp
Select the taxi with minimum contribution and update its
trajectory with monetary incentive defined by Request
Keep updating the trajectory until the budget constraint R
is satisfied
| Update S and calculate the updated sensing quality ¢

Return S* = S

improved. Therefore we design the monetary incentive B(c) offered
to taxi c as follows

®)
where rpin and rpex are minimum and maximum monetary in-
centive to actuate one taxi respectively. This definition is based on
the following reasons. First, maximum incentive ry, 4x should equal
maximum cost that the taxi incurs by following our route. Thus,
we can find rpqx from the gas, time cost and passenger count of
driving during the actuation period. We can offer lower incentives,
however, if taxis encounter ride requests while following our trajec-
tories: taxis could then earn additional money from serving these
requests, which lowers their net cost from following our route. The
Request(i, j, t) represents the predicted ride request distribution in
location of (i, j) at the ¢ time interval, which is estimated using the
ride request prediction model in [17]. r, is the unit monetary in-
centive for one ride request. Moreover, even with a high possibility
to get new ride request, each taxi still needs a minimum monetary
incentive to motivate, which is ry,ipn.

B(c) = max(rmax = ru - Request(xCT, yCT, T), 'min),

3.3 Multi-Incentive Taxis and Trajectory
Selection Algorithm

To solve the NP-hard optimization problem in Eq.(2) — (7), we
propose a fast, near-optimal heuristic-based algorithm to find an
approximate solution. The core idea of our algorithm is to 1) find
the time and locations with many taxis passing through, and 2)
dispatch these taxis to different trajectories with very few taxis
passing through. This is because actuating the taxis in a sparse area
does not solve the problem of most taxis gathering in dense areas.
The idea of the proposed algorithm is based on the Complementary
Constructive Procedure (CCP). We first initialize a feasible solution
S under the constraints, which is easy to implement by selecting
taxis until the budget is full. Then we keep updating the solution
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to improve the objective function, which is the sensing quality. As
Algorithm 1 shows, in the initialized feasible solution, we can find
the corresponding time and location pair that contains maximum
data points. We can also find the set Sy, of taxis that pass through
the location at the respective time. A key step is then that for taxis
belonging to the set S¢m, the expectation of the current trajectories
is computed based on the current data point distribution. In this way,
we can have an overall idea about which taxis passing through the
maximum grid contribute the least to the overall data distribution
balance level. Then we traverse this list of taxis from least to most
contribution one to select taxis to dispatch to a new trajectory or not
actuate. Similarly, we firstly compute the expectation value of each
prospective trajectory, including random run without actuation,
on the current data distribution. Then the algorithm traverses the
prospective trajectories according to descending expectation value
until the sensing coverage quality is improved. Finally, the solution
is updated based on the selected trajectory and taxi. With multiple
iterations, the solution keeps updating until the estimate of sensing
coverage quality converges.

4 EVALUATION

In this section, we evaluate our system’s ability to achieve optimiz-
ing sensing coverage quality. In addition, we also verify the ability
to match ride requests with taxis, which is an essential actuation
motivation for taxis. We first introduce how we design a simulation
based on real historical taxi trajectory data and real experiments
on a taxi testbed for evaluation in Section 4.1. Then, we present
and analyze the simulation and experiment results in Sections 4.2
and 4.3 respectively.

4.1 Evaluation Setup

We evaluate our system on a taxi testbed as well as a simulation
based on real historical taxi trajectory data in the center area of
Beijing. The evaluation area occupies a size of 15km by 15km and we
set the  value as 0.5. The major setup parameters of the evaluations
are listed below.

Real Taxi Testbed Experiment Setup: To test our system in
a realistic setting, we recruited taxis to run in the city of Beijing.
We evaluate our system at different time period of a day, which are
0:00am, 6:00am, 12:00pm and 6:00pm. In addition, we also evaluate
the system at 9:00am since it is a peak time in a day. We run the taxis
on routes calculated by our system. For each route, a researcher
hailed a taxi. The researcher suggested routes for the driver based
on our system outputs. The drivers are free to modify routes. During
the whole process, an Android App named GPS Logger was used
to collect real-time GPS taxi data. In total we collected traces from
230 actuated taxis over a period of 14 days. The experiment was
approved under the university IRB STUDY2017_00000342.

Historical Trajectory Data Description: We use the Beijing
taxi trajectory dataset in November of 2015 to conduct simulations
based on real historical taxi trajectory data. The dataset is formatted
as: taxi id, time stamp, longitude, latitude, occupancy flag. The oc-
cupancy flag represents whether the taxi is occupied by customers.
The temporal and spatial resolutions are 60 seconds and 1 meter re-
spectively. We extract the ride requests in the city according to the
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Figure 2: This figure shows the sensing coverage quality
with different budget. Our ASC shows up to 40% more im-
provement than RND and RND_RQ. To achieve similar sens-
ing coverage quality, our ASC needs 200 USD while RND and
RND_RQ need 2000 USD.

occupancy flag transformations. A ride request is obtained when a
taxi’s occupancy flag is turned to occupied.

General System Setup: Every actuation period, we randomly
select 500 active taxis as the total vehicle fleet. We take temporal
and spatial resolution as 2 minutes and 1 km since the average
taxi speed in Beijing is 30km/h and 2 minutes can cover 1 km,
which is one grid. The incentive in our system is given in units
of US dollars (USD). We adopt r, = 2(USD), rmin = 2(USD) and
rmax = 20(USD), since 2 USD is the flag-down fare of Beijing Taxi
and 20 USD is enough to cover the cost for one trajectory (~ 10km)
in one incentive period under the bad traffic condition. We take
the first 3 weeks’ data to train mobility prediction and ride request
prediction and the rest days of the month to test the system. We
evaluate our system at different time period of a day, which are
0:00am, 6:00am, 12:00pm and 6:00pm. In addition, we also evaluate
the system at 9:00am since it is a peak time in a day. In the taxi
testbed, the actuated taxis run on real roads as described earlier.
In the simulated experimentation, we assume the actuated taxis
follow the planned trajectories in an average velocity and finish
the tasks before the end of one incentive period.

Performance Metric: We adopt value of sensing coverage qual-
ity (SCQ) ¢, which is the objective of our problem as shown in Eq 1,
as our performance metric. High value of ¢ means better sensing
coverage quality.

Baselines: We adopt different baselines to validate different
parts of our system on improving sensing coverage quality. These
parts include mobility prediction model, ride request prediction
model and our core algorithm.

e No Actuation (NA): This method does nothing to actuate
taxis or match ride requests. All the taxis just follow their
original trajectories. By comparing this method with our
ASC system, we can check the performance improvement of
our entire system.

e Random Actuation (RND): This method randomly selects
taxis and routes within the given budget. RND always of-
fers the maximum monetary incentive. By comparing this
method with our ASC system, we can check the performance
improvement brought from the two prediction models.
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Figure 3: This figure shows ride request matching rate with
different budget. Our ASC consistently shows up to 20%
matching rate than RND and RND_RQ.

e Random Actuation with Ride Request Prediction (RND_RQ):
This method also randomly select taxis and actuation routes
within the given budget. At the same time, RND_RQ tries
to match ride requests with taxis. As a results, the cost to
actuate one taxi will be lower than Random Actuation (RND).
By comparing this method with RND, we can check the
improvement from the ride request model. By comparing
this method with our ASC, we can check the improvement
from the mobility prediction model.

4.2 Simulation Performance

In order to evaluate how budget affects the sensing coverage quality
with our ASC and baselines, we plot the sensing coverage quality
in Figure 2. First, for ASC, RND and RND_RQ, sensing coverage
quality improves with increasing budget. Higher budgets allow
for more actuated taxis, leading to better sensing coverage qual-
ity. Second, our ASC always shows an advantage over the three
baselines. Especially when budget is 4000 USD, our ASC achieves
61% improvement while RND and RND_RQ only give 22% and 20%
improvement over NA respectively. The 40% advantage of our ASC
comes from two parts. The ride request prediction model helps our
ASC lower the incentive cost by matching the ride request with
taxis. In addition, the mobility prediction model guides our ASC to
select taxis which bring more sensing coverage quality improve-
ment. Third, our ASC arrives at saturation point at 4000 USD while
other baselines still keep increasing even at 8000 USD. This shows
that with the help of two prediction models, our ASC has much
higher efficiency on sensing quality coverage improvement. To
be specific, to achieve similar sensing coverage quality, our ASC
need 200 USD while RND and RND_RQ needs 2000, which is 10x
of our expense. Finally, although RND_RQ can lower incentive cost
by matching more ride requests and thus actuating more taxis, it
still does not exceed the sensing coverage quality of RND. This
shows that even with more actuated taxis, randomly selecting taxis
to actuate does not bring sensing coverage quality improvement.
The similar trend of RND and RND_RQ validates the effect of our
mobility prediction model.

To evaluate how budget affects the ride request matching of
different methods, we plot ride request matching rate in Figure 3.
First, a large budget does not necessarily ensure large ride request
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Figure 4: The figure shows sensing coverage quality from
real experiment, simulation and non-actuation.

matching rate, which is different from sensing coverage quality.
This is because the first priority of our ASC is to improve sensing
coverage quality. To ensure sensing coverage quality improvement,
ASC will sacrifice ride request matching rate. Second, for different
budgets, our ASC has up to 20% larger ride request matching rate
and than RND and RND_RQ. This shows that even though our ASC
sacrifices ride request matching rate to guarantee sensing coverage
quality improvement, it still keeps a higher matching rate than
other methods.

4.3 Experiment Results

To check the performance of our system in real operational condi-
tion, we conducted experiments on a taxi based testbed at 5 repre-
sentative time periods mentioned in Section 4.1. Our experimental
evaluation accounts for real-time traffic patterns, which the sim-
ulation does not. We compare the ASC experiment results with
ASC simulation results to illustrate that our system is practical. In
addition, we include the non-actuation results as a baseline.

Figure 4 shows the sensing coverage quality from real experi-
ment, physical feature based simulation and non-actuation. At all
representative times, sensing coverage quality values from experi-
ment are similar to simulated values, which shows that physical
feature based simulation can be used to analyze system operation
in the real world. It is noticed that sensing coverage quality values
from experiment are a little bit lower than that from simulation.
This is because simulation results are theoretically near-optimal
while real experiment involve practical factors that prevent it from
achieving simulation results. These factors include traffic jams, tem-
porary road closure, lack of direct routes to follow the designed
trajectories, etc. In addition, both simulation and experiment sens-
ing coverage quality show advantages over non actuation results.
This proves that our system improves sensing coverage quality in
both simulation and experiment.

5 CONCLUSION

This paper presents ASC, a system that actuates vehicular taxis
fleets for optimal sensing coverage quality through incorporation
of matching ride requests with taxis. We propose a near-optimal
algorithm that integrates 1) a mobility prediction model that guides
the selection of taxis to actuate and 2) a ride request prediction
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model to help match ride requests with taxis, lower incentive cost
and improve taxi drivers’ motivation. Extensive simulation and
experiments on taxi testbed show that our ASC achieves up to 40%
more sensing coverage quality improvement and up to 20% more
ride request matching rate than baselines. Additionally, our ASC
achieves similar sensing coverage quality as baseline algorithms
with only 10% of the budget requirement. The proposed algorithm
can be extended to drone-based MCS platform in the future [18, 19].
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