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Abstract: Collision avoidance and path planning are critical topics in autonomous vehicle
development. This paper presents the progressive development of an optimization-based
controller for autonomous vehicles using the Control Lyapunov Function–Control Barrier
Function–Quadratic Programming (CLF-CBF-QP) approach. This framework enables a
vehicle to navigate to its destination while avoiding obstacles. A unicycle model is utilized
to incorporate vehicle dynamics. A series of simulations were conducted, starting with
basic model-in-the-loop (MIL) non-real-time simulations, followed by real-time simula-
tions. Multiple scenarios with different controller configurations and obstacle setups were
tested, demonstrating the effectiveness of the proposed controllers in avoiding collisions.
Real-time simulations in Simulink were used to demonstrate that the proposed controller
could compute control actions for each state within a very short timestep, highlighting
its computational efficiency. This efficiency underscores the potential for deploying the
controller in real-world vehicle autonomous driving systems. Furthermore, we explored
the feasibility of a hierarchical control framework comprising deep reinforcement learning
(DRL), specifically a Deep Q-Network (DQN)-based high-level controller and a CLF-CBF-
QP-based low-level controller. Simulation results show that the vehicle could effectively
respond to obstacles and generate a successful trajectory towards its goal.

Keywords: autonomous vehicle; Control Lyapunov Function; Control Barrier Function;
deep reinforcement learning

1. Introduction
Autonomous driving is currently a highly popular research topic in the mobility area

with immense potential to enhance safety, reduce traffic congestion, and revolutionize
urban transportation [1,2]. However, one of the major challenges in the development of
autonomous vehicles is ensuring collision-free navigation in dynamic and unpredictable
environments [3,4]. This challenge becomes particularly significant in environments rang-
ing from multi-lane highways with fast-moving traffic [5] to crowded urban settings where
vehicles must navigate amidst pedestrians [6].

Extensive research has been conducted in the field of autonomous driving to de-
velop high-performance and robust collision-avoidance systems. Currently, most path-
planning and collision-avoidance research focuses on two major approaches. The first is the
optimization-based approach which frames path planning and collision avoidance as an
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optimization problem with well-defined constraints. The objective is to compute an optimal,
collision-free trajectory by minimizing or maximizing specific objective functions. Among
the various methods, the CLF-CBF-QP approach stands out as one of the most favored and
widely used. This method formulates path following and collision avoidance as constraints
using Control Lyapunov Functions (CLFs) for stability and Control Barrier Functions (CBFs)
for safety. The optimal control is then calculated by solving a Quadratic Programming
(QP) problem, ensuring both efficient and safe navigation [7–10]. Ames et al. introduced a
novel framework that unified safety conditions, expressed as CBFs, with control stability
objectives, represented by CLFs, within a QP setting. This framework was applied to design
adaptive cruise control that balanced speed following performance with safety constraints
to ensure that a vehicle maintained a safe following distance [11]. Later, Ames et al. further
explored the application of CBFs in safety-critical systems and introduced two new types:
reciprocal and zeroing. By integrating these functions, their methodology ensured the
forward invariance of safe sets while effectively balancing safety and performance. The
proposed method has been used in applications such as adaptive cruise control and lane
keeping [12,13]. He et al. proposed the integration of a Finite State Machine (FSM) with the
CLF-CBF-QP framework for autonomous vehicles, focusing on safe lane-change maneu-
vers in dynamic traffic environments. Their method ensured real-time safety constraints
during lane changes [14]. Wang et al. introduced a decentralized method for ensuring
collision-free operation in multirobot systems using Safety Barrier Certificates. Their ap-
proach utilizes CBFs to modify nominal controllers minimally while ensuring that safety
constraints are satisfied in real-time applications [15]. Liu et al. compared potential games-
based reinforcement learning and a traditional CBF-based approach for decision-making in
autonomous driving. Their study highlighted that while potential games offer robustness in
non-safety-conscious environments, CBFs are more computationally efficient and feasible
for real-time applications [16]. Reis et al. integrated spline-based Barrier Functions for
path following in multi-vehicle scenarios. Their approach integrated CLFs, elliptical CBFs,
and spline-based CBFs to ensure smooth and collision-free navigation, particularly useful
for highway driving with dynamic lane changes and vehicle interactions [17]. Moreover,
Desai et al. introduced a CLF-CBF framework to handle nonholonomic mobile robots
navigating around moving obstacles. Their approach included constraints on the steering
angle to avoid impractical maneuvers, optimizing the trade-off between safety and control
smoothness and achieved smooth avoidance performance [18]. Long et al. proposed a
distributionally robust Lyapunov Function (LF) search method for closed-loop dynamical
systems under uncertainty which can learn LFs with neural networks (NNs) [19], while
Chang et al. proposed another method for learning control policies and NN-LFs which can
significantly simplify the process of Lyapunov Function design and provide an end-to-end
correctness guarantee [20]. Meanwhile, numerous optimization-based autonomous driving
control approaches have been explored that do not rely on CLF-CBF frameworks [21–24]
such as the Elastic Band algorithm [25], potential field-based approach [26], Support Vector
Machine (SVM)-based approach [27], quintic spline optimization approach [28], and hybrid
A* search in spatiotemporal maps [29]. However, the major limitations of the traditional op-
timization approach are its deficiency in real-time performance caused by its computational
complexity and its shortage of control feasibility.

The second approach is the machine learning method which considers autonomous
driving and collision-avoidance tasks as Markov Decision Processes (MDPs) and utilizes
the reinforcement learning (RL) method to find optimal solutions. This approach makes the
concurrent optimization of all processing phases possible and eventually yields superior
performance. Kendall et al. pioneered the application of the DRL framework in au-
tonomous driving, innovatively proposing an end-to-end model structure for autonomous



Electronics 2025, 14, 557 3 of 22

driving [30]. Yurtsever et al. proposed an innovative hybrid deep reinforcement learning
framework to develop Automated Driving Systems (ADSs) [31]. Smith et al. proposed a
novel load-balancing framework that integrates CBFs with DRL to ensure both safety and
efficiency in dynamic network environments. Their approach guarantees system stability
by enforcing safety constraints through CBFs while DRL optimizes load distribution in
real time [32]. Ashwin et al. proposed a DDPG-based sequential decision algorithm for
autonomous vehicles, focusing on lane-keeping and overtaking scenarios. Their approach
trains vehicles to navigate lanes, overtake static and moving obstacles, and avoid collisions,
demonstrating effective performance in the TORC traffic simulator [33]. Muzahid et al. in-
troduced a DRL-based driving strategy aimed at preventing chain collisions in autonomous
traffic flow. By considering the behavior of both leading and following vehicles, their
method effectively mitigates the risk of multi-vehicle collisions in high-density traffic sce-
narios [34]. Emuna et al. introduced a model-free DRL approach to imitate human driving
behavior in collision-avoidance tasks. Their control algorithm combines model-driven
rules with data-driven expert human knowledge, resulting in human-like driving policies
in simulated highway scenarios [35]. Chen et al. applied a double deep reinforcement
learning controller to the safety of vulnerable road users during their interactions with
autonomous vehicles [5]. Albarella et al. proposed a hybrid controller that integrates DRL
with Nonlinear Model Predictive Control (NMPC) for autonomous highway driving. The
approach was evaluated using MATLAB and the Simulation of Urban Mobility (SUMO)
traffic simulator, demonstrating robust and effective performance [36]. However, a notable
disadvantage of the machine learning-based approach is the instability in model perfor-
mance under normal traffic conditions due to the absence of hard-coded safety protocols.
Without these predefined safety rules, the model’s actions may become unpredictable, espe-
cially in scenarios where the training data do not fully cover all possible traffic conditions.
Moreover, in the DRL approach, safety is primarily ensured through the design of the
reward function. Typically, a negative reward is assigned when unsafe behavior is detected,
discouraging the agent from repeating such actions [37]. However, the reward setting is
inherently a “soft” mechanism, as it provides guidance rather than hard constraints. It is
also impractical to assign excessively large negative rewards because performing so can
lead to several issues including overly conservative behaviors, sparse exploration, and
instability in training.

In this paper, we propose a novel approach that combines traditional optimization-
based control design with DRL to develop a high-performance and robust control strategy
for autonomous vehicles. The contributions of this paper are as follows.

• The proposed control system enables precise path tracking when no potential collisions
are detected and performs effective collision avoidance when obstacles are nearby.

• To achieve this, we first applied the CLF-CBF-QP approach to design an optimization-
based path-tracking controller. The CLF constraint in the optimization ensures the sta-
bility and accurate path tracking of the autonomous vehicle, while the CBF constraint
guarantees safety by preventing potential collisions between the vehicle and obstacles.

• Building on this foundation, we integrated the traditional CLF-CBF-based control with
a deep reinforcement learning algorithm for path planning.

• The DRL algorithm generates a rough sketch of the optimal path, which the proposed
optimization-based control then refines and executes.

• To further enhance computational efficiency, a lookup table is incorporated into the
CLF-CBF optimization framework, significantly accelerating the calculation process.

• This hybrid approach leverages the strengths of both traditional control theory
and modern machine learning to achieve robust, safe, and efficient autonomous
vehicle operation.
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The remainder of this paper is organized as follows: Section 2 introduces the method-
ologies employed in this study, including the unicycle vehicle dynamic model, the prin-
ciples and design of the CLF and CBF, and the DRL frameworks. Section 3 presents the
simulation results of the proposed algorithm, covering CLF-based path-tracking control,
CLF-CBF path-tracking and collision-avoidance control for both static and dynamic obsta-
cles, and the design of a hybrid CLF-CBF-based DRL autonomous driving agent. Detailed
results and analysis are provided in this section. Finally, Section 4 concludes the paper and
discusses potential directions for future work.

2. Methodology
To develop a high-performance and robust autonomous driving algorithm for navigat-

ing an autonomous vehicle from a starting point to an endpoint while performing collision
avoidance as needed, we first present a simple unicycle vehicle dynamic model. After
that, we introduce the basic principle of CLFs and CBFs and demonstrate how to design
optimization-based control using the CLF-CBF-QP approach for autonomous vehicles. Fi-
nally, we introduce how to integrate CLF-CBF-QP control with deep reinforcement learning
techniques to create a comprehensive algorithm for autonomous vehicles.

2.1. Unicycle Vehicle Dynamics

In this paper, we propose using a unicycle vehicle model for the dynamic simulation of
a vehicle. Indeed, the unicycle model is widely adopted in the field of mobile robotics due
to its simplicity. To achieve more realistic vehicle dynamic simulations, incorporating more
complex vehicle models would be necessary. However, the use of advanced vehicle models
introduces significant implementation challenges for the CLF-CBF approach and increases
computational complexity. To balance real-time performance with realistic simulation,
the unicycle model is used in this paper. As the simplest model, it provides a reasonable
approximation of vehicle dynamics while maintaining computational efficiency. This choice
aligns with many related studies, which also adopt the unicycle model to simplify the
design and analysis of controllers while retaining sufficient representational fidelity for
practical applications. Future work will aim to integrate more advanced vehicle models
and explore efficient methods to address the associated computational challenges.

Figure 1 illustrates the plane motion of this unicycle vehicle. The vehicle can move
forward with the various linear speed v and rotate with the various angular speed ω around
its geometric center. Note that this is also the Dubins model of a vehicle if we fix the speed
and limit the rotation angle. The state-space equation for this vehicle model is

.
xc
.
yc.
θ

 =

cos(θ) 0
sin(θ) 0

0 1

[ v
ω

]
, (1)

where
[

xc yc

]T
are the geometric center coordinates of the vehicle and θ donates the

orientation of the vehicle. Now, consider another point,
[

x y
]T

, located in a different
position along the longitudinal axis xv of the vehicle. This point is located at an offset
distance, d, along the vehicle’s x-axis relative to the geometric center. The relationship
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]T
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[
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The state-space equation for the geometric center of the vehicle is given by
.
x
.
y
.
θ

 =

cos(θ) −d sin(θ)
sin(θ) d cos(θ)

0 1

[ v
ω

]
. (3)

Both state-space Equations (1) and (3) are driftless nonlinear systems which rely en-
tirely on control inputs to define their motion. They are particularly useful for autonomous
driving research, as they simplify the analysis and synthesis of control laws without the
need to counteract drift dynamics. Moreover, the simplicity of the unicycle model largely
simplifies the design of Control Lyapunov Functions and Control Barrier Functions by
streamlining the calculations. For realistic simulation, we constructed the model in both
Python 3.13 and Simulink 2024a for MIL and real-time MIL simulation. The simulation
setting and results are presented in the Results Section.

2.2. Control Lyapunov Functions and Control Barrier Functions
2.2.1. Control Lyapunov Functions’ Principle and Design

The CLF is usually used as a constraint of an optimization problem to ensure the
stability of dynamic systems by defining a scalar function that decreases over time as the
system evolves. By encoding stability criteria into a function, the CLF allows the system
to converge to the desired state with reasonable speed despite dynamic and environmen-
tal uncertainties. In autonomous driving, a CLF is employed to design a path-tracking
controller that guides the vehicle towards the desired target position. This approach is
robust in real-time applications where stability must be maintained even in the presence
of disturbances, ensuring that the autonomous vehicle operates reliably and efficiently.
Through CLF-based control strategies, vehicles can achieve precise trajectory tracking
even in complex driving scenarios, which makes it a foundational element in advanced
autonomous driving algorithms.

Let us first introduce the basic principle of the CLF. Consider the control affine system
given by

.
x = f (x) + g(x)u (4)

where x is the state vector, u is the control input vector, and f and g are Lipschitz continuous
in x. f is the uncontrolled part, which represents the system’s natural dynamics, while g
is the control distribution matrix which determines how the control inputs influence the
system’s dynamics. Let V(x) : Rn → R be a continuously differentiable function; the CLF
V(x) satisfies the following:
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(1) Positive definiteness:

V(x) > 0 for all x ̸= xe, and V(xe) = 0 (5)

where xe is the equilibrium point.

(2) Sublevel set boundedness: For a given constant, c > 0, the sublevel set Ωc =

{x ϵ Rn : V(x) ≤ c} is bounded. This ensures that V(x) defines a meaningful re-
gion of attraction (ROA) around xe.

(3) Stability: there exists a control input, u ϵ Rn, such that the derivative of V(x) along
the trajectory of the system satisfies

min
uϵU

.
V(x, u) = min

uϵU
[∇V(x)·( f (x) + g(x)u)] < 0, ∀x ϵ Ωc\{xe} (6)

In this paper, a CLF is applied to design the path-tracking controller, ensuring that
the vehicle accurately follows a predefined trajectory. Equations (7) and (8) demonstrate
the design of a Lyapunov Function and its derivative where e is the path-tracking error.
The path-tracking error can be calculated using the position of the vehicle and the position
of the tracking point on the path, e = p − pd(γ), where pd(γ) : R → R2 represents the
planar parameterized path, generated by B-spline fitting, for example, and γ ∈ R is a
time-dependent parameter for the position along the path. Equation (6) demonstrates the
dynamics of the path where the desired path speed is γd and g(e) is used to slow down
the tracking point when the path-tracking error is too large. The CLF incorporates the
path-tracking error, quantifying the deviation of the vehicle from the desired path. By
integrating the CLF as a constraint within the Quadratic Programming (QP) optimization
problem, the controller ensures that the system minimizes the path-tracking error in every
time step. This formulation guarantees stability by driving the CLF to decrease over time,
ultimately forcing the vehicle to converge to the predefined path. The detailed design of
the CLF is illustrated in Equation (10) where ϵ is the relaxing term which indicates that the
vehicle can temporarily deviate from the path when necessary.

V(e) =
1
2
∥e∥2 (7)

.
V(e) = eT

([
cos(θ) −d ∗ sin(θ)
sin(θ) d ∗ cos(θ)

]
u − ∂pd

∂γ

.
γ

)
(8)

.
γ = γd + g(e) (9)

eT

([
cos(θ) −d ∗ sin(θ)
sin(θ) d ∗ cos(θ)

]
u − ∂pd

∂γ

.
γ

)
+

α

2
∥e∥2 ≤ ϵ (10)

2.2.2. Control Barrier Functions’ Principle and Design

The Control Barrier Function (CBF) is usually used as a constraint in an optimization
problem to ensure the safety of dynamic systems. A CBF defines a safe set which is a region
in the state-space where the system can operate without violating safety conditions. By
incorporating CBF constraints into optimization-based controllers, the controller ensures
that the system remains within the defined safe set while allowing flexibility for other
objectives such as stability or performance. In the context of autonomous driving, CBFs are
usually employed to guarantee collision avoidance, maintain lane adherence, and respect
speed limits. In this paper, we use a CBF to enforce minimum distance constraints between
the autonomous vehicle and obstacles, ensuring safe operation in dynamic environments.
By integrating CBFs with other constraints such as CLFs, an optimization-based control
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strategy can be designed for autonomous vehicles. This approach enables the simultaneous
achievement of safety, efficient path tracking, and effective collision avoidance.

For the CBF, let h(x) : Rn → R be a continuously differentiable function that defines
the safe set

C = {x ϵ Rn : h(x) ≥ 0} (11)

where h(x) ≥ 0 represents the safe region and h(x) < 0 represents the unsafe region.
The function h(x) is considered a CBF if there exists a control input, u ϵ Rn, such that the
following condition holds for all x ϵ C.

sup
uϵU

[
∂h(x)

∂x
·(( f (x) + g(x)u)] ≥ −α(h(x)) (12)

where α is a class-κ function, which specifies the rate at which the system can approach the
boundary of the safe set.

In this paper, the CBF is utilized to design the collision-avoidance controller, ensuring
the vehicle’s safety in the presence of nearby obstacles. To simplify the problem and enable
an effective mathematical formulation, we assume that both the vehicle and obstacles have
elliptical geometries. This assumption allows the use of an ellipse-based Barrier Function,
which defines a safe region by ensuring that the vehicle maintains an appropriate distance
from obstacles. By assuming that both the vehicle and obstacles have elliptical geometries,
we imply that they can be approximated or enclosed by one or more elliptical shapes,
depending on the complexity of their structures. Once these elliptical boundaries are
established, elliptical CBF constraints can be applied, with each boundary corresponding to
a specific CBF constraint, to formulate the QP problem. This approach enables the efficient
calculation of the optimal control.

The primary purpose of utilizing CBFs is to ensure collision avoidance and maintain
safety during path tracking. In our simulation, both the vehicle and obstacles are encircled
with elliptical boundaries. CBFs are employed to guarantee that the vehicle’s boundary
does not overlap with the obstacle boundaries, effectively preventing collisions. If there is
more than one obstacle, each obstacle/boundary corresponds to a specific CBF constraint.
While it is possible to impose input constraints by introducing additional constraints into
the QP formulation, this approach significantly increases the problem’s complexity and
computational time. To address this, our method solves the CLF-CBF-QP problem without
input constraints and applies saturation directly during the execution of the calculated
optimal input. This approach maintains computational efficiency while ensuring practical
feasibility.

Equation (13) is the Barrier Function of an elliptical region with H(θ) = R(θ)ΛR(θ)T

and Λ = diag
{

1/a2, 1/b2
}

where R(θ) is the 2D rotational matrix. The constants a and
b are the longest and shortest radii of the ellipse. The center of this elliptical region is
located at pc, the orientation of the region is θ, and the position of a random point is δ.
This equation is used to determine whether a given point lies within the elliptical region.
Equation (14) represents the boundary of the aforementioned elliptical region where ρ is
the rotation angle between 0 and 2π. Equation (15) demonstrates the design of the Barrier
Function between two arbitrary elliptical regions, i and j, where hi represents the Barrier
Function of the elliptical region i, Ej(ρ) represents the boundary function of the elliptical
region j, and ξci, ξcj represent the position and orientation of the two elliptical regions. By
incorporating this Barrier Function into the control framework, the vehicle can dynamically
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adjust its trajectory to avoid collisions while preserving stability and operational efficiency.
The detailed design of the CBF is illustrated in Equation (16).

h(δ) =
1
2
(δ − pc)H(δ − pc)−

1
2

(13)

E(ρ) =
[

a cos(ρ) cos(θ)− bsin(ρ) sin(θ) + xc

a cos(ρ) sin(θ) + bsin(ρ) cos(θ) + yc

]
(14)

hij
(
ξci, ξcj

)
= min

ρϵR
hi
(
Ej(ρ)

)
(15)

∂hij

∂ξci
gc(ξci)ui +

∂hij

∂ξcj
gc
(
ξcj
)
uj + βhij

(
ξci, ξcj

)
≥ 0 (16)

2.2.3. CLF-CBF-QP Formulation

After designing the appropriate CLF and CBF constraints for the optimization-based
controller, the next step was to formulate the CLF-CBF-QP framework. The complete
formulation of the CLF-CBF-QP is presented in Equation (17).

u∗ = argmin
u,ϵ

∥u∥2 + qϵ2 (17)

s.t
.

V(ξi, ui) + αV(ξi) ≤ ϵ and

.
hij
(
ξci, ξcj, ui, uj

)
+ βhij

(
ξci, ξcj

)
≥ 0, f or j = 1 . . . N

where ξci, ξcj represent the position and orientation of the elliptical regions corresponding
to the vehicle and obstacles, respectively. The index i refers to individual vehicles, while
j corresponds to individual obstacles. The constants α and β are designed to ensure that
the system converges to the optimal control solution at an exponential rate. ϵ is the
relaxing term which indicates that the vehicle can temporarily deviate from the path when
necessary. Additionally, q is a positive constant introduced to penalize the relaxation of the
CLF constraint, thereby encouraging adherence to the desired trajectory. By solving this
optimization problem, the autonomous vehicle can effectively avoid potential collisions
with obstacles, achieve accurate path tracking to the greatest extent possible, and minimize
control effort while ensuring efficient and safe navigation.

2.3. Deep Reinforcement Learning

A Markov Decision Process (MDP) is a mathematical framework for modeling sequen-
tial decision-making in situations where outcomes are uncertain. It is defined by four key
components: the state, actions, transitions, and rewards. The goal in a Markov Decision Pro-
cess is to find an optimal policy that can maximize the cumulative reward. Autonomy can
be viewed as inherently being an MDP problem, as it requires continuous decision-making
in a highly uncertain and dynamic traffic environment. This means that the system must
account for evolving traffic conditions, unpredictable obstacles and vulnerable road users
(VRUs), and complex interactions with other road users while making sequential decisions
to achieve safe and efficient navigation. The state includes information like the vehicle’s
position, speed, and surrounding environmental information. The actions represent the
vehicle’s control decisions, such as acceleration, braking, or steering. The transition prob-
abilities capture both the dynamics of vehicle and traffic environment, determining how
the traffic environment and vehicle’s state evolve based on its actions. A reward function
can guide the vehicle to achieve objectives like reaching a destination efficiently and safely.
Moreover, the decision-making process satisfies the Markov property which means that the
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decision-making process and state transitions depend solely on the current state and action,
without requiring knowledge of the past. Due to these characteristics, DRL has emerged
as a promising tool for tackling this challenge. DRL has been extensively researched for
developing advanced driver-assistance systems (ADASs), leveraging its ability to learn
optimal policies directly from interactions with the environment. Currently, most research
focuses on end-to-end DRL approaches where raw sensor inputs, such as images or videos,
are directly processed to generate control commands for the vehicle. For instance, an
autonomous vehicle may use camera images to predict steering angles or acceleration
commands. This approach has several advantages; it simplifies the optimization process by
avoiding the need for intermediate steps, such as feature extraction or trajectory planning,
and allows the system to optimize all stages of decision-making and control simultaneously
in a unified framework. Additionally, end-to-end methods are usually model-free and can
adapt to complex scenarios by learning directly from large-scale data, capturing patterns
that may be difficult to model explicitly.

However, the end-to-end DRL approach also presents significant limitations. One
major drawback is the requirement for extensive computational resources to train the DRL
agent effectively, often requiring large datasets and substantial training time. Another
critical issue is the difficulty of incorporating hard-coded safety rules into the learned
policy. While DRL excels at finding solutions that work well in training environments, it
may fail to ensure safety under untrained or extreme conditions, which is unacceptable for
real-world autonomous driving applications. These limitations highlight the need for a
hybrid approach that combines the strengths of DRL with traditional optimization-based
control methods.

To address these challenges, we propose a novel framework that integrates DRL
with traditional CLF-CBF-based control. In this hybrid framework, DRL is utilized for
high-level decision-making, such as generating rough path plans and determining strate-
gic maneuvers based on environmental conditions. This enables the system to leverage
DRL’s data-driven capabilities for better decision-making and adaptability in complex and
uncertain environments. On the other hand, CLF-CBF-based control is responsible for
refining and executing planned paths, ensuring the vehicle’s stability, safety, and efficiency
during operation. By separating high-level decision-making from low-level control, this
approach combines the flexibility and learning capabilities of DRL with the robustness
and safety guarantees provided by traditional control techniques. This hybrid method
not only addresses the limitations of end-to-end DRL approaches but also ensures that
the autonomous vehicle can operate reliably and safely in a wide range of scenarios while
benefiting from the strengths of both methodologies.

DRL can be broadly categorized into two methods: the value-based approach and
policy-based approach. Value-based DRL, inspired by Q-learning [15], focuses on estimat-
ing the value of different actions to determine the best one. The Deep Q-Network (DQN)
and its successor [16–19] extend this by using neural networks to approximate Q-values
in environments with large state spaces. On the other hand, policy-based DRL methods
directly learn the policy, which maps states to actions without explicitly estimating value
functions. Policy Gradient (PG) methods, inspired by REINFORCE [20], Actor-Critic [21],
such as A2C and A3C [22], PPO [23], and their successors [24–26], optimize a policy by
adjusting its parameters in the direction that maximizes expected rewards. Both approaches
in DRL are widely utilized in the field of autonomous driving [27–30].

In this paper, we propose using the DQN framework to design high-level control
for autonomous driving. The DQN, as a value-based reinforcement learning algorithm,
offers several advantages over policy-based algorithms. It is computationally efficient,
particularly for discrete action spaces, and can achieve stable convergence with techniques
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like experience replay and target networks. These properties make the DQN an ideal choice
for handling high-level decision-making in structured environments. To implement this, we
converted the driving environment into a grid map, where the map is divided into discrete
grids. Each grid represents a specific location, with grids containing the destination and
obstacles distinctly marked. In each time step, the DQN framework determines a high-level
decision, guiding the vehicle to move to a nearby grid based on its learned policy. The
CLF-CBF controller then executes these high-level decisions, refining the vehicle’s trajectory
and ensuring stability, safety, and efficiency throughout the process. This combination of
the DQN for decision-making and CLF-CBF for control execution ensures a robust and
effective approach to autonomous driving in dynamic environments.

Figure 2 illustrates an example of a traffic environment which can be used to train
a DRL-based high-level decision-making agent. The yellow grid represents the vehicle’s
current position, while the red grid indicates the presence of a dynamic obstacle. The
green grid marks the destination. The vehicle’s objective is to navigate around the dynamic
obstacle and reach the destination as quickly as possible. The DRL-based high-level
decision-making agent is responsible for generating basic navigation commands, such as
moving to the grid above or below the current position. These commands serve as guidance
for the overall trajectory planning. The CLF-CBF-QP-based low-level controller, in turn,
interprets and executes these commands with precision, ensuring smooth and safe motion
while adhering to vehicle dynamics and avoiding collisions. This hierarchical structure
enables the seamless integration of high-level strategic decision-making with low-level
control execution, providing both flexibility and robustness in navigation.
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Figure 2. A deep reinforcement learning traffic environment setting. The yellow box shows the
vehicle. The green box shows the target position and the red box shows the obstacle. Reaching the
target in the presence of a rapidly moving dynamic obstacle is demonstrated in this paper and can be
seen in the appropriate demo video links (Supplementary Materials).

Figure 3 demonstrates how to use the CLF-CBF controller to execute high-level steps
generated by the DRL agent. Each high-level decision corresponds to a unique trajectory.
After the DRL-based high-level controller decides, the CLF-CBF controller ensures that the
vehicle moves from the center of the current grid to the center of the next grid. Notably,
there are two possible ways to move to the grid behind the vehicle: either a left turn or a
right turn, both of which are feasible. To handle such scenarios, an additional rule-based
algorithm can be incorporated to select the optimal path based on specific conditions.
Furthermore, the DRL controller may occasionally decide that the vehicle should remain
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stationary. If the DRL chooses not to move, the low-level controller will maintain the
vehicle’s position until the next time step.
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Algorithm 1 demonstrates the DQN framework that was used to train the autonomous
driving high-level decision-making agent in this paper. The Q-value, also known as the
action value, represents the expected cumulative reward that an agent can obtain by starting
from a specific state, s, and then taking a specific action, a. In the DQN, a neural network
approximates the Q-value function. The network takes the current state s as the input and
outputs vectors of Q-values, one for each possible action in the action space. The update
equation of the Q-value function essentially updates the parameter in the neural network.
The Q-value function is updated using the Bellman equation, where the target Q-value is
calculated as the immediate reward plus the discounted maximum Q-value of the next state
(lines 12 and 14 in Algorithm 1). This update process adjusts the parameters of the neural
network through gradient descent, minimizing the loss between the predicted Q-value and
the target Q-value, thereby enabling the network to learn and improve its approximation
of the optimal Q-value function.

Figure 4 demonstrates the structure of the neural network used in the DQN framework.
The neural networks used in this paper are feedforward neural networks. The proposed
DQN agent contains two fully connected hidden layers that each contain 32 neurons. The
corresponding activation function for the hidden layer is ReLU. The learning rate for train-
ing is set to 0.001, using the Adam optimizer, and the model evaluates training performance
using the mean absolute error (MAE) metric. The agent undergoes 1000 warm-up steps
before learning and updates the target network with a rate of 0.01.
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Algorithm 1: DQN algorithm flowchart.

1: Initialize replay memory D
2: Initialize target network Q̂ and Online Network Q with random weights θ

3: for each episode do
4: Initialize traffic environment
5: for t = 1 to T do
6: With probability ϵ select a random action at

7: Otherwise select at = maxaQ∗(st, a; θ)

8: Execute at in CARLA and extract reward rt and next state st+1

9: Store transition (st, at, rt, st+1) in D
10: if t mod training frequency == 0 then
11: Sample random minibatch of transitions (sj, aj, rj, sj+1)) from D
12: Set yj = rj + γmaxa′ Q̂

(
sj+1, a′

)
; θ)

13: for non-terminal sj+1

14: or yj = rj for terminal sj+1

15: Perform a gradient descent step to update θ

16: Every N steps reset Q̂ = Q
17: end if
18: Set st+1= st

19: end for
20: end for
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The neural network in Figure 4 is a deep neural network. The distinction between
shallow and deep neural networks depends on the number of hidden layers; shallow
neural networks typically contain only one hidden layer, while deep neural networks have
two or more hidden layers. Whether a shallow neural network or deep neural network
is appropriate depends largely on the complexity of the task. Neural networks with two
hidden layers are very common in research and often strike a balance between simplicity
and performance. In our research, the environment is relatively simple, with a small grid
map and a limited action space. The deep neural network with two hidden layers is
sufficient to capture the necessary features of this environment. Additionally, because the
neural network used is simple, the training complexity is low, requiring less computational
power and a smaller amount of data. This simplicity also minimizes the risk of overfitting,
making it an efficient choice for this task. In practical applications, if this method were to
be used in a more complex environment—such as one with a larger map size or a more
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diverse action space—a more sophisticated neural network architecture would be required.
This might involve convolutional layers or vision transformer layers for feature extraction
and perception. However, for the given task, the current network design is both sufficient
and computationally efficient.

3. Results
In this section, we present the simulation results of the proposed controller to evaluate

its performance and robustness. First, the CLF-based path-tracking simulation results
are shown, highlighting the controller’s ability to achieve precise path tracking under
normal conditions. Next, the simulation results of the CLF-CBF-based autonomous driving
controller are shown for scenarios involving both static and dynamic obstacles. These
results illustrate the vehicle’s capability to maintain precise path tracking during normal
traffic conditions and effectively execute collision-avoidance maneuvers in emergency
situations. Finally, we present the simulation results of the hybrid framework, where the
DQN-based high-level decision-making agent was combined with the CLF-CBF-based low-
level controller. These results demonstrate how integrating traditional optimization-based
controllers with deep reinforcement learning can significantly enhance the autonomous
driving capabilities of vehicles, enabling better decision-making and improved driving
safety in complex traffic environments. Moreover, all the test conditions were initially
evaluated using simulations within a Python-based environment. These simulations were
then followed by Simulink-based real-time model-in-the-loop (MIL) simulations, which
validated the real-time capabilities of the proposed controller. This two-stage testing
process ensured both the feasibility and practicality of the controller in dynamic and
real-time scenarios.

3.1. CLF-CBF-Based Optimization Controller

In this section, simulations of the CLF-CBF-based autonomous driving controller are
discussed. The vehicle started at a designated initial position and had to navigate to the
given destination. The original path, which was pre-calculated, included obstacles along
the way. The objective of the simulation was to evaluate whether the controller could
effectively perform collision avoidance near obstacles while maintaining accurate path
tracking to the greatest extent possible.

3.1.1. CLF-Based Path-Tracking Controller

Figure 5 shows the real-time MIL simulation results of the CLF-based path-tracking
controller. In the figure, the XY coordinates represent a bird’s-eye view map of the testing
traffic conditions, with the units for both the x- and y-axes being meters. The figure
illustrates that the vehicle followed the desired path with high precision under most
conditions, demonstrating the controller’s effectiveness in path-tracking tasks. However,
a slight deviation from the original path is observed in regions with higher curvature,
where tracking accuracy decreases marginally. This minor deviation could be attributed
to the dynamic complexity introduced by the path’s curvature, which challenged the
controller’s ability to maintain perfect alignment. Despite these small discrepancies, the
overall performance of the CLF-based path-tracking controller was robust, showing its
capability to handle real-time scenarios effectively while maintaining accurate path tracking.
Further refinements or adjustments may help address the minor tracking offsets in the
curved sections to improve performance further. Figure 6 shows the steering angle response,
θ, of the vehicle over time during the simulation. The plot indicates that the controller
maintained stable steering behavior throughout the scenario.
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3.1.2. CLF-CBF-Based Autonomous Driving Controller for Static Obstacle

Figure 7 illustrates the simulation results of the CLF-CBF-based autonomous driving
controller in an environment with a static obstacle. In the figure, the XY coordinates
represent a bird’s-eye view map of the testing traffic conditions, with the units for both the
x- and y-axes being meters. The figure marks the original path waypoints in blue dots, the
fitted B-spline trajectory in orange, and the vehicle’s actual trajectory in green. The presence
of an obstacle, marked as a red circle, required the vehicle to deviate from the original
path to avoid a collision. The simulation demonstrated that the controller successfully
adjusted the vehicle’s trajectory while maintaining safe navigation around the obstacle. This
result highlights the controller’s ability to combine path tracking with collision avoidance
effectively. The smooth transitions and minimal deviation from the intended path illustrate
the robustness of the CLF-CBF framework in handling static obstacles. Figure 8 shows
the steering angle response, θ, of the vehicle over time during the simulation. The plot
indicates that the controller maintained stable steering behavior throughout the scenario.
During the initial phase, slight oscillations in the steering angle could be observed as
the vehicle adjusted to follow the desired trajectory and avoid the static obstacle. These
oscillations diminished over time, and the steering angle stabilized as the vehicle returned
to the planned path after bypassing the obstacle. These results demonstrate the controller’s
ability to make precise adjustments while ensuring stability and smooth operation, even
in scenarios requiring significant maneuvering. The demo video link of this scenario is
attached at the end of this paper.
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3.1.3. CLF-CBF-Based Autonomous Driving Controller for Dynamic Obstacle

Figure 9 presents the simulation results of the CLF-CBF-based autonomous driving
controller in an environment with a dynamic obstacle. In the figure, the XY coordinates
represent a bird’s-eye view map of the testing traffic conditions, with the units for both
the x- and y-axes being meters. The original path waypoints are marked with blue dots,
the fitted B-spline trajectory is in orange, and the vehicle’s actual trajectory is in green.
A dynamic obstacle, represented as a red circle, moved in a circular pattern. When the
obstacle moved to the top and blocked a section of the pre-planned trajectory, the vehicle
was required to deviate from the original path to avoid a collision. The simulation results
demonstrate the controller’s ability to adjust the vehicle’s trajectory dynamically, ensuring
safe navigation around the obstacle. The smooth transitions and minimal deviation from
the intended path highlight the robustness of the CLF-CBF framework in handling dynamic
obstacles effectively. Additionally, Figure 10 illustrates the vehicle’s steering angle response,
θ, over time during the simulation. The plot reveals stable steering behavior throughout the
scenario, with minor oscillations in the middle phase as the vehicle adjusted to the desired
trajectory while avoiding the obstacle. The demo video link of this scenario is attached at
the end of this paper.
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3.2. Hybrid DRL- and CLF-CBF-Based Controller

In this section, simulations of the hybrid DRL- and CLF-CBF-based autonomous
driving controller are presented. The vehicle started in a designated initial position and
needed to navigate to a specified destination, with a freely moving obstacle present in
the environment. There was no pre-calculated path between the initial position and the
destination. Instead, the high-level DRL agent dynamically calculated a rough path based
on the vehicle’s status and the surrounding traffic conditions, while the low-level CLF-
CBF-based controller executed the agent’s decisions. The objective of the simulation was to
evaluate whether the controller could effectively perform collision avoidance and ensure
safe navigation in a dynamic environment.

In this paper, the state representation includes the distance between the vehicle and
the obstacle, as well as the distance between the vehicle and the destination. The action
space consisted of four possible movements: forward, backward, left, and right. A positive
reward of +25 was assigned when the vehicle successfully reached the destination grid.
Conversely, a large negative reward of −300 was imposed if the vehicle collided with an
obstacle by entering its grid. Additionally, a small negative reward of −1 was applied
for every move to encourage the vehicle to reach the destination as quickly as possible,
promoting efficient navigation.

3.2.1. DRL High-Level Decision-Making Agent

Figure 11 demonstrates the training process of the proposed DRL high-level decision-
making agent, which indicates significant improvements in the agent’s performance over
time. The reward plot shows a sharp increase during the early stages, starting from a
highly negative value −6.2 and stabilizing near 0.5 after 300,000 steps, indicating that
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the agent quickly learned a basic policy and continued to refine it. The loss decreases
rapidly from an initial high value 106 to a more stable range after 100,000 steps, with minor
fluctuations throughout the end, which reflects that the agent could effectively minimize
the prediction error. Similarly, the mean Q-values show a notable increase, transitioning
from early negative values to a stable value range around 20 after 100,000 steps. This
demonstrates improved confidence in the action value estimations. Together, these three
plots indicate the agent’s ability to effectively learn and optimize its policy, balancing
exploration and exploitation to achieve improved performance as training progresses. The
minor fluctuations in loss and reward suggest that further fine-tuning may still enhance
stability and performance.
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Figure 12 demonstrates an example of the proposed DRL high-level decision-making
agent. In the figure, the XY coordinates represent a bird’s-eye view map of the testing
traffic conditions, with the units for both the x- and y-axes being meters. The blue line
indicates the trajectory of the proposed agent, and the red line indicates the motion of
the obstacle. It is shown that the agent could navigate through the grid while avoiding
obstacles. The agent began from the starting position on the left and successfully reached
the goal area on the right. The smooth progression of the blue line highlights the agent’s
ability to make efficient decisions to circumvent the moving obstacles while maintaining a
clear path toward the target. In contrast, the red trajectory depicts the dynamic movement
of the obstacle, adding complexity to the environment. This example demonstrates the
agent’s effective decision-making capabilities in handling high-level planning and real-
time obstacle avoidance. The demo video link of other scenarios is attached at the end
of this paper.
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3.2.2. Hybrid DRL and CLF-CBF Controller

Figure 13 demonstrates the trajectory generated by the proposed DRL high-level
decision-making agent. The blue line indicates the real trajectory which could be tracked
by the vehicle. From Figure 13, it can be seen that the rough sketch generated by the
DRL high-level agent was successfully converted into a control feasible path that could
be tracked by the vehicle. Combined with CLF-CBF-QP-based control, the autonomous
vehicle could follow this path, navigating from the starting point to the endpoint without
colliding with the obstacle.
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Figure 14 shows the control flow chart of proposed DRL- and CLF-CBF-QP-based
hybrid autonomous driving control. In this framework, the environment provided the
DRL high-level decision-making agent with key information, such as the relative distance
between the vehicle, the obstacle, and the destination, which served as the input for
decision-making. Simultaneously, the environment sent path-tracking data to the CLF-CBF-
QP-based low-level controller, ensuring precise trajectory tracking. The unicycle model, on
the other hand, supplied the vehicle’s position and orientation to both the environment
and the low-level controller for updates and control command calculations. In each step,
the DRL high-level decision-making agent determined the next grid to move to based on
the vehicle’s status and surrounding information. Once the next grid was selected, the
CLF-CBF-QP-based low-level controller executed the decision by enabling the vehicle to
track and follow a pre-designed trajectory. The unicycle model then carried out the control
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commands sent by the low-level controller and updated its status in real time, closing the
feedback loop. This hierarchical structure ensured that the high-level agent focused on
strategic planning while the low-level controller handled precise execution, maintaining
safety and efficiency.
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Overall, the proposed DRL high-level controller demonstrated its capability to find
collision-free and optimal paths which can be further improved by increasing training
episodes and fine-tuning the hyperparameter.

4. Conclusions and Future Work
This paper explored the potential of integrating learning-based controllers with tra-

ditional optimization-based controllers to address path-planning and collision-avoidance
challenges for autonomous vehicles. We proposed a hybrid control framework that com-
bines CLFs, CBFs, and DRL to achieve safe and efficient autonomous driving. The unicycle
vehicle dynamic model was utilized as a simplified yet practical foundation for design-
ing and evaluating the proposed control strategies. The simulation results demonstrated
that the proposed approach effectively combines the stability and safety guarantees of
optimization-based methods with the adaptability and decision-making capabilities of
machine learning techniques.

Compared to traditional optimization-based controllers, which may struggle to find
optimal paths in complex traffic conditions, the incorporation of a DRL-based high-level
decision-making agent further enhanced the system’s capability to navigate complex traffic
environments. Additionally, the CLF-CBF-QP approach, specifically designed to handle
low-level control steps that are relatively fixed, offers the potential for exploring the use of
lookup tables in the future to further simplify their execution. Compared to the end-to-end
DRL approach, the proposed method did not require extensive computational resources
to train the agent, thus reducing the required training time substantially. Moreover, the
inclusion of CLF-CBF-QP as low-level control allows for the integration of hard-coded safety
rules by setting different CBF constraints and ensures safety under varying traffic conditions.
The CLF-CBF-QP approach exhibited robust performance in different traffic scenarios with
obstacles, achieving precise path tracking while maintaining collision avoidance. Finally,
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the real-time performance demonstrated in the MIL simulations underscores the potential
applicability of the proposed framework in real-world autonomous driving systems.

Despite the advancements presented in this paper, the proposed hybrid controller
has several limitations that require further exploration in future work. First, the unicycle
vehicle model used in this study is an oversimplification and does not fully capture the
complexities of real-world vehicle dynamics. To enhance the controller’s performance
and enable its application in real-world scenarios, a more realistic vehicle dynamic model
should be adopted in the future. However, incorporating advanced vehicle models will
increase the implementation challenges of the CLF-CBF approach and the computational
complexity. To address these issues, advanced techniques should be employed to simplify
the design of CLF-CBF constraints and accelerate the computation process. Future studies
could explore methodologies such as integrating neural networks to approximate the CLF
and CBF, thereby enhancing their applicability to more complex systems.

In addition, the DQN high-level decision-making agent generated a suboptimal solu-
tion in the current test case. This may have been due to many reasons, including a lack of
exploration, training instability, or hyperparameter selections. This highlights a common
limitation of DRL agents, which often settle for “good-enough” (suboptimal) solutions
rather than achieving globally optimal ones. In the future, further improvement can be
achieved by using better exploration strategies, more stable algorithms (like the DDQN,
Dueling DDQN, or other advanced variants), and the careful tuning of hyperparameters. By
integrating these improvements, the DRL agent can potentially generate optimal solutions
most of the time.

Furthermore, the current test case was relatively simple and did not fully showcase
the potential of the proposed method in more complex environments. Future work should
involve simulations of more challenging scenarios and explore sophisticated neural network
architectures to validate the framework comprehensively. SUMO, a highly capable traffic
simulator, can be utilized to create a more realistic traffic environment for training and
evaluating the high-level DRL agent. By leveraging SUMO, we can develop simulations that
closely mimic real-world conditions, enabling the DRL agent to achieve improved results
and enhanced performance in complex and dynamic traffic scenarios. Also, comparisons
between the proposed approach and other RL-based collision-avoidance strategies should
be conducted to better contextualize its performance and advantages.

Moreover, the current testing pipeline was insufficient to comprehensively evaluate
the controller’s capabilities. In this work, the control strategies were only tested using
MIL simulations. To further validate the controller’s performance, hardware-in-the-loop
(HIL) testing should be conducted in future studies. Afterwards, rigorous testing using
the vehicle-in-virtual-environment (VVE) framework [6], as well as real-world road tests,
should be implemented to ensure the robustness, safety, and reliability of the proposed
controller in practical scenarios. Sensing and perceiving obstacles was outside the scope
of this work and can be treated in future work which can also include vehicle-to-vehicle
communication [38]. These future steps will be useful in advancing the hybrid controller
for deployment in autonomous driving systems.

Supplementary Materials: The following supporting information can be downloaded. Demo Video
Link: CLF-CBF for static obstacle (https://www.youtube.com/watch?v=ENxxqRS7FhM, accessed on
20 January 2025), CLF-CBF for dynamic obstacle (https://www.youtube.com/watch?v=v8SkkTvIjtk,
accessed on 20 January 2025), high-level DRL (https://www.youtube.com/shorts/EJVAaHTkuRY,
accessed on, 20 January 2025).

https://www.youtube.com/watch?v=ENxxqRS7FhM
https://www.youtube.com/watch?v=v8SkkTvIjtk
https://www.youtube.com/shorts/EJVAaHTkuRY
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