
Assumed Density Filtering Q-learning

Abstract

While off-policy temporal difference (TD) methods have
widely been used in reinforcement learning due to their ef-
ficiency and simple implementation, their Bayesian coun-
terparts have not been utilized as frequently. One reason is
that the non-linear max operation in the Bellman optimal-
ity equation makes it difficult to define conjugate distribu-
tions over the value functions. In this paper, we introduce a
novel Bayesian approach to off-policy TD methods, called
as ADFQ, which updates beliefs on state-action values, Q,
through an online Bayesian inference method known as As-

sumed Density Filtering. In order to formulate a closed-form
update, we approximately estimate analytic parameters of the
posterior of the Q-beliefs. Uncertainty measures in the be-
liefs not only are used in exploration but also provide a nat-
ural regularization for learning. We show that ADFQ con-
verges to Q-learning as the uncertainty measures of the Q-
beliefs decrease. ADFQ improves common drawbacks of
other Bayesian RL algorithms such as computational com-
plexity. We also extend ADFQ with a neural network. Our
empirical results demonstrate that the proposed ADFQ al-
gorithm outperforms comparable algorithms on various do-
mains including continuous state domains and games from
the Arcade Learning Environment.

Introduction

Bayesian reinforcement learning (BRL) is a classic rein-
forcement learning (RL) technique that utilizes Bayesian
inference to integrate new experiences with prior informa-
tion about the problem in a probabilistic distribution. It ex-
plicitly quantifies the uncertainty of the learning parameters
unlike standard RL approaches which do not properly ac-
count for uncertainty in the parameters. Explicit quantifica-
tion of the uncertainty can help guide policies that consider
the exploration-exploitation trade-off by exploring actions
with higher uncertainty more often. Moreover, it can also
regularize posterior updates by properly accounting for un-
certainty.

Motivated by these potential advantages, a number of
algorithms have been proposed in both model-based BRL
(Dearden, Friedman, and Andre 1999; Strens 2000; Duff
2002; Guez, Silver, and Dayan 2012; Poupart et al. 2006)

Copyright c� 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and model-free BRL (Dearden, Friedman, and Russell 1998;
Engel, Mannor, and Meir 2003; 2005; Geist and Pietquin
2010; Chowdhary et al. 2014; Ghavamzadeh and Engel
2006). However, Bayesian approaches to off-policy tem-

poral difference (TD) learning has been less well-studied
compared to other methods due to difficulty in handling
the max non-linearity in the Bellman optimality equation.
Yet off-policy TD methods have been widely used in stan-
dard RL, including extensions integrating neural network
function approximations such as Deep Q-Networks (DQN)
(Mnih et al. 2013; 2015). One recent influential algorithm
for Bayesian off-policy TD learning is KTD-Q, an exten-
sion of Kalman Temporal Difference (KTD) (Geist and
Pietquin 2010). KTD approximates the value function using
the Kalman filtering scheme, and handles the non-linearity
in the Bellman optimality equation by applying the Un-
scented Transform. Although the KTD framework is able to
integrate some important features in RL, it requires numer-
ous hyperparameters and is difficult to extend to function
approximation methods with large numbers of parameters
due to its high computational complexity.

Another field of probabilistic approaches to RL is Dis-
tributional RL which learns a value distribution or a re-
turn density function from the distributional Bellman equa-
tion. Recent work (Bellemare, Dabney, and Munos) pro-
posed a gradient-based categorical algorithm using a distri-
butional perspective and showed the state-of-the art perfor-
mance in several games from the Arcade Learning Environ-
ment (ALE). The probabilistic approach to the value func-
tion is similar to our approach, however, the value distribu-
tion in their work represents the distribution of the random
return that a learning agent receives, while the Q-belief de-
fined in ADFQ is a belief distribution of a learning agent on
a certain state-action pair. As we show in the experiments,
we are able to utilize the uncertainty measures in the explo-
ration, while only ✏-greedy is used in their experiments.

In this paper, we introduce a novel approximate Bayesian
off-policy TD learning algorithm, which we denote as
ADFQ, that updates beliefs for Q (action value function)
and approximates their posteriors using an online Bayesian
inference algorithm known as assumed density filtering
(ADF). We handle the difficulty in finding a conjugate prior
for the Bellman equation using ADF. In order to reduce the
computational burden of estimating parameters of the ap-

proximated posterior, we propose a method to analytically
estimate the parameters. Unlike Q-learning, the ADFQ up-
date rule considers all possible actions for the next state and
returns a soft-max behavior and regularization using the un-
certainty measures of the Q-beliefs. This can alleviate the
instability of the greedy update discussed by (Harutyunyan
et al. 2016; Tsitsiklis 2002). We prove the convergence of
ADFQ to the optimal Q-values by showing that ADFQ be-
comes identical to Q-learning as all state and action pairs are
visited infinitely often. In addition, ADFQ has better compu-
tational complexity compared with other BRL algorithms.

We first implement the ADFQ algorithm in a small dis-
crete domain and then show how it can be extended to con-
tinuous or large discrete state environments using a neural
network. There are previous works that implement Bayesian
approaches to RL by using uncertainty in the neural network
weights(Azizzadenesheli, Brunskill, and Anandkumar 2018;
O’Donoghue et al. 2017). Our method differs in that it ex-
plicitly computes the variances of the Q-values and can use
the them in the ADFQ update rule. In our experiments,
ADFQ outperforms not only Q-learning and KTD-Q in
tabular settings, but also DQN, and Double DQN ((Has-
selt 2010)) in large or continuous domains. Particularly it
showed dramatic improvements in a stochastic domain and
domains with a large action set.

Background

Assumed Density Filtering

ADF is a general technique for approximating the true pos-
terior with a tractable parametric distribution in Bayesian
networks. It has been independently rediscovered for a num-
ber of applications and is also known as moment matching,
online Bayesian learning, and weak marginalization (Op-
per 1999; Boyen and Koller 1998; Maybeck 1982). Sup-
pose that a hidden variable x follows a tractable paramet-
ric distribution p(x|✓t) where ✓t is a set of parameters at
time t. In the Bayesian framework, the distribution can be
updated after observing some new data (Dt) using Bayes’
rule, p̂(x|✓t, Dt) / p(Dt|x, ✓t)p(x|✓t). In online settings,
a Bayesian update is typically performed after a new data
point is observed, and the updated posterior is then used as
a prior for the following iteration.

When the posterior computed by Bayes’ rule does not
belong to the original parametric family, it can be approx-
imated by a distribution belonging to the parametric fam-
ily. In ADF, the posterior is projected onto the closest dis-
tribution in the family chosen by minimizing the reverse
Kullback-Leibler divergence denoted as KL(p̂||p) where p̂
is the original posterior distribution and p is a distribution
in a parametric family of interest. Thus, for online Bayesian
filtering, the parameters for the ADF estimate is given by
✓t+1 = argmin

✓
KL(p̂(·|✓t, Dt)||p(·|✓)).

Q-learning

RL problems can be formulated in terms of a Markov
Decision Process (MDP) described by the tuple, M =
hS,A,P,R, �i where S and A are the state and action

spaces, respectively, P : S ⇥A ⇥ S ! IR is the state tran-
sition probability kernel, R : S ⇥A ! IR is a reward func-
tion, and � 2 [0, 1] is a discount factor. The value function
is defined as V ⇡(s) = E⇡[

P1
t=0 �

trt(st, at)|s0 = s] for all
s 2 S , the expected value of cumulative future rewards start-
ing at a state s and following a policy ⇡ thereafter. The state-
action value (Q) function is defined as the value for a state-
action pair, Q⇡(s, a) = E⇡[

P1
t=0 �

trt(st, at)|s0 = s, a0 =
a] for all s 2 S, a 2 A. The objective of a learning agent in
RL is to find an optimal policy ⇡⇤ = argmax

⇡
V ⇡ . Finding

the optimal values, V ⇤(·) and Q⇤(·, ·), requires solving the
Bellman optimality equation:

Q⇤(s, a) = Es0⇠P (·|s,a)[R(s, a) + �max
a02A

Q⇤(s0, a0)] (1)

and V ⇤(s) = maxa2A(s) Q
⇤(s, a) 8s 2 S where s0 is the

subsequent state after executing the action a at the state s.
Q-learning is the most popular off-policy TD learning

technique due to its relatively easy implementation and
guarantee of convergence to an optimal policy (Watkins
and Dayan 1992; Kaelbling, Littman, and Moore 1996). Q-
learning updates a Q-value of the current state s and action
a after observing a reward R(s, a) and the next state s0 (one-
step TD learning). The update is based on TD error—a dif-
ference between the TD target, R(s, a) + �maxb Q(s0, b),
and the current Q(s, a) with a learning rate ↵ 2 [0, 1] as
shown below:

Q(s, a) Q(s, a) + ↵

⇣
R(s, a) + �max

b
Q(s0, b)�Q(s, a)

⌘

Bayesian Q-learning with ADF

Belief Updates on Q-values

We define Qs,a as a Gaussian random variable with mean
µs,a and variance �2

s,a
corresponding to the action value

function Q(s, a) for s 2 S and a 2 A. We assume that
the random variables for different states and actions are in-
dependent and have different means and variances, Qs,a ⇠
N (µs,a,�2

s,a
) where µs,a 6= µs0,a0 if s 6= s0 or a 6= a0

8s 2 S, 8a 2 A.
According to the Bellman optimality equation in Eq.1, we

can define a random variable for V (s) as Vs = maxa Qs,a.
In general, the probability density function for the maximum
of Gaussian random variables, M = max1kN Xk where
Xk ⇠ N (µk,�2

k
) and 1 k N , is no longer Gaussian:

p (M = x) =
NX

i=1

1

�i

�

✓
x� µi

�i

◆ NY

j 6=i

�

✓
x� µj

�j

◆
(2)

where �(·) is the standard Gaussian probability density
function (PDF) and �(·) is the standard Gaussian cumulative
distribution function (CDF) (derivation details are provided
in Appendix A).

For one-step Bayesian TD learning, the beliefs on Q =
{Qs,a}8s2S,8a2A can be updated at time t after observing a
reward rt and the next state st+1 using Bayes rule. In order
to reduce notation, we drop the dependency on t denoting
st = s, at = a, st+1 = s0, rt = r, yielding the causally
related 4-tuple ⌧ =< s, a, r, s0 >. We use the one-step TD

Figure 1: An example of the belief update in Eq.3 when |A| = 3, r = 0.0, � = 0.9 and prior (+ green) has µs,a = 0.0,�2
s,a = 0.5. Each

column corresponds to a subsequent state and action pair, (a) b = 1: µs0,b = 1.0,�2
b = 2.0, (b) b = 2: µs0,b = 1.0,�2

b = 0.1, (c) b = 3:
µs0,b = 4.5,�2

b = 0.1. The first row presents how µ̄⌧,b and �̄⌧,b are determined from prior and a part of the likelihood. The second row shows
how c⌧,b (y-axis of the dot) is assigned by TD error (�⌧,b, x-axis of the dot and uncertainty measures �2

s,a + �
2
�
2
s0,b. The third row shows a

softmax-like behavior of the product of CDFs.

target, r + �Vs0 to give the likelihood, p(r + �Vs0 |q, ✓) =
pVs0 ((q � r)/�|s0, q, ✓) where q is a value corresponding to
Qs,a and ✓ is a set of mean and variance of Q. From the
independence assumptions on Q, the posterior update can
be reduced to an update for the belief on Qs,a:

p̂Qs,a(q|✓, r, s0) / pVs0

✓
q � r

�

���� q, s
0, ✓

◆
pQs,a(q|✓)

From the Bellman optimality in Eq.1, Vs0 follows the distri-
bution presented in Eq.2. The resulting posterior distribution
is given as follows (derivation details in Appendix B):

p̂Qs,a(q|✓, r, s
0)

=
1
Z

X

b2A

c⌧,b

�̄⌧,b
�

✓
q � µ̄⌧,b

�̄⌧,b

◆ Y

b02A
b0 6=b

�

✓
q � (r + �µs0,b0)

��s0,b0

◆
(3)

where Z is a normalization constant and

c⌧,b =
1q

�2
s,a

+ �2�2
s0,b

�

0

@ (r + �µs0,b)� µs,aq
�2
s,a

+ �2�2
s0,b

1

A (4)

µ̄⌧,b = �̄2
⌧,b

µs,a

�2
s,a

+
r + �µs0,b

�2�2
s0,b

!
(5)

1

�̄2
⌧,b

=
1

�2
s,a

+
1

�2�2
s0,b

(6)

Note that all next actions are considered in Eq.3 un-
like the conventional Q-learning update which only con-
siders the subsequent action resulting in the maximum Q-
value at the next step (maxb Q(s0, b)). This can lead to a
more stable update rule as updating with only the maximum

Q value has inherent instability (Harutyunyan et al. 2016;
Tsitsiklis 2002). The Bayesian update considers the scenario
where the true maximum Q-value may not be the one with
the highest estimated mean and weights each subsequence
Q-value accordingly. For a stochastic MDP, we can add a
small noise to the likelihood, ��s0,b + ✏.

Each term for action b inside the summation in Eq.3 has
three important features. First of all, µ̄⌧,b is an inverse-
variance weighted (IVW) average of the prior mean and
the TD target mean. Therefore, the Gaussian PDF part be-
comes closer to the TD target distribution if it has a lower
uncertainty than the prior, and vice versa as compared in the
first row (a) and (b) of Fig.1. Next, the TD error, �⌧,b =
(r+�µs0,b)�µs,a, is naturally incorporated in the posterior
distribution with the form of a Gaussian PDF in the weight
c⌧,b. Thus, a subsequent action which results in a smaller
TD error contributes more to the update. The sensitivity of
a weight value is determined by the prior and target uncer-
tainties. An example case is described in the second row of
Fig.1 where �⌧,1 = �⌧,2 > �⌧,3 and �s0,1 > �s0,2 = �s0,3.
Finally, the product of Gaussian CDFs provides for a soft-
max operation. The red curve with dots in the third row of
Fig.1 represents

Q
b0 6=b �(q|r + �µ⌧,b0 , ��⌧,b0) for each b. For

a certain q value (x-axis), the term returns a larger value for
a larger µs0,b as seen in the black circles.

Assumed Density Filtering with Q-Beliefs

The posterior in Eq.3, however, is no longer Gaussian. In
order to continue the Bayesian updates, we approximate the
posterior with a Gaussian distribution using ADF. We mini-
mize KL(p̂Qs,a ||p) with respect to the mean µ and variance
�2 where p = N (·|µ,�2). When the parametric family is
spherical Gaussian, it is shown that µ⇤ = Eq⇠p̂Qs,a (·)[q] and

Figure 2: Relationship between �
2
s,a and its updated value. Each

solid curve represents a different set of parameters. Left: Differing
values of µs0,2 � µs0,1. Right: Differing values of �2

s0,1/�
2
s0,2

�⇤2 = Varq⇠p̂Qs,a (·)[q]. Therefore, the approximate poste-
rior distribution, pQs,a , will be a Gaussian distribution hav-
ing the mean and the variance of the true posterior as its
mean and variance, respectively.

It is fairly easy to analytically derive the mean and the
variance of the true posterior (Eq.3) when |A| = 2. The
derivation and the solutions are presented in Appendix C.
However, to our knowledge, when |A| > 2, there is no
closed-form solution for the ADF parameters. In the next
sections, we prove the convergence of the ADF parameters
to the optimal Q-values for the case |A| = 2 where we can
find the exact mean and variance solutions. Then, we show
how to derive an analytic approximation for the mean and
variance of the ADF parameters that becomes exact in the
small variance limit.

Convergence to Optimal Q-values

The convergence theorem of the Q-learning algorithm has
previously been proven (Watkins and Dayan 1992). We,
therefore, show that the online Bayesian update using ADF
with the posterior in Eq.3 converges to Q-learning for |A| =
2. We apply the approximation from Lemma 1 in order to
prove Theorem 1. Proofs for Lemma 1 and Theorem 1 are
presented in Appendix.

Lemma 1. Let X be a random variable following a normal

distribution, N (µ,�2). Then we have:

lim
�!0

"
�

✓
x� µ

�

◆
� exp

(
�1

2

�x� µ

�

�2

+

)#
= 0 (7)

where [x]+ = max(0, x) is the ReLU nonlinearity.

Theorem 1. Suppose that the mean and the variance of Qs,a

8s 2 S, 8a 2 A are iteratively updated by the mean and the

variance of p̂Qs,a in Eq.3 after observing r and s0 at ev-

ery step. When |A| = 2, the update rule of the mean µs,a

is equivalent to the Q-learning update if the variances ap-

proach to 0. In other words, at the kth update:

lim
k!1
{�}!0

µ(k+1)
s,a

= (1� ↵(k)
⌧

)µ(k)
s,a

+ ↵(k)
⌧

(r + �max
b2A

µ(k)
s0,b)

where ↵⌧ (k) = �(k)
s,a

2
/
⇣
�(k)
s,a

2
+ �2�(k)

s0,b+

2⌘
and b+ =

argmax
b2A µs0,b.

Interestingly, ↵⌧ approaches 1 when �s,a/�s0,b⇤ ! 1
and 0 when �s,a/�s0,b⇤ ! 0 for a deterministic MDP
(✏ = 0). For a stochastic case, such behavior remains but
↵⌧ eventually approaches 0 as the number of visits to (s, a)
grows. This provides a natural learning rate - the smaller
the variance of the next state (the higher the confidence), the
more Qs,a is updated from the target information rather than
the current belief.

Fig. 2 shows empirical evidence that the assumption on
variance for Theorem 1 holds. The updated variance is less
than the current variance for a large range of different pa-
rameters. In addition, it is easily shown that 0 is the fixed
point of Eq.7 in Appendix D.

Analytic ADF Parameter Estimates

Numerical computation of µ⇤ = Eq⇠p̂Qs,a (·)[q] and �⇤2 =

Varq⇠p̂Qs,a (·)[q] using samples becomes unwieldy due to the
large number of samples needed for accurate estimates. We
may expect that this becomes especially problematic in ac-
curately estimating small variances as the number of visits
to corresponding state-action pairs grows. Therefore, in this
section, we show how to accurately estimate the ADF pa-
rameters using an analytic approximation. This estimate be-
comes exact for small variances.

Approximation

Using Lemma 1, the true posterior in Eq.3 is approximated
as the following distribution:

p̃Qs,a(q) =
1

Z

X

b2A

c⌧,bp
2⇡�̄⌧,b

⇥ exp

8
<

:� (q � µ̄⌧,b)
2

2�̄2
⌧,b

�
X

b0 6=b

[r + �µs0,b0 � q]2+
2�2�2

s0,b0

9
=

; (8)

Each term for b 2 A inside the summation can then
be approximated by a Gaussian PDF. Similar to Laplace’s
method, we approximate each term as a Gaussian distribu-
tion by matching the maximum values as well as the curva-
ture at the peak of the distribution. In other words, the max-
imum of the distribution is modeled locally near its peak by
the quadratic concave function:

� (q � µ̄⌧,b)
2

2�̄2
⌧,b

�
X

b0 6=b

[r + �µs0,b � q]2+
2�2�2

s0,b

⇡ � (q � µ⇤
b
)2

2�⇤
b

2

(9)
We find µ⇤

b
and �⇤

b
by matching the first and the second

derivatives, respectively (the coefficient of the quadratic
term gives the local curvature):

µ⇤
b
� µ̄⌧,b

�̄2
⌧,b

=
X

b0 6=b

[r + �µs0,b0 � µ⇤
b
]+

�2�2
s0,b0

(10)

1

�⇤
b

2 =
1

�̄2
⌧,b

+
X

b0 6=b

H (r + �µs0,b0 � µ⇤
b
)

�2�2
s0,b0

(11)

Table 1: ADFQ algorithm

Algorithm 1: ADFQ

Initialize µs,a, �s,a 8s 2 S and 8a 2 A
for each time step t do

at ⇠ ⇡action(st; ✓t)
Perform the action and observe rt and st+1

for each b 2 A
Compute µ⇤

b
, �⇤

b
, k⇤

b
using Eq.11-13

Update µst,at and �st,at using Eq.15 and Eq.16

where H(·) is a Heaviside step function. The self-consistent
piece-wise linear equation for µ⇤

b
can be rewritten as Eq.12.

µ
⇤
b =

0

@ 1
�̄
2
⌧,b

+
X

b0 6=b

H(r + �µs0,b0 � µ
⇤
b)

�2�2
s0,b0

1

A
�1

⇥

0

@ µ̄⌧,b

�̄
2
⌧,b

+
X

b0 6=b

(r + �µs0,b0)

�2�2
s0,b0

H(r + �µs0,b0 � µ
⇤
b)

1

A (12)

This is an IVW average mean of the prior, the TD target dis-
tribution of b, and other TD target distributions whose means
are larger than µ⇤

b
. The height of the peak is computed for

q = µ⇤
b
,

k
⇤
b =

c⌧,b�
⇤
b

�̄⌧,b
exp

8
<

:�
(µ⇤

b � µ̄⌧,b)
2

2�̄2
⌧,b

�
X

b0 6=b

[r + �µs0,b0 � µ
⇤
b]

2
+

2�2�2
s0,b0

9
=

;
(13)

The final approximated distribution is a Gaussian mixture
model with µ⇤

b
,�⇤

b
, k⇤

b
for all b 2 A:

p̃Qs,a =
1

Z

X

b2A

k⇤
b

�⇤
b

�

✓
q � µ⇤

b

�⇤
b

◆
(14)

Finally, we can update the belief distribution over Qs,a with
the mean and variance of the mixture model:

Eq⇠p̃(·)[q] =

P
b2A k

⇤
bµ

⇤
bP

b2A k
⇤
b

(15)

Varq⇠p̃(·)[q] =

P
b2A k

⇤
b (µ

⇤
b
2 + �

⇤
b
2)

P
b2A k

⇤
b

�
�
Eq⇠p̃(·)[q]

�2 (16)

k⇤
b

can be seen as a weight. As shown in Eq.13, it has
the TD error penalizing term, c⌧,b, but also penalizes how
far µ̄⌧,b is shifted towards larger TD target distributions.
Moreover, the remaining terms provides a softened maxi-
mum property over b. The final algorithm is summarized in
Table.1. The computational complexity of each update of the
algorithm is O(|A|2). If we numerically compute the mean
and variance of the true posterior from samples, the compu-
tational complexity becomes O(m|A|) where m is the num-
ber of samples. The space complexity of the algorithm is
O(|S||A|). As a result, ADFQ is more efficient than KTD-
Q where the computational complexity is O(|S|2|A|3) and
the space complexity is O(|S|2|A|2) in finite state and ac-
tion spaces.

Convergence of ADFQ

Theorem 1 extends to the ADFQ algorithm. The contraction
behavior of the variances in the case of Theorem 1 is also
empirically observed in ADFQ (Proof in Appendix D).
Theorem 2. The ADFQ update on the mean µs,a 8s 2 S ,

8a 2 A for |A| = 2 is equivalent to the Q-learning update

if the variances approach 0 and if all state-action pairs are

visited infinitely often. In other words, we have :

lim
k!1
{�}!0

µ(k+1)
s,a

= (1� ↵(k)
⌧

)µ(k)
s,a

+ ↵(k)
⌧

(r + �max
b2A

µ(k)
s0,b)

where ↵⌧ (k) = �(k)
s,a

2
/
⇣
�(k)
s,a

2
+ �2�(k)

s0,b+

2⌘
and b+ =

argmax
b2A µs0,b.

As we have observed the behavior of ↵⌧ in Theorem 1, the
learning rate ↵⌧ again provides a natural learning rate with
the ADFQ update. We can therefore think of Q-learning as
a special case of ADFQ.

Experiments in a Discrete MDP

Algorithms and Domain

In addition to ADFQ, we evaluate a numerical approxima-
tion of the mean and variance of Eq.3 (denoted as ADFQ-
Numeric). For both ADFQ and ADFQ-Numeric, we use
two action policies: Bayesian Sampling (BS) selects at =
argmax

a
qst,a where qst,a ⇠ pQst,a

(·|✓t), and ✏-greedy se-
lects a random action with ✏ probability and selects the ac-
tion with the highest mean otherwise. In implementation,
we fixed the initial variance to 100.0 and the variances are
bounded by a small value 2 [10�5, 10�20] since variance
dramatically drops and it eventually exceeds the precision
range of computers. For a stochastic case, we used a noise
(✏ = 0.001) and experience replay (Lin 1993) with a batch
size of 30. For comparison, we test Q-learning with ✏-greedy
and Boltzmann action policies. The learning rate decreases
as the number of visits to a state-action pair increases start-
ing from 0.5 (Lagoudakis and Parr 2003). KTD-Q with ✏-
greedy and its active learning scheme are also examined.
The same hyperparameter values as the ones in the original
paper are used if presented. All other hyperparameters are
selected through cross-validation (presented in Appendix E).

We test our algorithms in Maze (� = 0.95, Figure 3)
from (Dearden, Friedman, and Russell 1998) with/without
stochasticity in finite learning steps (TH = 30000). Since
the KTD-Q algorithm was not able to handle a large discrete
state space in reasonable time due to its high computational
complexity, we reduced the state space to |S| = 112. The
agent’s goal is to collect the flags ”F” and escape the maze
through the goal position ”G” starting from ”S”. It receives

Figure 3: Maze Domain

Figure 4: Top: Root Mean Square Error (RMSE) of Q or µ from
the optimal Q-values in Maze (left: deterministic, right: stochastic).
Bottom: Greedy evaluation during learning smoothed by a moving
average with window 4 (left: deterministic, right: stochastic)

a reward equivalent to the number of flags it has collected
at ”G”. The agent remains at the current state if it performs
an action toward a wall (black block). For a stochastic case,
the agent slips with a probability 0.1 and moves to the right
perpendicular direction.

Results

We first examined the convergence to the optimal Q-
values using randomly generated fixed trajectories <
s0, a0, r0, s1, · · · > for all algorithms in order to evaluate
only the update part of each algorithm. During learning,
we computed the root mean square error (RMSE) between
the estimated Q-values (or means) and the true optimal Q-
values, and plotted the averaged results over 10 trials in Fig
.4. Next, we evaluated the performance of each algorithm
with different action policies during learning. At every 300
steps, the current policy was greedily evaluated where the
maximum number of steps was bounded by 1.5 times of the
optimal path length or it was terminated when the goal was
reached. The entire experiment was repeated 10 times and
the results were averaged.

As shown in Fig.4, ADFQ converged to the optimal
Q-values quicker than all other algorithms including Q-
learning. In addition, ADFQ with ✏-greedy and ADFQ with
BS showed similar results and converged to the optimal per-
formance (3.0) faster than the comparing algorithms in both
deterministic and stochastic cases. Q-learning with ✏-greedy
learned an optimal policy almost as fast as ADFQ in the
deterministic case, but the performance of ADFQ was im-
proved dramatically in the stochastic case. KTD-Q diverged
and performed poorly since its derivative-free approxima-
tion nature does not scale well with the number of parame-
ters. In Appendix F, we show good performance of KTD-Q
and its converging behavior in a small domain.

ADFQ-Numeric initially resulted in a large jump in
RMSE and learned very little in the deterministic domain.

This can be explained by the fact that the mean of the max-
imum of Gaussian random variables is equal to or larger
than the maximum of means of Gaussian random vari-
ables (i.e. E[M = maxi=1···N Xi] � maxi=1···N E[Xi]).
While this can speed up learning in a certain type of do-
main, it impedes learning in the Maze domain. When the
agent performs an upward action, the agent receives no
reward and remains at the current position. In this step,
ADFQ-Numeric increases the Q-value while Q-learning and
ADFQ decreases it. ADFQ reduces this amount through
the small-variance approximation. In the stochastic case,
ADFQ-numeric reaches the optimal performance after a
large number of time steps. This shows the validity of the
ADF update, though performance is hindered by the afore-
mentioned problem.

ADFQ with Neural Networks

In this section, we extend our algorithm to a continuous or
large state space environment with neural networks similar
to Deep Q-Networks (DQN) proposed in (Mnih et al. 2013;
2015). In the Deep ADFQ model with network parameters
✓, the output of the network is mean µ(s, a; ✓) and variance
�2(s, a; ✓) of each action for a given state s as shown in
Fig.5. In practice, we use � log(�s,a) instead of �2

s,a
for the

output in order to ensure positive values for the variance. As
in DQN, we have a train network(✓) and a target network(✓0).
Mean and variance values for s and s0 from the target net-
work are used as inputs into the ADFQ algorithm to compute
the desired mean, µADFQ, and standard deviation, �ADFQ

for the train network. We used experience replay (prioritized
(Schaul et al. 2015) for Atari games) and a combined Huber
loss functions of mean and variance.

In order to demonstrate the effectiveness of our algorithm,
we tested on continuous state domains, CartPole and Ac-
robot, and on Atari games, Breakout(|A| = 4), Pong(|A| =
6), Asterix(|A| = 9), Enduro(|A| = 9) from the OpenAI
gym simulator (Brockman et al. 2016). For baselines, we
used DQN and Double DQN (DDQN) with experience re-
play (prioritized for Atari games) implemented in OpenAI
baselines (Dhariwal et al. 2017) with their default hyper-
parameters except for setting � = 0.99 for all tasks. We
used ✏-greedy action policy with ✏ annealed from 1.0 to 0.01
(0.02 for CartPole and Acrobot) for the baselines as well as
ADFQ. Additionally, we used Bayesian Sampling (BS) for
ADFQ action policy. Further details on the network archi-

Figure 5: A neural network model for ADFQ

Figure 6: Performance of ADFQ, DQN, and Double DQN (DDQN) during learning smoothed by a moving average with window 4. Shaded
areas denote inter-quartile range. From the top left to the bottom right : Cartpole, Acrobot, Breakout, Pong, Asterix, Enduro

tecture and hyperparameters are provided in Appendix G.
The algorithms were evaluated for 200K training steps in

the continuous domains and for 5M frames (1.25M training
steps) in the Atari games. Similar to the previous evaluation,
each learning was greedily evaluated at every epoch for 5
times bounded by 10K steps in each trial, and their averaged
results are presented in Fig.6. The entire experiment was re-
peated for 5 and 3 random seeds for the continuous domains
and the Atari games, respectively. Rewards were normalized
to (�1, 0, 1) and different from raw scores of the games.

In all Atari games, ADFQ with BS showed dramatic in-
creases in its performance at the beginning. It also notably
surpassed the other algorithms in the domains where ac-
counting for uncertainty in exploration is more advanta-
geous (the large number of actions). Particularly, in Enduro,
ADFQ with Bayesian sampling achieved the near optimal
performance within 1M frames with a raw score of up to
7,181 (a video is attached)! This is very impressive com-
pared to the raw scores of the other state-of-the art results
after 200M training frames (Categorical DQN: 3,454, Pri-
oritized Dueling Architecture: 2,306.4 (Bellemare, Dabney,
and Munos)). In addition, the variance estimates may help
in the initial learning stages as it can trust certain state action
pairs heavily and update aggressively towards them.

Discussion

We proposed an approach to Bayesian off-policy TD method
called ADFQ. ADFQ surpassed the performance of Q-
learning and KTD-Q in a small finite domain, and out-
performed DQN and Double DQN in various continuous
and large discrete domains. The presented ADFQ algorithm
demonstrates several intriguing results.

Non-greedy Update. Unlike the conventional Q-learning
algorithm, ADFQ incorporates the information of all pos-
sible actions for the subsequent state in the update with
weights depending on TD errors and uncertainty measures.

Regularization with uncertainty. ADFQ provides an in-
tuitive update - a state-action pair with higher uncertainty in
its Q belief has a smaller weight contributing less to the up-
date. Therefore, we make use of our uncertainty measures
not only in exploration but also in the value update with nat-
ural regularization based on the current beliefs.

Convergence to Q-learning. We prove that ADFQ con-
verges to Q-learning as the variances decrease and can be
seen as a more general form of Q-learning.

Improved drawbacks of BRL. One of the major draw-
backs of BRL approaches is their higher computational com-
plexity than standard RL algorithms (Ghavamzadeh et al.
2015). ADFQ is computationally more efficient than KTD-
Q and requires only two hyperparameters to be chosen.

Scalability ADFQ is extended to Deep ADFQ with a
neural network, and with the Bayesian sampling, it demon-
strates that it makes use of the uncertainty information in
exploration especially when the number of available actions
is large and reasonable exploration is required.

We would like to highlight the fact that ADFQ is the
Bayesian counterpart of Q-learning and is orthogonal to
most other advancements made in Deep RL. ADFQ merely
changes the loss function and we compare with basic archi-
tectures here to provide insight as to how it may improve the
performance. ADFQ can be used in conjunction with other
extensions and techniques such as Double DQN, multistep
returns, and Dueling Architecture (Wang et al. 2015).

References

Azizzadenesheli, K.; Brunskill, E.; and Anandkumar, A.
2018. Efficient exploration through bayesian deep q-
networks. arXiv preprint arXiv:1802.04412.
Bellemare, M. G.; Dabney, W.; and Munos, R. A distribu-
tional perspective on reinforcement learning.
Boyen, X., and Koller, D. 1998. Tractable inference for
complex stochastic processes. In Proceedings of the Four-

teenth conference on Uncertainty in artificial intelligence.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
Chowdhary, G.; Liu, M.; Grande, R.; Walsh, T.; How, J.;
and Carin, L. 2014. Off-policy reinforcement learning with
gaussian process. IEEE/CAA Journal of Automatica Sinica

1(3):227–238.
Dearden, R.; Friedman, N.; and Andre, D. 1999. Model
based bayesian exploration. In Proceedings of the 15th con-

ference on Uncertainty in artificial intelligence, 150–159.
Morgan Kaufmann Publishers Inc.
Dearden, R.; Friedman, N.; and Russell, S. 1998. Bayesian
q-learning. In AAAI/IAAI, 761–768.
Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert,
M.; Radford, A.; Schulman, J.; Sidor, S.; and Wu, Y. 2017.
Openai baselines. https://github.com/openai/
baselines.
Duff, M. 2002. Optimal learning: Computational procedures
for bayes-adaptive markov decision processes. PhD thesis,

University of Massachusetts, Amherst.
Engel, Y.; Mannor, S.; and Meir, R. 2003. Bayes meets bell-
man: The gaussian process approach to temporal difference
learning. In Proceedings of the 20th International Confer-

ence on Machine Learning, volume 20.
Engel, Y.; Mannor, S.; and Meir, R. 2005. Reinforcement
learning with gaussian processes. In Proceedings of the 22nd

International Conference on Machine Learning, 201–208.
Geist, M., and Pietquin, O. 2010. Kalman temporal dif-
ferences. Journal of artificial intelligence research 39:483–
532.
Ghavamzadeh, M., and Engel, Y. 2006. Bayesian policy
gradient algorithm. In Advances in Neural Information Pro-

cessing Systems (NIPS), 457–464.
Ghavamzadeh, M.; Mannor, S.; Pineau, J.; and Tamar, A.
2015. Bayesian reinforcement learning: A survey. Founda-

tion and Trends in Machine Learning 8(5-6):359–483.
Guez, A.; Silver, D.; and Dayan, P. 2012. Efficient
bayes-adaptive reinforcement learning using sample-based
search. In Advances in Neural Information Processing Sys-

tems (NIPS), 1071–1079.
Harutyunyan, A.; Bellemare, M. G.; Stepleton, T.; and
Munos, R. 2016. Q (�) with off-policy corrections. In
International Conference on Algorithmic Learning Theory,
305–320. Springer.
Hasselt, H. V. 2010. Double q-learning. In Advances in

Neural Information Processing Systems (NIPS).

Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996.
Reinforcement learning: A survey. Journal of Artificial In-

telligence Research 4:237–285.
Lagoudakis, M. G., and Parr, R. 2003. Least-squares
policy iteration. Journal of machine learning research

4(Dec):1107–1149.
Lin, L.-J. 1993. Reinforcement learning for robots using
neural networks. Technical report, Carnegie-Mellon Univ
Pittsburgh PA School of Computer Science.
Maybeck, P. S. 1982. Stochastic models, estimation and
control. Academic Press chapter 12.7.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. In Advances in

Neural Information Processing Systems (NIPS) Deep Learn-

ing Workshop.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7549):529–533.
O’Donoghue, B.; Osband, I.; Munos, R.; and Mnih, V. 2017.
The uncertainty bellman equation and exploration. arXiv

preprint arXiv:1709.05380.
Opper, M. 1999. A bayesian approach to online learning.
On-Line Learning in Neural Networks.
Poupart, P.; Vlassis, N.; Hoey, J.; and Regan, K. 2006. An
analytic solution to discrete bayesian reinforcement learn-
ing. In Proceedings of the 23rd International Conference on

Machine Learning, volume 20, 697–704.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D.
2015. Prioritized experience replay. arXiv preprint

arXiv:1511.05952.
Strens, M. 2000. A bayesian framework for reinforcement
learning. In Proceedings of the 17th International Confer-

ence on Machine Learning, 943–950.
Tsitsiklis, J. N. 2002. On the convergence of optimistic
policy iteration. Journal of Machine Learning Research

3(Jul):59–72.
Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanc-
tot, M.; and De Freitas, N. 2015. Dueling network ar-
chitectures for deep reinforcement learning. arXiv preprint

arXiv:1511.06581.
Watkins, C. J., and Dayan, P. 1992. Q-learning. In Machine

Learning, 279–292.

