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Abstract—In this paper, we describe a multi-modal approach
to human torso pose estimation and forecasting. Our end-to-end
system combines RGB images and point cloud information to
reason about 3D human pose. We use a simple filter fit method
to forecast torso pose. Further, we evaluate the forecasting
performance quantitatively on the Human3.6M motion capture
dataset and qualitatively on a furniture assembly task. Our simple
forecasting algorithm outperforms complicated recurrent neural
network methods, while being faster on the torso pose forecasting
task.

I. INTRODUCTION
Autonomous agents in dynamic environments must antici-

pate future events to mitigate latencies in cognitive processing
[37]. This becomes more important as robots are increasingly
deployed in highly dynamic and cluttered environments with
imperfect information about their surroundings. For robots in
real-world settings, a crucial aspect of human-robot interaction
(HRI) is real-time anticipatory modeling of human motion.
Fluid tasks such as collaborative assembly, handovers, and
navigating through moving crowds require timely prediction
of probable future human motion.

For example, consider a mobile, convention center robot that
meets visitors who have requested assistance. First, it must
rendezvous with the human. A strong cue that a particular
human is ready for interaction is when they turn to face
the oncoming robot. Second, the robot must navigate past
other humans without crossing their path in a rude manner
[17, 4]. Finally, the robot needs to orient itself properly as it
approaches the person [2]. Timely perception of torso pose is
important for all of these steps.

In support of these, and similar interactions, we present a
new human torso pose anticipatory model. We show that a
simple filter and polynomial model outperforms deep neural
networks for this task, while being much faster, hence allowing
it to be deployed on low-cost mobile robots without necessi-
tating significant and expensive computation.

Ideally, such a system is able to not only detect, but also
track and forecast entire pose skeletons for multiple persons
in 3D space and in real-time. Each of these problems are
either challenging or well studied, but have computationally
expensive solutions. As an illustration, consider that one of the
best 2D multi-person pose detectors [3] can perform at around
18Hz [8] (using 2x Nvidia 1080 Ti GPUs). Furthermore,
associated high dimensional non-linear dynamics as well as
inherent stochasticity makes full body human pose forecasting
inherently difficult.

To make this tractable, researchers have approached the
forecasting problem by restricting the scope to a particular
task, thereby reducing the dimensionality of the problem
space. For example, some predictively model human reaching
motions for a shared workspace assembly task [23], while
others predict future hand locations in egocentric video to
allow anticipatory motion planning and assistance [21].

We draw inspiration from this strategy and restrict the
problem to modeling the spatio-temporal behaviour of the
human torso. Specifically, we aim to detect and forecast the
human torso plane orientation, an important cue correlated
with motion intent and social engagement [35].

Our system uses multi-modal visual input data, namely
RGB with scene depth data, and both estimates and forecasts
a 3D torso plane. This in contrast to most previous body
pose forecasting work [7, 6, 16, 24] that either use 2D or
3D articulated pose (with initial joint configurations obtained
directly from a motion capture system). Such multi-modal
sensing not only helps overcome depth ambiguity[15], but also
allows us to use monocular 2D body pose estimators (which
are more accurate than monocular 3D pose estimators) and
project these estimations to 3D easily using an RGB image in
conjunction with a registered point cloud.

Contributions: In this paper, we describe a novel end-to-
end depth-based torso pose estimation and forecasting system
combining both depth and RGB visual data. In particular, we
show that a simple filtering and polynomial fitting algorithm
outperforms more complicated recurrent neural network based
forecasting approaches and is 45× faster, giving up granularity.
We evaluate the pose forecasting system quantitatively on the
Human 3.6M dataset [14] and demonstrate the entire end-to-
end system on a furniture assembly task.

II. RELATED WORK

Human modeling for robotics has taken various forms
including estimating [3, 22, 30, 38] and forecasting [7, 16, 24]
human pose from visual data, modeling human motion trajec-
tories (both individual [39, 41] and group trajectories [36]), as
well as human intent prediction [19].

A. Human intent prediction

Human intent prediction has emerged as an area of interest
for effective human-robot collaboration. Previous work has
utilized the intrinsic kinematics of the human anatomy [12],
eye gaze [1, 13], and spatio-temporal structure of the task



Fig. 1. Example input RGB image with overlayed with a 2D torso pose detection (left). Views of 3D pose extracted using the 2D detections (right). Points
on the arm are shown for illustration, not included in torso pose calculations

space [19]. These methods have used graphical models such
as MDPs or CRFs to encode constraints and spatio-temporal
relationships.

Anticipatory modeling of human navigation trajectories has
also received interest for mobile social robotics. In [34],
the authors suggest the existence of biomechanical ”turn
indicators” of human motions that allow for human motion
trajectory prediction. Maximal entropy inverse reinforcement
learning approaches [18, 20, 41] have also been used to
forecast pedestrian trajectories.

B. Human pose estimation and motion modeling

Human pose recovery from visual data is a challenging
but incredibly useful task that has recently seen tremendous
interest and success in the computer vision community. The
focus has mostly been on joint keypoint localization using a
single RGB camera in pixel space [22] of a single individual
[28, 31, 38] and, more recently, multiple individuals [3, 5, 30].
The most successful models have employed graphical or neural
network models trained on large datasets.

There has also been significant interest in 3D pose esti-
mation from monocular images, despite the inherent depth
ambiguity, that allows multiple plausible 3D pose hypotheses
given a 2D pose estimate [15]. Several end-to-end models
have been trained on this task that regress the individual
skeletal keypoints [26, 27, 29, 32, 33, 40]. Even though these
algorithms have the advantage of being able to work with
inexpensive RGB cameras, these are single-person 3D pose
estimators and, as such, suffer from depth ambiguity. In [25]
the authors show that “lifting” the pose from 2D to 3D gives
a surprisingly low error rate, suggesting that most of the error
in these methods lies in the visual analysis of body pose rather
than reasoning about the 3D structure of the 2D scene.

With human pose estimation a well-studied problem with
accurate, real-time solutions in specialized use cases, modeling

of human motion has received considerable interest in the
literature. The vision community has approached this from
the standpoint of forecasting articulated human poses without
considering the acquisition of the pose skeletons themselves.
For example, [7, 16, 24] all model and forecast human motion
using recurrent neural networks. However, these methods
do not model the global position of their subjects, instead
choosing to focus on generating a continuation of observed
human motion in a coordinate frame attached to the body. For
forecasting, these works are the closest to ours and we have
selected the best performing method for comparison [24].

The graphics community also uses deep recurrent neural
networks, primarily for character motion synthesis conditioned
on human user input. For example, past work uses these
methods to animate video game characters [9, 10, 11]. Even
while generating realistic human motions, these methods fail to
match ground truth human poses and suffer from discontinuity
between the ground truth frames and first predicted frame.

In general, the intrinsic stochasticity of human motion does
not allow for accurate forecasting of complete human poses
over long horizons (> 1s) [24]. For the short horizon case,
forecasts are more accurate but still suffer from unrealistic
discontinuities at the beginning of the forecast. This is hy-
pothesized to be due to the use of quantitative loss functions
in training these models that penalize average error, without
imposing temporal smoothness or anatomical constraints in the
loss function. For this paper, we refer to short-term forecasting
(<= 400ms) as just “forecasting” unless otherwise stated.

III. APPROACH
For a mobile robot’s human perception system, we want the

following characteristics:
• Real-time performance.
• A discriminative output signal that allows human atten-

tion/intent prediction.



• A smooth temporal model of human pose.
The last is non-trivial since previous supervised methods,

such as [7, 16, 24], suffer from severe discontinuities at the
beginning of the forecast, as shown in [24].

Our end-to-end system comprises a torso pose detec-
tion/estimation module followed by a forecasting module. The
design choices we make throughout our system are influenced
by the aforementioned desiderata.

Our desired pose detection system is required to reason
about the world in 3 dimensions and hence monocular RGB
approaches are not reliable. To achieve this, we currently
use an off-the-shelf 2D human pose detection system [3] in
conjunction with a stereo camera in a two-step process. The
input to the 2D pose detector is an RGB image, which is
used to obtain joint locations for humans in the scene. Once
we know the 2D joint locations, these are projected onto a
registered point cloud obtained by triangulation in a separate
step, giving us 3D joint locations. This depth data can come
either from an IR-based time of flight camera or a stereo
camera. To avoid restricting our domain to indoor use only,
we use a stereo camera, the Stereolabs ZED for our system.

We model the torso pose by the position and orientation
of an estimated torso plane. Given a pose skeleton, the torso
plane is defined as the plane that minimizes sum of squared
distances from each of the 3D torso joint locations. At a given
pose skeleton,

n∗, c∗ = argmin
n,c

|τ |∑
i=1

|n · xi + c| (1)

where n · xi + c = 0 defines the torso plane (n is the plane
normal and c is a constant, both in R3) and τ ⊂ R3 is the set
of all torso joint locations. For annotated skeletons from the
Human3.6M dataset, τ contains the shoulder joints, two hip
joints, the mid-spine, and the tip of the tailbone.

In the forecasting sub-module, we predict elevation, az-
imuth, and absolute position of the torso plane over a 400ms
time-window. Subsequently, we refer to the elevation and az-
imuth together as the plane orientation components. Together,
the three components describe the plane uniquely. Once the
torso plane is acquired from the pose detection module, we
apply a low pass filter to the two orientation components. A
low pass filter was chosen so that we model only the macro-
level orientation of a human subject, which is the most relevant
signal for many HRI activities. This is followed by fitting an
N th order polynomial, which is then used to extrapolate a
forecast for each individual component.

For the low pass filter, we use a second-order Butterworth
filter. The cutoff frequency was empirically set to 5Hz.

IV. EXPERIMENTS

A. Datasets

We evaluated the system on two datasets:
• Human 3.6M [14]: This is currently the largest publicly

available dataset of motion capture data, containing 7
actors performing 15 varied tasks such as walking, taking

photos or giving directions. We used this dataset to
perform quantitative analysis.

• Furniture assembly: For qualitative analysis of our entire
system, we collected data in the real world on a furniture
assembly task, in which a human subject followed print
instructions to assemble an ottoman. This allowed us
to demonstrate the performance of the entire end-to-end
system qualitatively. We chose this task to illustrate the
capabilities and limitations of the system.

B. Evaluation procedures
For quantitative evaluation on Human 3.6M [14], we used

the same train-test split as [7, 16, 24] and compared against
[24] since it is the quantitatively best performing model out
of the three. The MoCap data was downsampled to 25Hz,
as in previous work. During testing, skeletal poses over a
2 second sample (50 frames) were fed to a recurrent neural
network, which then generated samples over a forecast window
of 400 millisecond (10 frames) sample. The initial 50 frames
are referred to as the conditioning ground truth.

Since our method focuses on torso planes rather than full
body articulated pose, we must obtain ground truth planes
from the MoCap data, by fitting a least squares plane to the
hips, shoulders, and neck joints of an articulated pose obtained
from the MoCap data, as described in Equation 1.

The aforementioned methods do not estimate the 3D pose
of a human subject from visual data. Rather, they acquire
the ground truth 3D poses directly obtained from the MoCap
data accompanying Human3.6M. For evaluating our method
in this experiment, our RGB and depth based pose estimation
module was bypassed to keep the quantitative comparison of
our forecasting system with [24] fair.

Instead of using the Euclidean distance in Euler angle space
for all body joints (as in previous work), we computed the
error of the plane orientation forecast. Specifically, we use the
plane azimuth and elevation error over the forecast window.
We chose this measure since it is most indicative of the macro-
level expression of torso pose. See Table I for average azimuth
and elevation angle error for each of the 15 Human3.6M
activities across various methods.

V. RESULTS
A. Quantitative results

Table I shows the results of fitting polynomials of degree
N = 1 to 4, the best performing quantitative method for
human motion prediction (HMP) on Human3.6M [24], and
a constant prediction baseline (where the last ground-truth
torso plane orientation is predicted for the entire forecast
window). The results also demonstrate the importance of low
pass filtering in the last line, where we omit the filtering step
and directly fit an N th order polynomial to the unfiltered data.

B. Qualitative results
The furniture assembly task was recorded using a commer-

cially available ZED stereo camera and processed offline. See
Figure 1 for a sample visualization of the estimated 3D pose.
We see realistic 3d pose estimates notwithstanding occlusions.



TABLE I
TORSO PLANE ORIENTATION FORECASTING (400MS) ERRORS ON H3.6M DATA (DEGREES)

Action Plane Azimuth Plane Elevation

HMP[24] Const N = 1 N = 2 N = 3 N = 4 HMP[24] Const N = 1 N = 2 N = 3 N = 4

Walking 2.15 4.44 2.94 1.87 2.35 3.16 3.52 1.91 2.18 2.45 3.36 6.67
Eating 1.99 4.48 1.14 0.71 1.20 1.76 3.84 1.13 2.18 1.86 2.24 4.73

Smoking 1.63 1.43 0.71 1.24 1.18 0.93 3.57 1.77 1.26 2.45 2.25 2.87
Discussion 13.89 3.13 1.06 1.83 3.17 3.21 3.93 1.42 1.11 2.27 1.45 9.80
Directions 30.40 2.66 2.02 1.82 2.61 6.30 6.01 2.12 1.88 2.61 5.36 8.41
Greeting 27.11 3.75 2.70 2.69 3.49 5.97 5.39 3.35 3.47 4.90 2.98 8.14
Phoning 3.69 7.44 4.05 7.30 10.09 21.06 4.06 1.63 1.84 1.92 3.50 5.45
Posing 7.96 9.65 4.30 7.24 7.99 13.11 6.82 5.46 3.67 3.48 4.94 5.73

Purchases 14.85 5.64 9.12 6.55 21.35 26.77 8.97 6.54 5.45 11.17 13.7 10.35
Sitting 2.55 2.49 2.55 1.64 7.22 9.58 4.52 3.21 1.46 1.99 4.34 3.32

Sitting Down 4.30 5.36 7.11 7.02 5.03 10.41 4.80 3.85 2.23 2.40 1.90 4.52
Taking Photo 32.63 2.14 1.46 1.61 3.21 3.82 8.63 3.17 5.56 4.77 22.71 28.37

Waiting 11.58 4.28 2.10 1.58 2.45 4.23 5.34 3.05 3.27 3.89 6.27 22.07
Walking Dog 4.75 4.89 2.39 2.73 4.42 6.71 7.64 4.75 3.64 4.45 7.33 8.6

Walking Together 1.31 3.88 1.46 1.23 1.24 3.4 4.53 1.77 2.04 2.72 4.40 8.52

All (average) 10.72 4.38 3.01 3.14 5.13 8.02 5.44 3.01 2.74 3.55 5.78 9.17
All (average, no filter) 10.72 4.38 3.33 10.54 96.34 657.73 5.44 3.01 3.26 16.35 187.08 1628.74

C. Analysis

Some trends can be seen in Table I. First, the plane azimuth
is harder to predict than the elevation, given the higher error
rates across all 15 actions and various methods. However, the
best average error for both torso orientation components is
under 5 degrees. This is small enough to not cause ambiguity
in most real-world activities.

Second, the filtering step is essential. Without the filtering
step, we not only see larger errors in the polynomial fitting
but larger standard deviation among errors corresponding
to various values of N . This suggests that the estimate is
unstable. (See last two rows of Table I)

Third, the recurrent neural network model tends to make
much larger errors than our simple 1st degree (linear) polyno-
mial fit. The HMP errors also show higher variability across
tasks than our method.

This suggests that such models are either over-fitting or
that the error they are trained to minimize is unsuitable for
the task. That is, recurrent neural network based methods try
to minimize a quantitative loss without reasoning about the
temporal smoothness of human motion. Thus, these methods
can suffer from unrealistic discontinuities. This is reinforced
by the observation that these errors are larger in highly
stochastic tasks such as “Taking Photo” (both upright and
kneeling poses) or “Directions” (high variance poses).

Fourth, our forecasting algorithm is inexpensive to compute
while being faster and more accurate than previous work. The
method described in [24] (HMP) takes about 35 ms for one
forward pass on a dedicated NVIDIA Titan X GPU. This
translates to a maximum sampling rate of 28 Hz, assuming
desktop-level hardware is available onboard. Our forecasting
method takes approximately 0.715 ms on an Intel i7-6700HQ
CPU (laptop processor). This makes our method about 45×
faster on cheaper and more accessible hardware. However,
note that HMP forecasts full body articulated 3D pose while

we only model the torso plane.
From qualitative evaluation, it is clear that using a point

cloud constructed from a stereo camera is vulnerable to errors
by occlusion while projecting the 2D points onto 3D, even
if the pose detector can circumnavigate occlusions. This is
apparent when the nearly assembled ottoman occludes the
person and 3D projection is inaccurate.

VI. CONCLUSION

We propose a novel end-to-end torso pose estimation and
forecasting system. In addition to torso pose orientation, we
predictively model absolute torso position, which is ignored
in previous work. We present quantitative results to evaluate
the forecasting system and show that our simple filter and
fit method outperforms complex recurrent neural network
methods while being approximately 45× faster on the torso
plane forecasting task.

A. Limitations & Future Work

We imposed several constraints on this work, including a
focus solely on the torso plane. We also only address the single
human case, but this approach could easily be extended to
multiple people in a top-down fashion.

In future work, we would like to extend this to a more
full-fledged perception system and apply it to tasks like
social navigation, that will require multi-person perception. We
would also like to collect data from the perspective of a mobile
robot for evaluation closer to likely real-world applications.
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