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Problem Definition
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Two placements are made using
some algorithm.

Reward R is computed for every time snapshot:

R(t + 1) = #good placements
#total placements

For the example above:

R(t + 1) = 1
2
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I p∗ - placement for d1 by
time snapshot t + 1

I p∗ - placement for d2 by
time snapshot t + 1

Two placements are made using
some algorithm.

Reward R is computed for every time snapshot:

R(t + 1) = #good placements
#total placements

Objective: Maximize the reward R over multiple time snap-
shots.
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Assumptions & Properties

1. Future pickup cells are not known.

2. Possible placements cells are close to drop off and finite.

3. Each cell covers a small geographical area (like 100x100m2).

4. |(t + 1)− t| < τepsilon (usually a few minutes).
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Potential Algorithms

1. Pick a cell uniformly at random, and no history (URand-NH).

2. Follow the Leader with Complete History (FTL-CH).

3. Assume each cell follows a Poisson Process for ride requests
(PP-LH).
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Experimental Setup

1. Looked at ≈ 10 million real ride requests for over a week in
four US cities. Each ride request is defined by:

I Pickup
I Dropoff
I Time of pickup
I Time of dropoff

2. Each time snapshot is 3 minutes long.

3. Grid length 100m.
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Results

(a) Chicago (b) Los Angeles

(c) New York (d) San Francisco

Figure: The PP-LH algorithm out-performs FTL-CH slightly and
URand-NH significantly across all four cities in terms of the reward.
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Results with OPT

(a) Chicago (b) Los Angeles

(c) New York (d) San Francisco

Figure: Comparison of reward percentage plots for 3 algorithms along
with optimal (OPT) reward.
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Fractals

(a) Known work: Self-similarity for cross
roads of Montgomery county.
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Fractals

(a) Known work: Self-similarity for cross
roads of Montgomery county.

(b) Our contribution: Self-similarity for
ride requests in Bay Area. 10 / 12



Fractal Dimensionality & Human Mobility Pattern

[Belussi 1998] Given a set of points P with finite cardinality and
D2, the average number of points within a square of radius ε′
follow a power law:

nb(ε′) ∝ ε′D2 (1)

Same can be said for ride requests.
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Fractal Dimensionality & Human Mobility Pattern

[Belussi 1998] Given a set of points P with finite cardinality and
D2, the average number of points within a square of radius ε′
follow a power law:

nb(ε′) ∝ ε′D2 (1)

Same can be said for ride requests.

Expected Performance of FTL-CH is strictly better than
URand-NH:

EFTL-CH[Rt ] > EURand-NH[Rt ] (2)

11 / 12



Conclusion

1. We provide a formalization of the real-time vehicle placement
problem, and draw similarities to known problems like k−
server problem.

2. Highlight using real data connection between human mobility
and chaos theory (fractals).

3. Propose potential online algorithms with guarantees which
could reduce rider wait time, and driver idle time.
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