
Data Driven Analysis of the Potentials of Dynamic Ride Pooling
Min Hao Chen

Carnegie Mellon University
Moffett Field, CA, USA
danielmchen@cmu.edu

Abhinav Jauhri
Carnegie Mellon University
Moffett Field, CA, USA

ajauhri@cmu.edu

John Paul Shen
Carnegie Mellon University
Moffett Field, CA, USA

jpshen@cmu.edu

ABSTRACT
This paper focuses on the challenge of dynamically pooling mul-
tiple ride requests in real time in order to achieve greater overall
efficiency for ride sharing/hailing services. A rigorous formulation
of this problem and an efficient pooling method is introduced. This
paper adopts a data-driven approach and uses an extensive ride-
request data set from the real world to evaluate this method. The
experimental results based on the data set for three US cities show
that close to 50% of all ride requests can be pooled, and there are
significant benefits for both riders and services. Furthermore dy-
namic ride pooling can potentially yield significant societal benefits
in reducing total fuel consumption (by 15%) and alleviating traffic
congestion by reducing the total vehicle count (by 30%).

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • Com-
puter systems organization→ Real-time systems; • Applied
computing → Transportation;

KEYWORDS
Ride-sharing, pooling

1 INTRODUCTION
In recent years, ride-sharing platforms such as Uber and Lyft have
become a significant means of transportation, accounting for nearly
two billion rides in 2016 [17]. On a daily basis, Didi with significant
penetration in China reported booking four times the number of
ride requests than that of the entire US [2]. With such massive scale
of operation, ride-sharing service companies have started to focus
on ways to better utilize their resources, i.e. drivers and vehicles.
In particular, they have begun to offer services that pool multiple
ride requests into a single vehicle in real time. Their goals include:
lowering the cost for riders; increasing earnings for drivers and
the companies; and keeping added travel time for riders within
an acceptable range. Such dynamic ride pooling is growing and
showing significant potential for benefiting ride-sharing services,
drivers, and riders.

Dynamic ride pooling can potentially benefit society as well.
Human mobility and transportation is a major issue for many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWCTS’17, November 7–10, 2017, Redondo Beach, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5491-2/17/11. . . $15.00
https://doi.org/10.1145/3151547.3151549

large urban areas in the world [5]. As ride-sharing services be-
come ubiquitous, other than providing convenient and affordable
transportation on demand, there is the potential of contributing
societal benefits. This work takes a data-driven approach to inves-
tigate the subject of dynamic ride pooling. This work leverages
an extensive ride-request data set (from a ride-sharing service) for
three major US cities: San Francisco, New York, and Los Angeles.

Dynamic on-demand ride pooling without advanced knowledge
of ride requests is a challenging problem. The pooling decisions
must be made in real time for a large number of moving vehicles.
Ride requests occur dynamically and can be widely distributed
spatially in terms of pickup and drop off locations. The pooling de-
cisions must take into account both temporal and spatial proximity
of the ride requests. Increasing the proximity scope for harvesting
poolable ride requests may improve the amount of pooling and
overall pooling benefits. However this can also lead to increase in
travel time penalty for riders. Thus, effective dynamic ride pooling
must take into account the benefit vs cost trade offs.

This work makes the following key contributions: 1) We intro-
duce a rigorous formulation of the dynamic ride pooling problem
and propose a method for dynamic ride pooling; 2) We identify
the best-performing method/configuration and apply it to our ride-
request data set for the three cities; 3) We present insights distilled
from the experimental results on the benefits and costs of the best-
performing pooling method/configuration; 4) We show dynamic
ride pooling can produce significant societal benefits, in reducing
the total travel distance and the total vehicle count for a city.

2 RELATEDWORK
There have been extensive prior works on matching riders. This
section does not exhaustively cover all related works; it highlights
some of the most relevant works on formulating the problem of
matching riders, and prior works focusing on the potential, includ-
ing societal, benefits of ride-sharing services.

Numerous graph-based approaches have been studied for match-
ing riders. [14, 15] formulate the problem of finding matching riders
as a maximal graph matching problem. [8] applies approximation
set cover algorithms to find a set of riders to carpool. The problem
of finding matching riders is modeled as a network flow problem
by [19]. [6] applies evolutionary algorithms to match one driver
with multiple riders. Recently, [1, 12] propose an integer linear
program formulation to match riders, and show that less than 25%
of active cabs can satisfy 99% of the ride requests with an average
delay of 2.5 minutes in New York city.

A peer-to-peer multi-hop ride-matching problem is modeled us-
ing a binary program by [11]. An on-line ride-sharing system is
proposed by [4] using Maximum Cardinality Matching. An interest-
ing approach by [3] considers the LDA algorithm for recommending
sharing opportunities. [18] introduce meeting points, within some

https://doi.org/10.1145/3151547.3151549

distance of riders’ source or destination points, to enable sharing
of vehicles, and highlight its potential.

[16] highlights that more than 70% of the rides can be pooled
when passengers can tolerate a delay of up to five minutes; their
analysis is based on 14 million taxi trips also in New York city
over a month. [10, 12] highlight that by increasing the number of
shared vehicles over a geographical space, the number of people
using the shared vehicle increase. [1] quantifies experimentally the
trade-off between fleet size, capacity, waiting time, travel delay, and
operational costs for low to medium capacity vehicles.

Most of the above studies use data exclusively from taxi rides in
dense cities like New York; this constitutes a much smaller sample
size than what is used in our work in representing general human
mobility patterns. Due to the low pricing and availability, ride-
sharing services represent an economically diverse set of riders as
compared to traditional cabs. Moreover, most of the prior works
require information about pickup and destination locations of ride
requests ahead of time, thus they are not practical for real-world im-
plementations where hundreds or even thousands of ride requests
need to be handled every second. Our work provides insights about
how and when ride requests occurring in temporal and spatial prox-
imity can be effectively pooled such that high frequency and degree
of ride pooling can occur while the increase in overall travel times
for riders is kept minimal. In contrast with these previous works,
our method can also be implemented without prior knowledge of
when and where ride requests occur.

3 RIDE REQUEST PATTERNS
This work is based on real-world ride requests from a ride-sharing
service for three major cities in the US, San Francisco, New York,
and Los Angeles. The data set contains more than 10 million ride
requests for each city. Each ride request is represented by a 5-tuple:
1) request time; 2) pick up time; 3) pick up location (latitude & lon-
gitude); 4) drop off time; 5) drop off location (latitude & longitude).

It has been observed that ride requests for a city varies tempo-
rally and spatially, and there is strong spatial clustering in densely
populated areas even for very short time intervals [7]. We make use
of this key observation in formulating our dynamic ride pooling
method, and to minimize time overhead of pooling.

4 DYNAMIC RIDE POOLING
The dynamic ride pooling problem involves identifying which ride
requests and how many ride requests should be bundled into a
single vehicle. This involves making decisions on the fly, in real
time, in response to spontaneously occurring ride requests. This is
done by first identifying a primary ride request and use it as the
reference for pooling other additional secondary ride requests. The
pooling of multiple ride requests into a single vehicle is referred to
as a plan denoted by P.

Each pooled vehicle is associatedwith a planP, and each plan has
its associated benefits and costs. With ride pooling, fewer vehicles
are needed to service the same amount of total ride requests. Thus,
the average cost for servicing a ride request can be reduced. The
potential costs for ride pooling include inconvenience to the riders
in terms of longer wait time for pick up and/or longer travel time
for drop off. Also, to accommodate large number of pooled ride

requests in one vehicle, larger sized vehicles may be needed. Hence,
dynamic ride pooling requires performing trade offs between the
benefits and the costs. The goal is to maximize the benefits while
minimizing the costs. Given the set of all ride requests, the task is
to find mutually exclusive subsets, or plans of ride requests, such
that each plan P can be pooled into one vehicle.

Effective pooling must take into account both temporal and
spatial proximity of ride requests. This means that in searching
for requests which can be pooled, one should only consider ride
requests that occur very close in time, and with pick up locations
that are very near to each other. Also, the drop off locations should
not be too far apart. In order to perform real-time and on-demand
ride pooling, we need to impose a very small time window as the
temporal proximity constraint. This means that pooling can only
occur for rides that are requested within a small time window of
size ϵt , typically on the order of few minutes. All rides requested
within the same time window t is denoted by St . The next time
window t + 1 immediately follows t with same duration of ϵt with
its ride requests denoted as St+1.

4.1 Pooling Method
We propose a Dynamic Ride Pooling (DRP) method, that takes ad-
vantage of spatially and directionally proximal ride requests. For
any ride pooling plan P, all ride requests in the plan must satisfy
certain specified proximity constraints. We have already specified
the temporal proximity constraint of ϵt . There are two aspects to
the spatial proximity constraints, one for specifying proximity of
all the sources or pick up locations, i.e. between pick up locations
of the primary request loc(‘src’,p) and any secondary request j
given by loc(‘src’, j). The other aspect specifies proximity of all
the destinations or drop off locations, i.e. between loc(‘des’,p) and
loc(‘des’, j). The pooling method starts with a reference or primary
ride request p; spatial proximity constraints are specified relative
to the pick up and drop off locations of p.

The imposition of the proximity constraints involve two phases.
The first phase (Restricted) focuses on two spatial proximity regions.
The source region is a circle centered at the source of p with radius
ϵsr , and the destination region is another circle centered at the
destination of p with radius ϵdr . Any ride request that starts in
the source region of p and ends in the destination region of p
satisfies the spatial proximity constraints and becomes a candidate
for pooling with p. Hence, given a primary ride request p, and
other ride requests within the same time window given by the set
St − {p}, any request j ∈ St − {p} is added to the plan P if:

(1) dist(loc(‘src’,p) − loc(‘src’, j)) < ϵsr
(2) dist(loc(‘des’,p) − loc(‘des’, j)) < ϵdr

where ϵsr and ϵdr define the circular source and destination regions
centered around pick up and drop off locations of the primary ride
request p, respectively; dist() returns the straight line distance
between the two points.

The first phase of DRP is rather restrictive spatially and misses
additional pooling opportunities. Simply enlarging the circular re-
gions is not the most effective way to increase ride pooling. Instead,
we introduce a more efficient way to enlarge the search regions by
incorporating directionality in the second phase (Directional). For
this phase the proximity region is defined by a trapezoid, containing

.

ϵ w

circle radius ϵsr

loc(‘src’, p)

circle radius ϵdr

loc(‘des’, p)
loc(‘src’, s1)

loc(‘des’, s1)

θ (p, s2)

loc(‘src’, s2)

loc(‘des’, s2)

ϵl

Figure 1: Dyanmic Ride Pooling (DRP): The two circular re-
gions (in light green) are used in the Restricted phase. The
rectangle (dashed lines) and open trapezoidal (in blue) are
used in the Directional phase. Primary ride request p, and
two pooled rides are shown; s1 and s2 satisfy conditions for
Restricted and Directional phases respectively.

the source and destination locations ofp, defined by width ϵw (short
side of the trapezoid) and an angular parameter ϵθ . By imposing
this angular parameter as a constraint, more potential ride-pooling
candidates can be identified along the direction that matches the
trajectory of the primary ride request p. The motivation of using
a trapezoid is to bundle more ride requests along the way that do
not incur too much of overhead of having to go out of the way
to pool more rides for pickup and drop off. The trapezoid has an
open side (long side); this means a secondary ride request does not
have to end near the destination of the primary ride request, as
long as the angle of the secondary request relative to the primary is
less than ϵθ , it can be included in the plan. This facilitates a much
larger proximity region without incurring significant travel time
overhead to pick up and drop off additional riders. From a given
primary ride request p, and any other request j ∈ St − {p} in the
same time window t , j is added to the plan P if:

(1) loc(‘src’, j) ∈ rect(ϵw , ϵl , loc(‘src’,p))
(2) |θ (p, j)| < ϵθ

where rect(·, ·, ·) defines a rectangular region with width ϵw , and
length ϵl (ϵl is the fraction of straight line distance between the
pick up and drop off locations of p which can be covered in ϵt min-
utes, thus varies for every p); |θ (p, j)| defines the angular difference
between trajectories of ride requests p & j; ϵθ defines the maximum
angular difference allowed between any j & p.

Dynamic Ride Pooling method is illustrated in Figure 1 with its
proximity regions specified by both phases. The goal for having
these two phases is that the Restricted phase would first identify
and pool all requests that are highly similar spatiotemporally. The
Directional phase would then take advantage of the direction that
a primary ride is heading and seek for more pooling candidates.

4.2 Pooling Metrics
To quantify the benefits and costs of a plan, we define the following
four metrics. The first two metrics measure the benefits achiev-
able by a pooling method. The third metric concisely captures the
percentage of total ride requests that can be pooled by a pooling
method. The fourth metric is a per-rider cost metric measuring the
inconvenience experienced by each rider participating in pooling.

4.2.1 Total Travel Distance Reduction. The total travel distance
saved by a plan is calculated by taking the difference between the
sum of individual travel distances if no pooling occurred and the
total travel distance of the pooled plan (accounting for picking up
and dropping off all the riders):

dist_red(P) =
∑
i ∈P

travel_dist(i) − travel_dist(P) (1)

The total travel distance reduced by pooling as a percentage over
all the ride requests for an entire week is defined as:

total_dist_red_% =
∑

P dist_red(P)∑m
j=1 travel_dist(j)

(2)

wherem is count of all ride requests in a week.

4.2.2 Total Vehicle Count Reduction. Number of vehicles re-
duced by a plan is:

veh_red(P) = |P | − 1 (3)

The total number of vehicle count reduced as a percentage over
all the ride requests for an entire week is defined as:

total_veh_red_% =
∑

P veh_red(P)

m
(4)

4.2.3 Average Poolability. Poolability is defined as the percent-
age of ride requests that are poolable over all ride requests in a time
window t of ϵt minutes [7]. If a ride is poolable, it will belong to a
plan P along with the primary ride request. Poolability for a given
time window can be calculated as:

poolability(Pt ,St) =

∑
P∈Pt |P |

|St |
(5)

where Pt is the set of all the plans for the time window t .
Average poolability over all time windows is given by:

avд_poolability =mean(
∑
t
poolability(Pt ,St)) (6)

4.2.4 Average Trip Time Penalty. Wemodel the average trip time
penalty to be the delayed arrival time at destination for a rider when
participating in a pooling plan. This penalty for any request i can
be calculated as:

arrival_penalty(i) = timestamp(‘des_p’, i) − timestamp(‘des’, i)
(7)

where ‘des’ denotes the event of arriving at destination if i were
not pooled and ‘des_p’ denotes the same but pooled.

It is important to note that arrival_penalty(i) may have a nega-
tive value. This usually happens when a plan is able to pick up a re-
quest earlier than its original pick up time i.e. timestamp(‘src_p’, i)
< timestamp(‘src’, i). Also, Equation 7 only makes sense when i is
poolable; non-poolable rides are not considered when calculating
average trip time penalty. The overall average trip time penalty is
computed by taking the mean across all pooled riders:

avд_penalty =
∑

P

∑
i ∈P arrival_penalty(i)∑

P |P |
(8)

Figure 2: DRP with varying esr ,k for three benefits and one cost metrics for San Francisco, New York, and Los Angeles
. ϵdr = 1000m, ϵw = 2000m, ϵθ = 20° are kept constant.

5 EXPERIMENTAL RESULTS & ANALYSIS
5.1 Experimental Setup
In this paper we set the temporal proximity constraint ϵt = 5minutes.
Ride pooling can only occur among ride requests occurring in the
same 5-minute time window. Enlarging this window will certainly
increase the opportunity for pooling, but can potentially incur
unacceptable added wait time for pick up.

We partition our week-long ride request data set into 5-minute
intervals or time windows. All the ride requests in the same time
window are processed one at a time in chronological order. Each
request is considered as the primary request seeking for other
pooling candidates within the same time window. Once a plan, P,
is established, the decision of the order of pick up and drop off
for each passenger and the exact routes to take in between these
locations are as follows:

(1) The order of pick up follows the order of request times.
(2) The order of drop off is based on the distances away from

the last pick up location, from nearest to farthest.
(3) Routes to take in between any two geographical points are

queried fromGraphHopper, an open-source route navigation
and planning tool [9] that make use of the maps and traffic
speeds using PBF 1 files by OpenStreetMap [13].

GraphHopper is also useful in calculating the travel distance and
arrival time of each request if no pooling occurred. This is necessary

1PBF files are available at http://download.geofabrik.de/

for computing both the distance saved and extra distance incurred
when a request participates in a pooling plan.

5.2 Experimental Goals
The goal of our experiments based on the real world data set is to
help answer the following questions: 1) What are the best values
to use for the proximity constraint parameters, ϵ’s? Ideally ϵ’s
should be kept small to better exploit spatio-temporal proximity,
but expanding these values can capture more pooling candidates; 2)
What is the best value of the pooling degree (i.e. maximum number
of ride requests that can be pooled in one vehicle), k? 3) How do
all these factors correlate and vary in different cities, on different
days of the week, at different times of the day? 4) What is the
best combination of these parameters that gives the best trade off
between benefits and costs for dynamic ride pooling?

5.3 Experimental Results
In search for the best configuration for our pooling method, we
need to explore numerous combinations of parameter values. We
first narrow down the search space by appropriately fixing some
parameters as constant values without compromising our search for
the best pooling method configuration. We fixed ϵw = 2000m which
maximizes the size of the pooling regions for the Directional phase
without incurring unacceptable travel time penalty. Smaller values
unnecessarily limit opportunities for pooling. The two parameters
ϵdr , ϵθ are somewhat correlated; we fixed them at 1000m, and 20°

http://download.geofabrik.de/

Metric San Francisco New York Los Angeles Mean across cities
Total Travel Distance Reduction (%) 17.13 19.06 11.01 15.76
Total Vehicle Count Reduction (%) 33.76 36.93 23.03 31.23
Mean Poolability (%) 48.94 56.39 34.52 46.61
Mean Travel Time Penalty (sec) 162.12 97.55 148.17 135.94

Table 1: Summary of benefits and costs. Parameters used ϵt = 5 mins., ϵsr = 500m, ϵdr = 1000m, ϵw = 2000m, ϵθ = 20°,k = 3

respectively, which provide significant poolability while keeping
travel time penalty reasonable. In our experiments we vary the
values for the remaining parameters in our search for the best
configuration; we vary ϵsr from 100m to 1000m, and k from 2 to
10, for all three cities of San Francisco, New York, and Los Angeles.

Looking at the results in Figure 2, we see both similarities and
differences across the three cities. All the benefit metrics increase
with increasing ϵsr (size of source region) and k (maximum pooling
degree). For k there is a strong diminishing return beyond k = 3.
There is also a slight diminishing return beyond ϵsr = 500m. The
travel time penalty curves for all three cities exhibit similar patterns,
with an interesting inflection point around ϵsr = 500m. The “dip”
is more apparent as k increases. This has to do with the balancing
of pooling attributed to Restricted versus Directional phases. When
ϵsr is small (100m) most of the pooling comes from the Directional
phase which yields great benefits but also incurs heavier penalty.
As ϵsr increases, Restricted can start to capture all the spatially
proximal requests while keeping the overall average penalty down.
This indicates that ϵsr = 500m yields the best balance for DPR
where strengths of both phases are leveraged.

Another important observation derived from Figure 2 is about
the conflicting nature of the two phases of DRP. The vehicle re-
duction plot for NYC has a negative slope (at k = 10) for values
of ϵsr in the range [100, 500]m although it has an inflection point
at ϵsr ≈ 500m characterizing the greedy nature of the Restricted
phase. Given a high value of k , the Restricted phase consumes ride
requests which could otherwise be used as primary requests in the
Directional phase to pool many other riders and thereby lowering
the overall vehicle reduction percentage. Eventually, vehicle reduc-
tion percentage for higher values of ϵsr increases but never more
than its initial value at ϵsr = 100m, when Restricted is least greedy
and Directional maximizes its potential.

There are also significant differences across the three cities. In
New York, 50-60% of all ride requests are poolable, while in Los
Angeles only 30-35%. San Francisco is between these two extremes.
We see very strong correlation between poolability and the two
benefits of total travel distance reduction and total vehicle count
reduction. Again, New York has much higher levels for both benefits
as compared to Los Angeles. What makes New York so ride pooling
friendly and why is it so much more difficult to do ride pooling
in Los Angeles? We conjecture this is due to the sprawling nature
of Los Angeles. Also, why is increasing ϵsr not a very effective
way of increasing the benefits in Los Angeles comparing to San
Francisco and New York? Again, this can be due to the sprawling
nature of Los Angeles, unlike both San Francisco and New York
which have dominant commuting corridors connecting densely
populated regions due to the topology of the greater metro areas
of these two cities.

Given the observed results, we conclude that the best set of
pooling parameters are ϵsr = 500m, ϵw = 2000m, k = 3. Across
the three cities, this configuration yields on average 15.76% of total
travel distance saved and 31.23% of total number of vehicles reduced,
while incurring an average trip time penalty of only 135.94 seconds
(see Table 1). This translates to roughly one out of every three
vehicles operated by these ride-sharing services can be removed
from the roads if riders are willing to pool and accept a travel
time penalty of slightly over two minutes! These results are quite
encouraging and imply that dynamic ride pooling is a must for
densely populated urban areas.

5.4 Experimental Analysis
Temporal Patterns: There are interesting weekly temporal pat-
terns for all four pooling metrics. Figures 3a, 3b, 3c, and 3d, plot the
weekly temporal patterns of the four metrics for the three cities,
using the best pooling configuration. The plots start at 5:00 P.M.
PST (12 A.M. UTC) on a Friday and each data point is an aggregated
value over a 4-hour period (hence a total of 42 data points for a
week). These plots share similar weekly patterns and correlate well
with the weekly pattern shown for ride requests in [7]. During
times of higher ride request volumes there is greater poolability
and potential benefits. For instance, poolability can reach up to 60%
on weekend afternoons. Figure 3d shows the average penalty is
higher during low ride request volumes. Average penalty is highest
for San Francisco/Bay Area, most likely due to its low population
density among the three cities. The temporal pattern can be useful
in guiding the implementation of ride pooling algorithms that can
be temporally adaptive.

Societal Benefits: Dynamic ride pooling has potential for signif-
icant societal benefits. Reducing total travel distance by 16% leads
to proportional reduction in fuel consumption and CO2 emission.
Taking 31% of vehicles off the roads can substantially reduce traffic
congestion, especially during rush hours. Across these three cities,
on average almost 50% of the ride requests are dynamically poolable.
Our results indicate that as the ride request volume increases there is
also greater potential benefit for ride pooling. Ride-sharing services
can reduce overall operation cost and improve overall efficiency.
This leads to lower cost for riders. There is the potential for a si-
multaneous three-way win that benefits ride-sharing companies,
mobile population, and densely populated cities.

6 CONCLUSION
In this work, we take the data-driven approach to systematically
study the problem of dynamic ride pooling. We derive a rigorous
formulation of the problem, propose a pooling method and its
key parameters, explore the parameter space for the best pooling

(a) Travel distance reduction. (b) Vehicle count reduction.

(c) Average poolability (%). (d) Average penalty (sec).

Figure 3: Temporal pattern of the four pooling metrics over a week for all three cities.

configuration based on real world ride request data from three cities,
show the potential benefits of ride pooling, and highlight insights
gained from analyzing the results.

Future Work: The DRP method presented is restrictive in its
temporal constraint; pooling candidates are considered only if they
fall within the same time window, ϵt . Requests outside this time
window are currently not considered for pooling. Thus, on-demand
en-route pooling may be explored with emphasis to further improve
vehicle capacity with minimal overhead to riders. Note this differs
from works discussed in Section 2 as pooling decisions need to be
made on-the-fly with no prior knowledge of when and where ride
requests are coming from. Another follow-on step is to focus on
the implementation of effective and scalable dynamic ride pooling
algorithms, and the trial deployment of such algorithms in a few
cities for in-situ experimentation.
Acknowledgements: This project is funded in part by Carnegie
Mellon University's National USDOT University Transportation
Center for Mobility, Mobility21, which is sponsored by the US
Department of Transportation.

REFERENCES
[1] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and

Daniela Rus. 2017. On-demand high-capacity ride-sharing via dynamic trip-
vehicle assignment. Proceedings of the National Academy of Sciences (2017),
201611675.

[2] Mark Bergen. 2016. Didi Booking China. Recode. (2016). https://www.recode.
net/2016/6/1/11835620/didi-booking-china-apple

[3] Nicola Bicocchi and Marco Mamei. 2014. Investigating ride sharing opportunities
through mobility data analysis. Pervasive and Mobile Computing 14 (2014), 83–94.

[4] Blerim Cici, Athina Markopoulou, and Nikolaos Laoutaris. 2015. Designing an
on-line ride-sharing system. In Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM, 60.

[5] Regina R. Clewlow and Gouri Shankar Mishra. 2017. Disruptive Transportation:
The Adoption, Utilization, and Impacts of Ride-Hailing in the United States.
(2017). https://itspubs.ucdavis.edu/wp-content/themes/ucdavis/pubs/download_
pdf.php?id=2752

[6] Wesam Mohamed Herbawi and Michael Weber. 2012. A genetic and insertion
heuristic algorithm for solving the dynamic ridematching problem with time
windows. In Proceedings of the 14th annual conference on Genetic and evolutionary
computation. ACM, 385–392.

[7] Abhinav Jauhri, Brian Foo, Jerome Berclaz, Chih Chi Hu, Radek Grzeszczuk, Vasu
Parameswaran, and John Paul Shen. 2017. Space-Time Graph Modeling of Ride
Requests Based on Real-World Data. arXiv preprint arXiv:1701.06635 (2017).

[8] Ece Kamar and Eric Horvitz. 2009. Collaboration and Shared Plans in the Open
World: Studies of Ridesharing.

[9] Peter Karich and S Schröder. 2014. Graphhopper. http://www. graphhopper. com,
last accessed 4, 2 (2014), 15.

[10] Matteo Mallus, Giuseppe Colistra, Luigi Atzori, Maurizio Murroni, and Virginia
Pilloni. 2017. A persuasive real-time carpooling service in a smart city: A case-
study to measure the advantages in urban area. In Innovations in Clouds, Internet
and Networks (ICIN), 2017 20th Conference on. IEEE, 300–307.

[11] Neda Masoud and R Jayakrishnan. 2015. A decomposition Algorithm to solve
the multi-hop peer-to-peer ride-matching problem. In Transportation Research
Board 94th Annual Meeting.

[12] Joe Naoum-Sawaya, Randy Cogill, Bissan Ghaddar, Shravan Sajja, Robert Shorten,
Nicole Taheri, Pierpaolo Tommasi, Rudi Verago, and Fabian Wirth. 2015. Stochas-
tic optimization approach for the car placement problem in ridesharing systems.
Transportation Research Part B: Methodological 80 (2015), 173–184.

[13] OpenStreetMap contributors. 2017. Planet dump retrieved from
https://planet.osm.org . https://www.openstreetmap.org. (2017).

[14] Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven Strogatz,
and Carlo Ratti. 2013. Taxi pooling in New York City: a network-based approach
to social sharing problems. (2013).

[15] Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven H Stro-
gatz, and Carlo Ratti. 2014. Quantifying the benefits of vehicle pooling with
shareability networks. Proceedings of the National Academy of Sciences 111, 37
(2014), 13290–13294.

[16] Erez Shmueli, Itzik Mazeh, Laura Radaelli, Alex Sandy Pentland, and Yaniv Alt-
shuler. 2015. Ride sharing: a network perspective. In International Conference on
Social Computing, Behavioral-Cultural Modeling, and Prediction. Springer, 434–
439.

[17] Brian Solomon. 2016. Uber Just Completed Its Two Billionth Ride.
Forbes. (2016). https://www.forbes.com/sites/briansolomon/2016/07/18/
uber-just-completed-its-two-billionth-ride/#9e4db5c52242

[18] Mitja Stiglic, Niels Agatz, Martin Savelsbergh, and Mirko Gradisar. 2015. The
benefits of meeting points in ride-sharing systems. Transportation Research Part
B: Methodological 82 (2015), 36–53.

[19] Shangyao Yan, Chun-Ying Chen, and Chuan-Che Wu. 2012. Solution methods
for the taxi pooling problem. Transportation 39, 3 (2012), 723–748.

https://www.recode.net/2016/6/1/11835620/didi-booking-china-apple
https://www.recode.net/2016/6/1/11835620/didi-booking-china-apple
https://itspubs.ucdavis.edu/wp-content/themes/ucdavis/pubs/download_pdf.php?id=2752
https://itspubs.ucdavis.edu/wp-content/themes/ucdavis/pubs/download_pdf.php?id=2752
 https://www.openstreetmap.org
https://www.forbes.com/sites/briansolomon/2016/07/18/uber-just-completed-its-two-billionth-ride/#9e4db5c52242
https://www.forbes.com/sites/briansolomon/2016/07/18/uber-just-completed-its-two-billionth-ride/#9e4db5c52242

	Abstract
	1 Introduction
	2 Related Work
	3 Ride Request Patterns
	4 Dynamic Ride Pooling
	4.1 Pooling Method
	4.2 Pooling Metrics

	5 Experimental Results & Analysis
	5.1 Experimental Setup
	5.2 Experimental Goals
	5.3 Experimental Results
	5.4 Experimental Analysis

	6 Conclusion
	References

