Data Driven Analysis of the Potentials of Dynamic Ride Pooling

Min Hao Chen, Abhinav Jauhri, John Paul Shen Carnegie Mellon University (Silicon Valley Campus)

Our Contributions

• How to leverage travel pattern to perform real-time ride pooling?

- Define the parameter space and method for dynamic ride pooling.
- Evidence of significant societal benefit based on actual ride request data.

Ride Requests

Ride request is represented by:

- 1. Time of request
- 2. Pickup Location 💡
- 3. Drop-off location 💡

Ride request in Bay Area

Pooling & Evaluation Framework

Dynamic Pooling Objectives

- 1. Reduce Total Travel Distance
- 2. Reduce Total Vehicles Needed
- 3. Increase Poolability of Rides
- 4. Travel Time Overhead Bounded

Pooling Selection Criteria – Phase I

• Time Interval (ϵ_t) • Distance from pickup (ϵ_{sr}) • Distance from drop off (ϵ_{dr}) • Distance from drop off (ϵ_{dr}) • Distance from drop off (ϵ_{dr})

Limitation of Phase I

Pooling Selection Criteria – Phase II

- Time Interval (ϵ_t)
- Rectangular width (ϵ_w)
- Rectangular length (ϵ_l)

• Anglular difference (ϵ_{θ})

Advantage of Phase II – Cost does not supersede benefits.

Pooling Selection Criteria – Phase I & II

Parameter Space

- Vehicle occupancy (k) Distance from drop off (ϵ_{dr}) Rectangular length (ϵ_l)
 - Anglular difference (ϵ_{θ})

Parameter Sensitivity Analysis

Benefits

Metric	San Francisco	New York	Los Angeles	Mean across cities
Total Travel Distance Reduction (%)	17.13	19.06	11.01	15.76
Total Vehicle Count Reduction (%)	33.76	36.93	23.03	31.23
Mean Poolability (%)	48.94	56.39	34.52	46.61
Mean Travel Time Penalty (sec)	162.12	97.55	148.17	135.94

Summary of benefits and costs. Parameters used $\epsilon_t = 5$ mins., $\epsilon_{sr} = 500m$, $\epsilon_{dr} = 1000m$, $\epsilon_w = 2000m$, $\epsilon_{\theta} = 20^{\circ}$, k = 3

Benefits

Pooling & Evaluation Framework

Conclusion

- Data-driven approach based on millions of ride request from 3 cities.
- Propose a rigorous formulation of the dynamic ride pooling problem, and an experimental algorithm.
- Highlight potential societal benefits of dynamic ride pooling.

Questions?

