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Abstract

Path planning and collision avoidance are essential components of an autonomous driving
system (ADS), ensuring safe navigation in complex environments shared with other road
users. High-quality planning and reliable obstacle avoidance strategies are essential for ad-
vancing the SAE autonomy level of autonomous vehicles, which can largely reduce the risk
of traffic accidents. In daily driving scenarios, lane changing is a common maneuver used
to avoid unexpected obstacles such as parked vehicles or suddenly appearing pedestrians.
Notably, lane-changing behavior is also widely regarded as a key evaluation criterion in
driver license examinations, highlighting its practical importance in real-world driving.
Motivated by this observation, this paper aims to develop an autonomous lane-changing
system capable of dynamically avoiding obstacles in multi-lane traffic environments. To
achieve this objective, we propose a hierarchical decision-making and control framework
in which a Double Deep Q-Network (DDQN) agent operates as the high-level planner
to select lane-level maneuvers, while a High-Order Control Lyapunov Function–High-
Order Control Barrier Function–based Quadratic Program (HOCLF-HOCBF-QP) serves
as the low-level controller to ensure safe and stable trajectory tracking under dynamic
constraints. Simulation studies are used to evaluate the planning efficiency and overall
collision avoidance performance of the proposed hierarchical control framework. The
results demonstrate that the system is capable of autonomously executing appropriate
lane-changing maneuvers to avoid multiple obstacles in complex multi-lane traffic envi-
ronments. In computational cost tests, the low-level controller operates at 100 Hz with
an average solve time of 0.66 ms per step, and the high-level policy operates at 5 Hz with
an average solve time of 0.60 ms per step. The results demonstrate real-time capability in
autonomous driving systems.

Keywords: autonomous vehicle; Control Lyapunov Function; Control Barrier Function;
deep reinforcement learning; automated lane changing

1. Introduction
With rapid urbanization and technological development, the number of privately

owned vehicles has dramatically increased each year. The excessive numbers of private
vehicles have led to severe traffic congestion and an alarming increase in road accidents,
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which gradually become a new set of challenges that every modern city must confront.
Autonomous Driving Systems (ADS) benefit from powerful and robust autonomous driv-
ing algorithms and offer a promising solution to these challenges by reducing human
error and enhancing road safety. A rule-based higher-level decision-making approach has
been proposed in reference [1] for low-speed autonomous shuttles for use in a campus
environment. A unified hardware and software architecture and scalable low-level controls
have been proposed in reference [2] for autonomous driving. Among the various compo-
nents in a reliable ADS, path planning and collision avoidance play a particularly vital
role. A well-designed planner can generate safe and feasible trajectories for autonomous
vehicles in complex dynamic traffic environments. Path planning, path tracking, and
optimization-based collision avoidance maneuvering of autonomous vehicles are presented
in reference [3]. The elastic band approach to collision avoidance of autonomous driving is
introduced and treated in reference [4]. The methods in references [3,4] also form traditional
approaches to lane change maneuvering in autonomous driving.

The development of path planning and collision avoidance functions for connected
automated vehicles is an intricate and complex process. Based on the specific vehicle
type and traffic scenario, various planning algorithms and strategies are employed to
plan a collision-free trajectory. Extensive research has been conducted to develop high-
performance and robust collision-free path planning strategies, which can generally be
categorized into two major approaches: optimization-based methods and machine learning-
based methods.

The optimization-based approach formulates path planning and collision avoidance as
a mathematical optimization problem with well-defined constraints, aiming to compute an
optimal, collision-free trajectory by minimizing or maximizing specific objective functions.
These constraints generally come from two primary sources: Vehicle dynamic limitations
(such as acceleration, steering angle, and braking capabilities) and traffic environment
constraints (such as road boundaries and curvatures). Ensuring feasible and safe naviga-
tion requires optimizing trajectory planning within these constraints while maintaining
computational efficiency for real-time applications.

Among various methods, the Control Lyapunov Function-Control Barrier Function-
Quadratic Programming (CLF-CBF-QP) approach has gained significant attention due to
its ability to balance safety and stability in an optimization framework. In this approach,
CLFs enforce system stability, ensuring the vehicle follows a desired trajectory, while
CBFs define safety boundaries, preventing collisions with traffic barriers and other road
users. The optimal control input is then obtained by solving a QP problem, which ensures
that both stability and safety constraints are satisfied [5–7]. This formulation allows for
real-time control adaptation, making it particularly effective for dynamic traffic scenarios.
The CLF-CBF-QP framework has been widely adopted in the fields of robotics [8,9] and
autonomous driving [10–12], especially for vehicle control problems involving various
system models, such as kinematic [13,14] and dynamic vehicle [15] representations. In
addition to being used as a standalone controller, CBFs are also frequently integrated as
safety filters alongside other control strategies, such as Deep Reinforcement Learning (DRL)
and Model Predictive Control (MPC) [16,17], where they act as safety-check layers to ensure
constraint satisfaction during control calculation. In addition, as system dynamics grow in
complexity, High-Order CBF (HOCBF) formulations are introduced to allow CBF-based
control to be applied to more general nonlinear systems [18,19].

Beyond CLF-CBF-based methods, various other optimization-based approaches have
been explored to improve path planning and collision avoidance, including the Elastic Band
approach [20], the Potential Field approach [21], the Support Vector Machines (SVM)-based
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approach [22], geometry-based optimization (quintic spline) [23], and hybrid A* search in
spatiotemporal map [24].

The machine learning-based approach, on the other hand, frames autonomous driv-
ing and collision avoidance as a Markov Decision Process (MDP) problem and employs
reinforcement learning (RL) methods to optimize the decision-making process. This ap-
proach has been widely applied in autonomous driving research [25–27]. Early work by
Kendall et al. introduced an end-to-end deep reinforcement learning (DRL) framework
for ADS [28], while Yurtsever et al. proposed a hybrid DRL system combining rule-based
control with DRL-based algorithms [29]. Researchers have further extended DRL with
innovations [30–32], such as short-horizon safety mechanisms for highway driving [33],
dueling architectures for efficient learning [34], and hierarchical reinforcement learning
(H-REIL) to balance safety and efficiency in near-accident scenarios [35]. Additionally,
many DRL-based models have been trained using simulation platforms like CARLA and
The Open Racing Car Simulator (TORCS) [36,37], demonstrating their effectiveness in
various driving conditions [38].

While optimization-based methods offer robustness and reliability due to their mathe-
matical rigor, they often lack real-time feasibility and struggle to scale in high-dimensional,
dynamic environments due to computational complexity and limited adaptability. In con-
trast, learning-based approaches, especially DRL-based methods, provide flexibility and
data-driven decision-making, but they require extensive training data and extra hard-coded
safety assurances to ensure reliability in real-world scenarios.

To address these limitations, researchers are increasingly exploring data-driven hy-
brid approaches that integrate optimization-based planning with machine learning and
reinforcement learning techniques. A particularly promising direction is the integration
of CLF-CBF-QP with DRL, which combines rule-based safety constraints with adaptive
learning-based decision-making [39,40]. This fusion allows autonomous systems to lever-
age the robustness and stability of optimization-based methods while incorporating the
real-time adaptability of learning-based approaches, significantly enhancing safety, effi-
ciency, and decision-making capabilities in complex and dynamic driving environments.

Through observations of daily driving behavior, we find that most human drivers
tend to perform lane-changing maneuvers to avoid obstacles, such as stationary vehicles or
unexpected hazards. Inspired by this observation, this paper focuses on developing an au-
tonomous lane-changing system that can automatically perform lane-changing maneuvers
to avoid obstacles in multi-lane traffic environments. The contributions of this paper are
as follows.

• This paper introduces a novel low-level controller based on the combined High-
Order Control Lyapunov Function (HOCLF) and High-Order Control Barrier Function
(HOCBF) framework, specifically designed for on-road vehicle dynamic models. This
controller enables accurate path tracking under normal conditions and ensures effec-
tive collision avoidance in the presence of obstacles.

• Inspired by human driving collision avoidance behavior, we propose a hierarchical
control framework that combines a high-level DDQN decision-making agent and
low-level optimization-based control. This control framework enables the system to
autonomously select appropriate lane-level strategies for collision avoidance.

• The DDQN agent observes the surrounding traffic environment and determines high-
level lane-change actions (e.g., idle—meaning no lane change; left lane change; and
right lane change). These discrete decisions are then translated into reference tracking
formulation and executed by the HOCLF-HOCBF-QP controller.

• This hierarchical architecture takes advantage of both the learning-based approach and
the optimization-based approach. The DRL-based high-level planner enables flexible
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decision-making in various traffic scenarios, while the optimization-based low-level
controller adds hard safety constraints through HOCBFs, preventing unsafe behavior.

The remainder of this paper is organized as follows. Section 2 presents the method-
ologies applied in this study, including the single-track lateral vehicle dynamic model, the
formulation of the low-level HOCLF-HOCBF-QP controller, and the training process of the
DDQN-based high-level decision-making agent. Section 3 demonstrates the simulation
results of the proposed framework, which include path-tracking performance using the
HOCLF-QP controller, collision avoidance performance of the proposed low-level HOCLF-
HOCBF-QP controller, and the overall performance of the integrated hierarchical controller,
which combines the high-level DDQN decision-making agent with the HOCLF-HOCBF-QP
tracking controller. Detailed analysis of simulation results is also provided in this section.
Finally, Section 4 concludes the paper and outlines possible directions for future research.

2. Methodology
To develop a high-performance lane-changing-based ADS, we propose a hierarchical

control architecture that comprises a low-level optimization-based controller and a high-
level decision-making agent. In this section, we aim to present the methodology utilized
to design this controller. First, we present a single-track lateral vehicle dynamic model
(also known as the bicycle model) to describe the lateral motion of the ego vehicle, which
serves as the foundation for controller design. Second, based on this vehicle dynamic
model, we design an HOCLF-HOCBF-QP controller as the low-level control module. This
controller can generate optimal and dynamically feasible control inputs that allow the
vehicle to accurately track a given reference point or trajectory. Finally, we integrate the
HOCLF-HOCBF-QP controller with a high-level Double Deep Q-Network (DDQN) agent,
which learns to generate high-level discrete lane-change decisions based on observed
traffic conditions.

2.1. Single-Track Lateral Vehicle Dynamic Model

In this paper, we employ a linear single-track lateral vehicle dynamic model for
controller design and simulation of the vehicle. Figure 1 illustrates the plane lateral motion
of this single-track vehicle, which serves as the foundation for the subsequent controller
design. The vehicle is moving forward with a constant speed. For realistic simulation,
the wheel side slip angle (the angle between the direction of the wheel’s travel and the
actual path) is considered in this model. The complete derivation of this vehicle model
can be found in Chapter 2 of [3]. Equation (1) demonstrates the state space equation of
this vehicle’s lateral dynamics where β and r represent vehicle side slip angle and vehicle
yaw rate, respectively, and form the state of the model, δ f and δr are vehicle front and
rear steering angles and are the inputs of the model, Mzd is yaw moment disturbance,
which serves as the external disturbance. Equations (2) and (3) are used to calculate the
vehicle’s position based on β and r. ψ is the vehicle yaw angle. Table 1 provides a detailed
explanation of the parameters in the vehicle model. The vehicle model parameters used are
taken from reference [41], which has applied deep reinforcement learning control to the
safety of vulnerable road users in their interaction with autonomous vehicles. The values
of the different parameters used are presented in Section 3.
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r
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∫ t f

0
vcos(β + ψ)dt (2)
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∆y =
∫ t f

0
vsin(β + ψ)dt (3)

Figure 1. Linear single-track lateral vehicle dynamic model.

Table 1. Lateral model parameters [41].

Symbol Parameter

X, Y Earth-fixed frame coordinate
x, y Vehicle-fixed frame coordinate
V Center-of-gravity (CG) velocity
m Mass
Iz Yaw moment of inertia
β Side-slip angle
ψ Yaw angle
r Yaw rate

Mzd Yaw disturbance moment
δ f , δr Front and rear wheel steer angle
α f , αr Front and rear tire slip angle
C f , Cr Front and rear tire cornering stiffness
l f , lr Distance between CG and front and rear axle

Vf , Vr Front and rear axle velocity
Ff , Fr Front and rear lateral tire force

By assuming a front-steering vehicle (δr = 0) and neglecting yaw moment disturbances
(Mzd = 0), Equations (1)–(3) can be combined to construct a five-degree-of-freedom (5-DOF)
lateral vehicle dynamic model for simulation purposes. The state-space equation for the
proposed 5-DOF vehicle lateral dynamic model is given by

.
β
.
r
.
x
.
y
.
ψ

 =


A11 ∗ β + A12 ∗ r
A21 ∗ β + A22 ∗ r

v ∗ cos(β + ψ)

v ∗ sin(β + ψ)

r

+


B1

B2

0
0
0

δ f . (4)

where A11 =
−C f −Cr

mv , A12 = −1 +
(Cr lr−C f l f

mv2

)
, A21 =

Cr lr−C f l f
Iz

, A22 =
−C f l2

f −C
r
l2
r

IzV , B1 =
C f
mv

and B2 =
C f l f

Iz
. Compared to simplified lateral vehicle dynamic models like Equation (1)

that only consider internal vehicle states such as sideslip angle and yaw rate, the proposed
model further incorporates the vehicle’s position and orientation (x, y, ψ). This augmen-



Electronics 2025, 14, 2776 6 of 22

tation enables a clearer geometric interpretation of the vehicle state, which is particularly
beneficial for the subsequent design of HOCLF-HOCBF-based controllers, where reference
tracking and obstacle avoidance can be formulated in the global coordinate frame.

2.2. Control Lyapunov Functions and Control Barrier Functions
2.2.1. Preliminary

This section begins with an overview of the Control Lyapunov Function (CLF) and
Control Barrier Function (CBF) frameworks. We then present the detailed formulation of
the proposed low-level path-tracking controller based on the High-Order CLF and High-
Order CBF implemented through a Quadratic Program (HOCLF-HOCBF-QP). Before we
dive into the definition of CLF and CBF, we need to begin with a clear formulation of
the system dynamics. Many control strategies, including Lyapunov-based methods, are
developed for systems expressed in a control-affine form, which can be written as

.
x = F(x, u) = f (x) + g(x)u (5)

where x ∈ Rn denotes the system state, u ∈ Rm is the control input of the system and m, n
are the dimensions of the state and input. f (x) and g(x) are locally Lipschitz continuous in
x. f (x) denotes the drift terms and g(x) is the control effectiveness term. This control-affine
formulation of a system is widely used in many fields, including robotics and autonomous
vehicle fields, to describe system dynamics. The single-track lateral vehicle dynamics
model used in this study is also a control-affine system.

Given this formulation, one fundamental objective in control is to let the vehicle
eventually reach the destination, which requires designing a controller to stabilize the
system around a desired equilibrium. A common way to design such a stabilizing controller
is to incorporate a CLF as a constraint in the optimization-based control framework. This
guarantees Lyapunov stability for systems with control inputs. The definition of the CLF is
presented in the following. Consider a continuously differentiable function V(x) : Rn → R .
If there exist positive coefficients c1 > 0, c2 > 0, c3 > 0 such that for ∀x∈ Rn,

c1∥x∥2 ≤ V(x) ≤ c2∥x∥2 (6)

and also,
inf

u∈U

[
L f V(x) + LgV(x)u + c3V(x)] ≤ 0 (7)

where L f and Lg denote Lie derivatives along f (x) and g(x). Then, V(x) is a CLF for the
system which can guarantee global and exponential stabilization.

In addition to stability, another fundamental objective in control is to let the vehicle
perform the collision avoidance when there exist obstacles around it, which requires
designing a controller to ensure the safety of the system. To achieve this goal and to encode
safety requirements within the control framework, CBFs have been introduced. CBFs
are mathematical constructs that define a safe set of states and provide a mechanism for
keeping the system within this set over time. Similar to CLFs, they can be incorporated
into an optimization-based control framework such as quadratic programming (QP). The
definition of the CBF is presented as follows. Consider a continuously differentiable
function h(x) : Rn → R and the corresponding safe set

C = {x ϵ Rn : h(x) ≥ 0} (8)
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The function h(x) is considered a CBF if there exists a control input u ϵ Rn such that
the following condition holds for ∀x ϵ C.

sup
u∈U

[
L f h(x) + Lgh(x)u + α(h(x))] ≥ 0 (9)

where α is a class-κ function. The detailed derivation and proof of CLF and CBF can be
found in [7].

2.2.2. HOCLF and HOCBF Definition

For complex systems where safety constraints depend on higher-order derivatives of
the position states, standard CLFs and CBFs become insufficient. Therefore, we need to
introduce HOCLF and HOCBF. The relative degree of HOCLF and HOCBF is the number
of times we need to differentiate it along the dynamics of the system until the control input
u explicitly shows.

The definition of the HOCLF is presented as follows. Consider an dth-order contin-
uously differentiable function V(x) : Rn → R . We let ϕ0(x) = V(x) and a sequence of
functions ϕi(x) : Rn → R , i ∈ {1, . . . , d}:

ϕi(x) =
.
ϕi−1(x) + αi(ϕi−1(x)), i ∈ {1, . . . , d} (10)

where αi, i ∈ {1, . . . , d} are class-κ functions. If there exist αd such that for ∀x ̸= 0n,

inf
u∈U

[
Ld

f V(x) + LgLd−1
f V(x)u + S(h(x)) + αd(ϕd−1(x))

]
≤ 0 (11)

where L f and Lg denote Lie derivatives along f (x) and g(x), then, V(x) is a HOCLF for
the system which can guarantee global and exponential stabilization.

Similarly, the definition of HOCBF is presented as follows. Consider an rth-order
continuously differentiable function h(x) : Rn → R . We let Ψ0(x) = h(x) and a sequence
of functions Ψi(x) : Rn → R , i ∈ {1, . . . , r}:

Ψi(x) =
.

Ψi−1(x) + βi(Ψi−1(x)), i ∈ {1, . . . , r} (12)

where βi, i ∈ {1, . . . , r} are class-κ functions. We also define a sequence of sets Ci,
i ∈ {1, . . . , r}:

Ci(x) = {x ∈ Rn : Ψi−1(x) ≥ 0}, i ∈ {1, . . . , r} (13)

If there exists βr and a control input u ϵ Rn such that the following condition holds for
∀x ϵ C1 ∩ C2 ∩ . . . ∩ Ci

sup
u∈U

[
Lm

f h(x) + LgLm−1
f h(x)u + S(h(x)) + αi(Ψi−1(x))

]
≥ 0 (14)

where L f and Lg denote Lie derivatives along f (x) and g(x), then the function h(x) is
considered a HOCBF for the system which can guarantee safety. The detailed derivation
and proof of HOCLF and HOCBF can be found in [18,42].

2.2.3. HOCLF and HOCBF Design

In this section, the design of the proposed low-level controller is presented. The key
objective of this controller is to compute safe and effective control inputs that allow the
vehicle to follow a desired path from the start point to the destination while avoiding
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collisions with surrounding obstacles. In order to achieve this, we first design the path-
following part using HOCLF.

V(x) =
(
x − xg

)2
+

(
y − yg

)2 (15)

.
V(x, u) = L f V(x) + LgV(x)u

= 2vcos(β + ψ)
(
x − xg

)
+ 2vsin(β + ψ)

(
y − yg

) (16)

L2
f V(x) = ∇

(
L f V(x)

)T
f (x) = −2vsin(β + ψ)

(
x − xg

)
(A11β + A12r)+

2vcos(β + ψ)
(
y − yg

)
(A11β + A12r)+

2v2 − 2vsin(β + ψ)
(

x − xg
)
r + 2vcos(β + ψ)

(
y − yg

)
r

(17)

LgL f V(x)u = ∇
(
L f V(x)

)T
g(x)u = −2vsin(β + ψ)

(
x − xg

)
B1δ f+

2vcos(β + ψ)
(
y − yg

)
B1δ f

(18)

Equations (15)–(18) demonstrate the design of the HOCLF and its derivative where
[x, y] represent the current coordinates of the vehicle, and

[
xg, yg

]
are coordinates of the

destination. The coefficients A11, A12, A21, A22, B1, B2 were defined in the vehicle dynamics
model described earlier. The purpose of introducing the HOCLF in this design is to ensure
the stability of the system, thereby enabling the vehicle to converge toward the target desti-
nation or tracking point on the desired path. The design idea is straightforward. We want
the vehicle’s position [x, y] to eventually coincide with the destination coordinates

[
xg, yg

]
.

To achieve this, we construct a Lyapunov candidate function V(x), which quantifies the
squared distance between the current position and the goal. The inequality condition in
Equation (19) is HOCLF constraint

L2
f V(x) + LgL f V(x)u + α1

( .
V(x, u)

)
+ α2(V(x)) ≤ δ (19)

where α1 and α2 are class-κ functions and δ is a slack variable. In practice, we implement
these as positive constant gains. This constraint ensures that the control input u consistently
drives the system towards the goal in a stable and controlled manner.

Similarly, we can then design the collision avoidance part using HOCBF as

h(x) = (x − xo)
2 + (y − yo)

2 − r2
o (20)

.
h(x, u) = L f h(x) + Lgh(x)u = L f h(x)

= 2vcos(β + ψ)(x − xo) + 2vsin(β + ψ)(y − yo)
(21)

L2
f h(x) = ∇

(
L f h(x)

)T
f (x) = −2vsin(β + ψ)(x − xo)(A11β + A12r)+

2vcos(β + ψ)(y − yo)(A11β + A12r)+
2v2 − 2vsin(β + ψ)(x − xo)r + 2vcos(β + ψ)(y − yo)r

(22)

LgL f h(x)u = ∇
(
L f h(x)

)T
g(x)u = −2vsin(β + ψ)(x − xo)B1δ f+

2vcos(β + ψ)(y − yo)B1δ f

(23)

Equations (20)–(23) demonstrate the design of the HOCBF and its derivative, where
[x, y] represent the current coordinates of the vehicle, and [xo, yo] are coordinates of the
obstacles. The coefficients A11, A12, A21, A22, B1, B2 are defined in the vehicle dynamics
model described earlier. The purpose of introducing the HOCBF in this design is to enforce
safety by ensuring that the vehicle avoids potential collisions with surrounding obstacles.
The design idea is straightforward. We want to prevent the vehicle’s position [x, y] entering
a circular danger zone of radius ro centered at [xo, yo]. To achieve this, we construct a barrier
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candidate function h(x) which quantifies whether the center of the vehicle is entering the
dangerous zone or not. The inequality condition in Equation (24) is the HOCBF constraint.
For each obstacle, we need a unique HOCBF constraint

L2
f h(x) + LgL f h(x)u + α3

(
L f h(x)

)
+ α4(h(x)) ≥ 0 (24)

where α3 and α4 are class-κ functions. In practice, we implement these as positive constant
gains. This constraint ensures that the control input u cannot drive the system towards the
unsafe region with obstacles.

2.2.4. HOCLF-HOCBF-QP Formulation

To combine the previous designs of HOCLF and HOCBF within a single control
framework, we need to formulate a QP that incorporates both HOCLF and HOCBF as
inequality constraints. This optimization-based approach enables the controller to compute
control inputs that not only drive the system towards the desired destination but also
maintain safety by avoiding entering unsafe regions with obstacles.

The formulation of the QP is presented in Equation (25).

u∗ = argmin
u,δ

∥∥∥u − ure f

∥∥∥2
+ qδ2 (25)

s.t L2
f V(x) + LgL f V(x)u + α1

( .
V(x, u)

)
+ α2(V(x)) ≤ δ and

L2
f h(x) + LgL f h(x)u + α3

(
L f h(x)

)
+ α4(h(x)) ≥ 0, f or each obstacle

where u is the control input, ure f is a nominal reference input, which can be set to zero for
minimizing control effort. δ is a slack variable of HOCLF constraint, allowing temporary
relaxation of HOCLF constraint when it is in conflict with HOCBF. The penalty weight
q > 0 balances the performance and constraint violation

The parameters in the HOCLF-HOCBF-QP controller include the CLF constraint
coefficients, CBF constraint coefficients, and CLF relaxing term δ in QP formulations.
The CLF constraint coefficients affect tracking aggressiveness. Higher values improve
convergence speed but may lead to more abrupt control actions. Moreover, if the CLF
constraint coefficient is an excessively large value, it will impose overly strict convergence
requirements, which may lead to infeasible optimization problems. Increasing the CBF
constraint coefficients makes the safety constraint less strict, allowing the vehicle to follow
more efficient trajectories but reducing the safety margin. Conversely, reducing CBF
constraint coefficients enforces stricter safety constraints, forcing the vehicle to maintain a
larger distance from obstacles. The CLF relaxing term δ influences the trade-off between
strict constraint satisfaction and feasible control effort. Compared to other parameters, the
CLF constraint coefficient has a more direct and sensitive impact on the feasibility and
effectiveness of the overall control performance.

2.3. Deep-Reinforcement-Learning

Markov Decision Process (MDP) is a framework used in modeling sequential decision-
making problems. In an MDP, the system evolves over time by selecting actions based
on the current state. The goal is to find an optimal policy that can maximize long-term
cumulative reward. Autonomous driving naturally fits into this framework. At each
moment, driving decisions such as whether to change lanes, accelerate, or slow down are
made based on the current vehicle state and traffic environment. Therefore, in this paper,
we formulate the high-level autonomous driving task as an MDP, and the detailed MDP
setting is provided in the case study section.
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Once the autonomous diving problem is formulated using MDP, reinforcement learn-
ing (RL) can then be employed to optimize the decision-making process and find an optimal
policy. Deep Reinforcement Learning (DRL), a subset of RL, is particularly effective for
autonomous driving applications and can be broadly categorized into value-based and
policy-based methods. Value-based DRL, inspired by Q-learning [43], estimates action
values to determine the best possible decision. Techniques such as Deep Q-Networks
(DQN), Double Deep Q-Networks (DDQN), and their successor [44–47] improve learning
efficiency in environments with large state spaces and discrete action spaces. Policy-based
DRL [48], on the other hand, directly learns a mapping from states to actions without
explicitly estimating value functions. Methods such as Policy Gradient (PG), Actor-Critic
(A2C [49], A3C [50]), Proximal Policy Optimization (PPO) [51], and their successor [52–54]
refine decision-making by adjusting policy parameters to maximize expected rewards.

In this paper, since the high-level decision-making agent is required to generate
discrete lane-level actions, a value-based reinforcement learning method is particularly
well-suited. Compared with policy-based methods, value-based approaches like Q-learning
and its variants tend to be more sample-efficient and easier to train in discrete action spaces.
Given the relatively simple structure of our task and the need for stable and efficient
learning, we adopt the DDQN algorithm to train the high-level agent. From the loss
function of DDQN shown in Equation (26), DDQN mitigates the overestimation bias
found in standard DQN by decoupling action selection and action evaluation during Q-

value updates (using max
at+1

Qθ−i

(
st+1, argmax

at+1
Qθi (st+1, at+1)

)
instead of max

at+1
Qθ−i

(st+1, at+1)

for update), leading to a more stable training process. Table 2 provides detailed explanation
of the parameters in loss functions. Moreover, while DDQN is used in this work due to its
simplicity and effectiveness, the modular design of our hierarchical framework allows for
flexibility. For complex driving tasks, more advanced algorithms such as SAC or DDPG
can be applied for better performance.

Li(θ) = E(s,a,r)

[(
r + γmax

at+1
Qθ−i

(
st+1, argmax

at+1
Qθi (st+1, at+1)

)
− Qθi (st, at)

)2
]

(26)

Table 2. DDQN loss function parameters.

Symbol Parameter

s State
a Action
r Immediate reward

θ−i Target-network’s parameter
θi Online-network’s parameter
γ Discount for future reward

Figure 2 illustrates the neural network structure used in the DDQN framework and
Algorithm 1 demonstrates the pseudocode of hierarchical DDQN implementation in this
paper. The DDQN employs a fully connected feedforward neural network consisting of
two hidden layers, each with 128 neurons using ReLU as activation functions. The input
layer has 25 units (flattened from 5 × 5 including ego vehicle’s information and traffic
environment information), and the output layer has 3 units corresponding to three lane-
level actions. The training process uses a standard replay buffer with a size of 100,000 and
a mini-batch size of 64. The Q-network is updated using the mean squared error (MSE)
loss between the predicted Q-values and the target Q-values. The Adam optimizer is used
with a learning rate of 0.001. To stabilize training and mitigate overestimation bias, a target
network is maintained and synchronized with the main Q-network every 100 learning
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steps. An ε-greedy exploration strategy is adopted, where ε linearly decays from 1.0 to
0.05 over 200,000 steps. This linear decay strategy allows the agent to fully explore the
environment instead of converging to a local optimal policy.

Algorithm 1: Hierarchical DDQN algorithm flowchart

1: Initialize high-level DDQN agent
2: Initialize low-level HOCLF-HOCBF-QP controller
3: for each episode do
4: Initialize and reset traffic environment
5: for t = 1 to T do
6: With probability ϵ select a random high-level action at

7: Otherwise select high-level action at = maxaQ∗(st, a; θ)

8: for each low-level control steps do
9: Reset target tracking point according to current states and at

10: Reset obstacle list according to current states
11: Calculate optimal control u∗ using HOCLF-HOCBF-QP
12: Execute u∗ for a control step
13: end for
14: Calculate reward rt and record next state st+1

15: Store transition (st, at, rt, st+1) in replay buffer D
16: if t mod training frequency == 0 then
17: Sample random minibatch of transitions (sj, aj, rj, sj+1)) from D

18: Set yj = rj + γmaxa j+1Q̂
(

sj+1, argmaxa j+1Q
(
sj, aj+1; θ

)
; θ
)

19: for non-terminal sj+1

20: or yj = rj for terminal sj+1

21: Perform a gradient descent step to update θ

22: Every N steps reset Q̂ = Q
23: end if
24: Set st+1 = st

25: end for
26: end for

Figure 2. DDQN framework neural network structure.

3. Results
In this section, we present simulation results of the proposed hierarchical control

framework to evaluate its effectiveness and robustness. The results are organized into two
parts to demonstrate both the individual performance of the low-level HOCLF-HOCBF-QP-
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based controller and the overall system performance after combining with the high-level
DDQN-based decision-making agent. Table 3 displays the values of the parameters used in
the simulations.

Table 3. Value of parameters used in simulation.

Symbol Parameter Value

V Center-of-gravity (CG) velocity 5 m/s
m Mass 3000 kg
Iz Yaw moment of inertia 5.113 × 103 kg m2

C f Front tire cornering stiffness 3 × 105 N/rad
Cr Rear tire cornering stiffness 3 × 105 N/rad
l f Distance between CG and front axle 2 m
lr Distance between CG and rear axle 2 m

δ f max Maximum allowed front wheel steer angle 0.7 rad
δ f min Minimum allowed front wheel steer angle −0.7 rad

3.1. CLF-CBF-Based Optimization Controller

To prove the effectiveness of the proposed low-level controller, we conduct simulations
to evaluate the performance of the HOCLF-HOCBF-QP controller in both path tracking
and collision avoidance. We first test the HOCLF-QP controller’s tracking performance
using a reference path tracking test case. In this test case, the vehicle is required to travel
from a starting point to a destination while following a predefined reference trajectory.
The results show that the proposed HOCLF design allows the vehicle to smoothly and
accurately follow the predefined path in obstacle-free environments.

Then, we incorporate HOCBF constraints into the controller and evaluate the con-
troller’s collision avoidance capability. An obstacle is deliberately placed near the reference
path to test whether the controller can successfully avoid potential collisions by temporarily
deviating from the planned trajectory. Simulation results indicate successful navigation
around the obstacle and smooth return to the reference path once the obstacle is safely
passed. In addition, we also evaluate the controller’s capability to perform reference point
tracking. In this test case, the vehicle starts from an arbitrary starting point and is required
to reach a target reference point while avoiding surrounding obstacles. The simulation
results demonstrate that the proposed HOCLF-HOCBF-QP controller can effectively per-
form path planning and ensure real-time safety in complex dynamic environments with
multiple obstacles.

3.1.1. CLF-Based Path Tracking Controller

Figure 3 shows the tracking performance of the HOCLF-QP controller on a predefined
single lane change reference trajectory. The red dashed line represents the desired reference
path of the single lane change maneuver, while the blue solid line illustrates the actual
trajectory of the ego vehicle under the HOCLF-QP control. As observed in the figure,
the tracking performance is highly accurate throughout the entire path. The controller
successfully leads the vehicle to follow the reference path with minimal lateral deviation,
indicating the effectiveness of the HOCLF formulation in ensuring the stability of the
system. This result validates the controller’s ability to serve as a reliable low-level trajectory
tracking controller for use in the proposed hierarchical control framework.
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Figure 3. CLF Path Tracking Controller Performance.

3.1.2. CLF-CBF-Based Autonomous Driving Controller for Static Obstacle

Figure 4 shows the trajectory tracking result of the HOCLF-HOCBF-QP controller
in the presence of a static obstacle. The red dashed line represents the original reference
path of the single lane change maneuver, while the orange circle represents the obstacle
that is deliberately added near the predefined path. The blue line represents the actual
trajectory of the ego vehicle under the HOCLF-HOCBF-QP control. Compared to the
HOCLF-QP controller results, which focused only on trajectory tracking, as demonstrated
in the previous section, the HOCLF-HOCBF-QP controller successfully leads the vehicle to
change its trajectory to avoid potential collision with the obstacle while still tracking the
desired path after passing the obstacle. The safety constraint is enforced by HOCBF, which
ensures that the system state remains within a safe set even when the original reference
would result in a potential collision. The deviation from the reference path is observed
near the obstacle, which is an intentional and necessary result of the CBF-based safety
intervention. Once the vehicle passes the obstacle, it smoothly returns to its reference
trajectory, demonstrating the controller’s ability to balance safety and stability.

Figure 4. CLF-CBF-Based Autonomous Driving Controller for Static Obstacle, Path Tracking. Orange
Circle Shows the Static Obstacle.

Figure 5 illustrates the reference point tracking performance of the HOCLF-HOCBF-
QP controller in a complex environment with multiple static obstacles. The vehicle starts
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from origin and aims to reach a predefined destination (represented by the green marker)
while avoiding collisions with the circular obstacles (represented by the orange circles). The
dashed line shows the actual trajectory of the ego vehicle under the HOCLF-HOCBF-QP
control, which demonstrates the controller’s ability to balance target point tracking and
obstacle avoidance. Notably, the trajectory deviates smoothly around all three obstacles,
indicating that the HOCBF constraints are effectively preventing the system from entering
unsafe sets. This test case proves the effectiveness of the HOCLF-HOCBF-QP controller
in reference point tracking and collision avoidance tasks, particularly in complex envi-
ronments with multiple obstacles. This result further validates the controller’s ability
to serve as a reliable low-level trajectory tracking module in the proposed hierarchical
control framework.

Figure 5. CLF-CBF-Based Autonomous Driving Controller for Static Obstacle, Reference Point
Tracking. Orange Circles Show the Static Obstacles.

3.1.3. CLF-CBF-Based Autonomous Driving Controller for Dynamic Obstacle

To further evaluate the low-level HOCLF-HOCBF-QP controller’s collision avoidance
capability, we tested its performance in a traffic scenario involving a dynamic obstacle
moving along a predefined single-lane-changing trajectory. Figure 6 shows the trajectory
tracking result of the HOCLF-HOCBF-QP controller in the presence of a dynamic obstacle.
The ego vehicle successfully tracked the reference path before and after the interaction with
obstacles while performing a clear collision avoidance maneuver when approaching the
obstacle. During the avoidance process, the vehicle deviated from the reference path to
maintain safety but smoothly rejoined the original trajectory once the obstacle was passed.

Figure 7 illustrates the real-time distance between the vehicle and the dynamic obstacle
over time. The minimum distance occurs at around 2.0 s, where the vehicle and the obstacle
are at their closest. The minimum distance remains above the predefined safety threshold
of 2 m, which is generally considered a socially acceptable minimum safe distance between
vehicles and surrounding objects in typical driving scenarios.
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Figure 6. CLF-CBF-Based Autonomous Driving Controller for Dynamic Obstacle, Path Tracking.
Orange Area Shows the Dynamic Obstacle.

Figure 7. Real-Time Distance Between Vehicle and Dynamic Obstacles.

3.2. Hybrid DRL and CLF-CBF-Based Controller

In this section, we present the simulation results of the proposed hierarchical con-
trol framework, which integrates a high-level DDQN-based decision-making agent and
a low-level HOCLF-HOCBF-QP-based trajectory tracking controller. After validating the
effectiveness of the low-level controller in the previous section, we integrate a high-level
planner to handle more complex decision-making tasks. To evaluate the overall perfor-
mance of the hierarchical control framework, we design a simple and complex test case
within a multi-lane traffic environment. In both cases, the ego vehicle must travel from a
starting point to a predefined destination, navigating through a roadway populated with
multiple obstacles. The vehicle is required to dynamically avoid obstacles by performing
appropriate lane changes. The test cases are constructed using a highway-environment
simulator [55]. The environment settings, vehicle dynamics, and the low-level control
strategy are modified to match our problem setup. Unlike traditional trajectory planning
setups, no predefined global path is provided. Instead, the DDQN-based high-level agent
generates discrete lane-level decisions (e.g., idle, left lane change, right lane change) based
on observation of the ego vehicle’s state and the traffic environment. At the same time, the
HOCLF-HOCBF-QP low-level controller ensures that each decision is executed safely and
accurately in real time.
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In this paper, the environment state is represented as a 5 × 5 array that encodes
information about the ego vehicle and its surrounding obstacles. Each row corresponds
to an entity (either the ego vehicle or an obstacle) and includes the following attributes:
[presence, x, y, vx, vy], where presence is a binary indicator of whether the object exists in
the current frame. The action space is discrete and consists of three possible maneuvers:
idle (no lane change), left lane change, and right lane change. The reward function is
designed to encourage goal-reaching behavior while penalizing unsafe or inefficient actions.
A positive reward of +50 is assigned when the vehicle successfully reaches its destination.
A large negative reward of −100 is applied in the event of a collision with any obstacle.
Additionally, at each timestep, the agent receives a dense reward proportional to its forward
progress (∆x), calculated as rprogress = c ∗

(
xcurrent − xprev

)
, where c is a positive coefficient,

which encourages faster navigation. A small penalty of −0.5 is applied when the agent
executes a lane change (either left or right) to discourage unnecessary lateral movement
and to promote trajectory stability.

Simulation results from both test cases show that the proposed framework can make
the vehicle successfully navigate from the start point to its destination while effectively
avoiding all obstacles using the appropriate lane-changing maneuver(s).

3.2.1. DRL High-Level Decision-Making Agent

In this section, we first present the training progress of the high-level DDQN-based
decision-making agent in the proposed hierarchical control framework. Table 4 summarizes
the key hyperparameters used in the DDQN training process, and Figure 8 illustrates the
training progress of the DDQN high-level decision-making agent in the three-lane complex
autonomous driving environment. A low-pass filter is applied to smooth both the episode
reward and step count curves for better interpretability. Initially, the agent exhibits poor
performance due to the high probability of random explorations, with the total reward
remaining negative and the step count relatively low, indicating frequent collisions and
early episode terminations. After approximately 2500 episodes, a significant improvement
is observed: The total reward begins to rise rapidly, and the average number of steps
per episode increases concurrently. This trend suggests that the agent gradually learns
an effective lane-changing strategy to avoid obstacles and to extend its episode longevity.
After about 3500 episodes, both rewards and steps per episode are maintained at a relatively
high level, indicating convergence to a stable policy. Some fluctuations are still present in
the reward curve, likely due to exploration behavior or occasional difficult scenarios.

Figure 8. Deep reinforcement learning training progress.
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Table 4. Hyperparameters and training settings.

Hyperparameter Value

Replay buffer size 100,000
Mini-batch size 64
Learning rate 0.001

Target network update frequency Every 100 steps
Exploration strategy (ε decay) 1.0 → 0.05 over 200,000 steps

Discount factor (γ) 0.99
Optimizer Adam

Loss function Mean Squared Error (MSE)

3.2.2. Hybrid DRL and CLF-CBF Controller

Figure 9 illustrates the ego vehicle’s trajectory in a two-lane highway test case using
the proposed hierarchical controller. The road is divided into two lanes with clearly marked
boundaries and a centerline. The ego vehicle (represented by the yellow rectangle) starts
in the upper lane and initially follows a straight path before encountering an obstacle
(represented by the red rectangle) positioned ahead in the same lane. The vehicle performs
a lane-change maneuver in front of the obstacle by smoothly transitioning into the lower
lane. After passing the obstacle, the vehicle performs another lane-change maneuver and
returns to the upper lane to avoid collision with the second obstacle. A video animation
of the two-lane test case is available at https://youtu.be/a1442r2Rg-E (accessed on 9
June 2025).

Figure 9. Hierarchical controller overall performance in simple test case.

Figure 10 illustrates the ego vehicle’s trajectory in a complex three-lane highway test
case using the proposed hierarchical controller. From the plot, we notice that this envi-
ronment is much more complex compared to the simple two-lane test case demonstrated
before. The ego vehicle (represented by the yellow rectangle) starts in the upper lane
and initially follows a straight path before encountering an obstacle (represented by the
red rectangle) positioned ahead in the same lane. The vehicle performs two consecutive
lane-change maneuvers to transition smoothly into the lower lane in response to a series
of obstacles. After passing the obstacles, the vehicle performs another two consecutive
lane-change maneuvers and returns to the upper lane to avoid collision with other obstacles.
A video animation of the two-lane test case is available at https://youtu.be/t3RXrZ1A7XU
(accessed on 9 June 2025).

The two trajectory plots in Figures 9 and 10 demonstrate the effectiveness of the proposed
hierarchical control system. The high-level DDQN agent can correctly generate lane-change
decisions based on obstacle positions, while the low-level HOCLF-HOCBF-QP controller
ensures smooth and safe high-level decision execution. The trajectory remains continuous

https://youtu.be/a1442r2Rg-E
https://youtu.be/t3RXrZ1A7XU
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and collision-free throughout the simulation, indicating successful integration of decision-
making and control components. Moreover, the vehicle consistently follows a straight path in
obstacle-free regions, without performing unnecessary lane-change behaviors. This suggests
that the penalty design for lane changes successfully discourages unnecessary lane-changing
actions, which makes the decision-making process more efficient.

Figure 10. Hierarchical controller overall performance in complex test case.

To evaluate the computational efficiency of the proposed hierarchical control frame-
work, we conducted computational cost tests based on the aforementioned simulation test
case. In complex test case settings, the low-level control simulation frequency is 100 Hz
and the high-level policy simulation frequency is 5 Hz. The low-level HOCLF-HOCBF-QP
controller requires an average solve time of approximately 0.66 ms per step using the
Gurobi optimizer, while the high-level DDQN decision-making agent requires an average
computational time of approximately 0.60 ms per step. These tests were performed in a
Google Colab CPU environment, which is using a single-threaded Intel Xeon, and there is
no GPU acceleration. Even under this relatively limited computational setting, the solve
times account for only 6.6% of the low-level control cycle (10 ms) and 0.3% of the high-level
decision-making cycle (200 ms), respectively. These results demonstrate that the proposed
framework has good real-time capability. While it is expected that the computational time,
particularly for the HOCLF-HOCBF-QP controller, will increase in more complex traffic
scenarios with higher numbers of obstacles and constraints, our current results suggest
that the proposed framework still provides sufficient real-time capability for typical au-
tonomous driving tasks. In future work, we plan to further evaluate its effectiveness and
real-time capability by conducting tests using the Hardware-in-the-Loop (HIL) approach
and Vehicle-in-Virtual-Environment (VVE) approach to ensure its real-world feasibility and
practical applicability in different driving scenarios.

4. Conclusions and Future Work
Path planning and collision avoidance are critical challenges in the development of

reliable autonomous driving systems, particularly in dynamic multi-lane environments
with obstacles. Traditional rule-based planners often struggle to handle such complexities.
To address these limitations, this paper proposed a hierarchical decision-making and control
framework that enables autonomous vehicles to automatically avoid obstacles through
lane-changing maneuvers.

The proposed system integrates a high-level DDQN-based decision-making agent with
a low-level HOCLF-HOCBF-QP-based controller. The high-level DDQN agent generates
discrete lane-level decisions based on the ego vehicle’s information and traffic environment
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information, while the HOCLF-HOCBF-QP controller ensures safe and efficient trajectory
tracking and collision avoidance.

Simulation results validate the effectiveness of the framework in navigating complex
multi-lane traffic environments with static obstacles. The results show that the system
can successfully execute appropriate lane-changing maneuvers to avoid collisions while
navigating from starting point to destination.

In addition to demonstrating collision avoidance performance, we also evaluated the
computational efficiency of the proposed framework. Computational cost tests show that
the low-level HOCLF-HOCBF-QP controller and the high-level DDQN agent complete
their respective computations well within the control cycles. These results demonstrate that
the framework has real-time performance capability for autonomous driving applications.

Compared to traditional optimization-based methods such as model predictive control
(MPC), the proposed framework significantly simplifies the online optimization process.
Traditional approaches typically solve large-scale optimal control problems at each step,
which introduces high computational complexity and often requires accurate environmen-
tal modeling. Also, these approaches sometimes may struggle to find optimal paths in
complex traffic conditions. In contrast, our approach takes advantage of the high-level
DRL-based decision-making agent and further enhances the system’s capability to navigate
various complex traffic environments. In addition, compared to traditional reinforcement
learning methods [56,57], including end-to-end approaches, the key advantage of our
proposed framework lies in the explicit integration of a low-level controller, which ensures
hard-coded safety rules. Traditional RL methods rely entirely on reward design and learned
policies to avoid collisions, which can still lead to unsafe behaviors during training or in un-
foreseen situations, as they lack hard safety guarantees. In contrast, our approach separates
decision-making and low-level control. The high-level DDQN agent focuses on discrete
lane-level maneuver selection, leveraging the adaptability and learning capability of RL to
handle diverse traffic conditions. Meanwhile, the low-level HOCLF-HOCBF-QP controller
ensures safety by introducing CBF constraint, providing a hard-coded safety layer.

There are still some limitations in this study. First, the vehicle model used in this
work is based on linear lateral dynamics with constant longitudinal speed, which limits the
realism of driving behavior. Future work will consider integrating a longitudinal dynamic
model to capture the vehicle’s longitudinal motions, hence letting the model become a
full vehicle dynamic model. Second, although DDQN performs well in the current setup,
more advanced DRL algorithms such as SAC or DDPG could potentially improve learning
efficiency and policy robustness in more complex or uncertain environments, and their
use will also be investigated in future work. Finally, we plan to conduct more detailed
sensitivity analyses and ablation studies to further understand the impact of key parameters
and the contribution of each module, especially in more complex dynamic environments
with multiple road users.

Author Contributions: Conceptualization, H.C. and B.A.-G.; methodology, H.C. and B.A.-G.; soft-
ware, H.C.; validation, H.C.; formal analysis, H.C.; investigation, H.C.; resources, B.A.-G.; data
curation, H.C.; writing—original draft preparation, H.C.; writing—review and editing, B.A.-G.;
visualization, H.C.; supervision, B.A.-G.; project administration, B.A.-G.; funding acquisition, B.A.-G.
All authors have read and agreed to the published version of the manuscript.

Funding: This project is funded in part by Carnegie Mellon University’s Safety21 National University
Transportation Center, which is sponsored by the US Department of Transportation.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Acknowledgments: The authors thank the Automated Driving Lab at the Ohio State University.



Electronics 2025, 14, 2776 20 of 22

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wen, B.; Gelbal, S.; Aksun-Guvenc, B.; Guvenc, L. Localization and Perception for Control and Decision Making of a Low Speed

Autonomous Shuttle in a Campus Pilot Deployment. arXiv 2018, arXiv:2407.00820. [CrossRef]
2. Gelbal, S.Y.; Guvenc, B.A.; Guvenc, L. SmartShuttle: A unified, scalable and replicable approach to connected and automated

driving in a smart city. In Proceedings of the 2nd International Workshop on Science of Smart City Operations and Platforms
Engineering, in SCOPE ’17, Pittsburgh, PA, USA, 18–21 April 2017; Association for Computing Machinery: New York, NY, USA,
2017; pp. 57–62. [CrossRef]

3. “Autonomous Road Vehicle Path Planning and Tracking Control | IEEE eBooks | IEEE Xplore”. Available online: https://ieeexplore.
ieee.org/book/9645932 (accessed on 24 October 2023).

4. Ararat, O.; Aksun-Guvenc, B. Development of a Collision Avoidance Algorithm Using Elastic Band Theory. IFAC Proc. Vol. 2008,
41, 8520–8525. [CrossRef]

5. Ames, A.D.; Grizzle, J.W.; Tabuada, P. Control barrier function based quadratic programs with application to adaptive cruise
control. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014;
pp. 6271–6278. [CrossRef]

6. Ames, A.D.; Xu, X.; Grizzle, J.W.; Tabuada, P. Control Barrier Function Based Quadratic Programs for Safety Critical Systems.
IEEE Trans. Autom. Control. 2017, 62, 3861–3876. [CrossRef]

7. Ames, A.D.; Coogan, S.; Egerstedt, M.; Notomista, G.; Sreenath, K.; Tabuada, P. Control Barrier Functions: Theory and
Applications. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 3420–3431.
[CrossRef]

8. Wang, L.; Ames, A.D.; Egerstedt, M. Safety Barrier Certificates for Collisions-Free Multirobot Systems. IEEE Trans. Robot. 2017, 33,
661–674. [CrossRef]

9. Desai, M.; Ghaffari, A. CLF-CBF Based Quadratic Programs for Safe Motion Control of Nonholonomic Mobile Robots in Presence
of Moving Obstacles. In Proceedings of the 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), Sapporo, Japan, 11–15 July 2022; pp. 16–21. [CrossRef]

10. Reis, M.F.; Andrade, G.A.; Aguiar, A.P. Safe Autonomous Multi-vehicle Navigation Using Path Following Control and Spline-
Based Barrier Functions. In Robot 2023: Sixth Iberian Robotics Conference; Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M.,
Eds.; Springer: Cham, Switzerland, 2024; pp. 297–309. [CrossRef]

11. Yang, G.; Vang, B.; Serlin, Z.; Belta, C.; Tron, R. Sampling-based Motion Planning via Control Barrier Functions. In Proceedings
of the 2019 3rd International Conference on Automation, Control and Robots, Prague, Czech Republic, 11–13 October 2019;
pp. 22–29. [CrossRef]

12. Li, Y.; Peng, Z.; Liu, L.; Wang, H.; Gu, N.; Wang, A.; Wang, D. Safety-Critical Path Planning of Autonomous Surface Vehicles
Based on Rapidly-Exploring Random Tree Algorithm and High Order Control Barrier Functions. In Proceedings of the 2023
8th International Conference on Automation, Control and Robotics Engineering (CACRE), Guangzhou, China, 13–15 July 2023;
pp. 203–208. [CrossRef]

13. He, S.; Zeng, J.; Zhang, B.; Sreenath, K. Rule-Based Safety-Critical Control Design using Control Barrier Functions with Application
to Autonomous Lane Change. arXiv 2021, arXiv:2103.12382. [CrossRef]

14. Liu, M.; Kolmanovsky, I.; Tseng, H.E.; Huang, S.; Filev, D.; Girard, A. Potential Game-Based Decision-Making for Autonomous
Driving. arXiv 2023, arXiv:2201.06157. [CrossRef]

15. Jabbari, F.; Samsami, R.; Arefi, M.M. A Novel Online Safe Reinforcement Learning with Control Barrier Function Technique for
Autonomous vehicles. In Proceedings of the 2024 10th International Conference on Control, Instrumentation and Automation
(ICCIA), Kashan, Iran, 5–7 November 2024; pp. 1–6. [CrossRef]

16. Chen, X.; Liu, X.; Zhang, M. Autonomous Vehicle Lane-Change Control Based on Model Predictive Control with Control Barrier
Function. In Proceedings of the 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), Kaifeng, China,
17–19 May 2024; pp. 1267–1272. [CrossRef]

17. Thirugnanam, A.; Zeng, J.; Sreenath, K. Safety-Critical Control and Planning for Obstacle Avoidance between Polytopes with
Control Barrier Functions. arXiv 2022, arXiv:2109.12313. [CrossRef]

18. Xiao, W.; Belta, C. High-Order Control Barrier Functions. IEEE Trans. Autom. Control. 2022, 67, 3655–3662. [CrossRef]
19. Chriat, A.E.; Sun, C. High-Order Control Lyapunov–Barrier Functions for Real-Time Optimal Control of Constrained Non-Affine

Systems. Mathematics 2024, 12, 24. [CrossRef]
20. Wang, H.; Tota, A.; Aksun-Guvenc, B.; Guvenc, L. Real time implementation of socially acceptable collision avoidance of a low

speed autonomous shuttle using the elastic band method. Mechatronics 2018, 50, 341–355. [CrossRef]
21. Lu, S.; Xu, R.; Li, Z.; Wang, B.; Zhao, Z. Lunar Rover Collaborated Path Planning with Artificial Potential Field-Based Heuristic

on Deep Reinforcement Learning. Aerospace 2024, 11, 253. [CrossRef]

https://doi.org/10.4271/2018-01-1182
https://doi.org/10.1145/3063386.3063761
https://ieeexplore.ieee.org/book/9645932
https://ieeexplore.ieee.org/book/9645932
https://doi.org/10.3182/20080706-5-KR-1001.01440
https://doi.org/10.1109/CDC.2014.7040372
https://doi.org/10.1109/TAC.2016.2638961
https://doi.org/10.23919/ECC.2019.8796030
https://doi.org/10.1109/TRO.2017.2659727
https://doi.org/10.1109/AIM52237.2022.9863392
https://doi.org/10.1007/978-3-031-58676-7_24
https://doi.org/10.1145/3365265.3365282
https://doi.org/10.1109/CACRE58689.2023.10208636
https://doi.org/10.48550/arXiv.2103.12382
https://doi.org/10.1109/TITS.2023.3264665
https://doi.org/10.1109/ICCIA65044.2024.10768178
https://doi.org/10.1109/DDCLS61622.2024.10606562
https://doi.org/10.48550/arXiv.2109.12313
https://doi.org/10.1109/TAC.2021.3105491
https://doi.org/10.3390/math12244015
https://doi.org/10.1016/j.mechatronics.2017.11.009
https://doi.org/10.3390/aerospace11040253


Electronics 2025, 14, 2776 21 of 22

22. Morsali, M.; Frisk, E.; Åslund, J. Spatio-Temporal Planning in Multi-Vehicle Scenarios for Autonomous Vehicle Using Support
Vector Machines. IEEE Trans. Intell. Veh. 2021, 6, 611–621. [CrossRef]

23. Zhu, S. Path Planning and Robust Control of Autonomous Vehicles. Ph.D. Thesis, The Ohio State University, Columbus, OH,
USA, 2020. Available online: https://www.proquest.com/docview/2612075055/abstract/73982D6BAE3D419APQ/1 (accessed
on 24 October 2023).

24. Chen, G.; Yao, J.; Gao, Z.; Gao, Z.; Zhao, X.; Xu, N.; Hua, M. Emergency Obstacle Avoidance Trajectory Planning Method of
Intelligent Vehicles Based on Improved Hybrid A*. SAE Int. J. Veh. Dyn. Stab. NVH 2023, 8, 3–19. [CrossRef]

25. Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab, A.A.; Yogamani, S.; Perez, P. Deep Reinforcement Learning for
Autonomous Driving: A Survey. IEEE Trans. Intell. Transp. Syst. 2022, 23, 4909–4926. [CrossRef]

26. Ye, F.; Zhang, S.; Wang, P.; Chan, C.-Y. A Survey of Deep Reinforcement Learning Algorithms for Motion Planning and Control of
Autonomous Vehicles. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021;
pp. 1073–1080. [CrossRef]

27. Zhu, Z.; Zhao, H. A Survey of Deep RL and IL for Autonomous Driving Policy Learning. IEEE Trans. Intell. Transp. Syst. 2022, 23,
14043–14065. [CrossRef]

28. Kendall, A.; Hawke, J.; Janz, D.; Mazur, P.; Reda, D.; Allen, J.-M.; Lam, V.-D.; Bewley, A.; Shah, A. Learning to Drive in a Day.
arXiv 2018, arXiv:1807.00412. [CrossRef]

29. Yurtsever, E.; Capito, L.; Redmill, K.; Ozguner, U. Integrating Deep Reinforcement Learning with Model-based Path Planners for
Automated Driving. arXiv 2020, arXiv:2002.00434. [CrossRef]

30. Aksjonov, A.; Kyrki, V. A Safety-Critical Decision-Making and Control Framework Combining Machine-Learning-Based and
Rule-Based Algorithms. SAE Int. J. Veh. Dyn. Stab. NVH 2023, 7, 287–299. [CrossRef]

31. “Deep Reinforcement-Learning-Based Driving Policy for Autonomous Road Vehicles—Makantasis—2020—IET Intelligent
Transport Systems—Wiley Online Library”. Available online: https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-
its.2019.0249 (accessed on 24 October 2023).

32. Merola, F.; Falchi, F.; Gennaro, C.; Di Benedetto, M. Reinforced Damage Minimization in Critical Events for Self-driving Vehicles.
In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications, Lisbon, Portugal, 19–21 February 2023; pp. 258–266. [CrossRef]

33. Nageshrao, S.; Tseng, H.E.; Filev, D. Autonomous Highway Driving using Deep Reinforcement Learning. In Proceedings of
the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2326–2331.
[CrossRef]

34. Peng, B.; Sun, Q.; Li, S.E.; Kum, D.; Yin, Y.; Wei, J.; Gu, T. End-to-End Autonomous Driving Through Dueling Double Deep
Q-Network. Automot. Innov. 2021, 4, 328–337. [CrossRef]

35. Cao, Z.; Biyik, E.; Wang, W.; Raventos, A.; Gaidon, A.; Rosman, G.; Sadigh, D. Reinforcement Learning based Control of Imitative
Policies for Near-Accident Driving. arXiv 2020, arXiv:2007.00178. [CrossRef]

36. Jaritz, M.; de Charette, R.; Toromanoff, M.; Perot, E.; Nashashibi, F. End-to-End Race Driving with Deep Reinforcement Learning.
arXiv 2018, arXiv:1807.02371. [CrossRef]

37. Ashwin, S.H.; Raj, R.N. Deep reinforcement learning for autonomous vehicles: Lane keep and overtaking scenarios with collision
avoidance. Int. J. Inf. Tecnol. 2023, 15, 3541–3553. [CrossRef]

38. Muzahid, A.J.M.; Kamarulzaman, S.F.; Rahman, M.A.; Alenezi, A.H. Deep Reinforcement Learning-Based Driving Strategy for
Avoidance of Chain Collisions and Its Safety Efficiency Analysis in Autonomous Vehicles. IEEE Access 2022, 10, 43303–43319.
[CrossRef]

39. Dinh, L.; Quang, P.T.A.; Leguay, J. Towards Safe Load Balancing based on Control Barrier Functions and Deep Reinforcement
Learning. arXiv 2024, arXiv:2401.05525. [CrossRef]

40. Chen, H.; Zhang, F.; Aksun-Guvenc, B. Collision Avoidance in Autonomous Vehicles Using the Control Lyapunov Function–
Control Barrier Function–Quadratic Programming Approach with Deep Reinforcement Learning Decision-Making. Electronics
2025, 14, 557. [CrossRef]

41. Chen, H.; Cao, X.; Guvenc, L.; Aksun-Guvenc, B. Deep-Reinforcement-Learning-Based Collision Avoidance of Autonomous
Driving System for Vulnerable Road User Safety. Electronics 2024, 13, 1952. [CrossRef]

42. Wong, K.; Stölzle, M.; Xiao, W.; Santina, C.D.; Rus, D.; Zardini, G. Contact-Aware Safety in Soft Robots Using High-Order Control
Barrier and Lyapunov Functions. arXiv 2025, arXiv:2505.03841. [CrossRef]

43. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach Learn 1992, 8, 279–292. [CrossRef]
44. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602. [CrossRef]
45. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

https://doi.org/10.1109/TIV.2020.3042087
https://www.proquest.com/docview/2612075055/abstract/73982D6BAE3D419APQ/1
https://doi.org/10.4271/10-08-01-0001
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1109/IV48863.2021.9575880
https://doi.org/10.1109/TITS.2021.3134702
https://doi.org/10.48550/arXiv.1807.00412
https://doi.org/10.48550/arXiv.2002.00434
https://doi.org/10.4271/10-07-03-0018
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-its.2019.0249
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-its.2019.0249
https://doi.org/10.5220/0010908000003124
https://doi.org/10.1109/SMC.2019.8914621
https://doi.org/10.1007/s42154-021-00151-3
https://doi.org/10.48550/arXiv.2007.00178
https://doi.org/10.48550/arXiv.1807.02371
https://doi.org/10.1007/s41870-023-01412-6
https://doi.org/10.1109/ACCESS.2022.3167812
https://doi.org/10.48550/arXiv.2401.05525
https://doi.org/10.3390/electronics14030557
https://doi.org/10.3390/electronics13101952
https://doi.org/10.48550/arXiv.2505.03841
https://doi.org/10.1007/BF00992698
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1038/nature14236


Electronics 2025, 14, 2776 22 of 22

46. van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-learning. arXiv 2015, arXiv:1509.06461.
[CrossRef]

47. Wang, Z.; Schaul, T.; Hessel, M.; van Hasselt, H.; Lanctot, M.; de Freitas, N. Dueling Network Architectures for Deep Reinforce-
ment Learning. arXiv 2016, arXiv:1511.06581. [CrossRef]

48. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992, 8,
229–256. [CrossRef]

49. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning with Function Ap-
proximation. In Advances in Neural Information Processing Systems; MIT Press: Boston, MA, USA, 1999; Available online:
https://proceedings.neurips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html (accessed on
5 November 2024).

50. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.P.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for
Deep Reinforcement Learning. arXiv 2016, arXiv:1602.01783. [CrossRef]

51. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347. [CrossRef]

52. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2019, arXiv:1509.02971. [CrossRef]

53. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. arXiv 2018, arXiv:1801.01290. [CrossRef]

54. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv 2018,
arXiv:1802.09477. [CrossRef]

55. Leurent, E. An Environment for Autonomous Driving Decision-Making; Python. May 2018. Available online: https://github.
com/eleurent/highway-env (accessed on 14 June 2025).

56. Zhao, H.; Guo, Y.; Liu, Y.; Jin, J. Multirobot unknown environment exploration and obstacle avoidance based on a Voronoi
diagram and reinforcement learning. Expert Syst. Appl. 2025, 264, 125900. [CrossRef]

57. Zhao, H.; Guo, Y.; Li, X.; Liu, Y.; Jin, J. Hierarchical Control Framework for Path Planning of Mobile Robots in Dynamic
Environments Through Global Guidance and Reinforcement Learning. IEEE Internet Things J. 2025, 12, 309–333. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.48550/arXiv.1511.06581
https://doi.org/10.1007/BF00992696
https://proceedings.neurips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://doi.org/10.48550/arXiv.1602.01783
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.1802.09477
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://doi.org/10.1016/j.eswa.2024.125900
https://doi.org/10.1109/JIOT.2024.3459918

	Introduction 
	Methodology 
	Single-Track Lateral Vehicle Dynamic Model 
	Control Lyapunov Functions and Control Barrier Functions 
	Preliminary 
	HOCLF and HOCBF Definition 
	HOCLF and HOCBF Design 
	HOCLF-HOCBF-QP Formulation 

	Deep-Reinforcement-Learning 

	Results 
	CLF-CBF-Based Optimization Controller 
	CLF-Based Path Tracking Controller 
	CLF-CBF-Based Autonomous Driving Controller for Static Obstacle 
	CLF-CBF-Based Autonomous Driving Controller for Dynamic Obstacle 

	Hybrid DRL and CLF-CBF-Based Controller 
	DRL High-Level Decision-Making Agent 
	Hybrid DRL and CLF-CBF Controller 


	Conclusions and Future Work 
	References

