
Iterative Transformer Network for 3D Point Cloud

Wentao Yuan David Held Christoph Mertz Martial Hebert
The Robotics Institute

Carnegie Mellon University
{wyuan1, dheld, cmertz, mhebert}@cs.cmu.edu

Abstract

3D point cloud is an efficient and flexible representa-
tion of 3D structures. Recently, neural networks operating
on point clouds have shown superior performance on tasks
such as shape classification and part segmentation. How-
ever, performance on these tasks are evaluated using com-
plete, aligned shapes, while real world 3D data are partial
and unaligned. A key challenge in learning from unaligned
point cloud data is how to attain invariance or equivari-
ance with respect to geometric transformations. To address
this challenge, we propose a novel transformer network that
operates on 3D point clouds, named Iterative Transformer
Network (IT-Net). Different from existing transformer net-
works, IT-Net predicts a 3D rigid transformation using an
iterative refinement scheme inspired by classical image and
point cloud alignment algorithms. We demonstrate that
models using IT-Net achieves superior performance over
baselines on the classification and segmentation of partial,
unaligned 3D shapes. Further, we provide an analysis on
the efficacy of the iterative refinement scheme on estimating
accurate object poses from partial observations.

1. Introduction
3D point cloud is the raw output of most 3D sensors and

multiview stereo pipelines [6] and a widely used represen-
tation for 3D structures in applications such as autonomous
driving [7] and augmented reality [11]. Due to its efficiency
and flexibility, there is a growing interest in using point
clouds for high level tasks such as object recognition, skip-
ping the need for meshing or other post-processing. These
tasks require an understanding of the semantic concept rep-
resented by the points. On other modalities like images,
deep neural networks [8, 12] have proven to be a powerful
model for extracting semantic information from raw sensor
data, and have gradually replaced hand-crafted features. A
similar trend is happening on point clouds. With the intro-
duction of deep learning architectures like PointNet [16],
it is possible to train powerful feature extractors that out-

Figure 1: Iterative Transformer Network (IT-Net) predicts
rigid transformations from point clouds in an iterative fash-
ion. It can be used independently as a pose estimator or
jointly with classification and segmentation networks.

perform traditional geometric descriptors on tasks such as
shape classification and object part segmentation.

However, existing benchmark datasets [23, 25] that are
used to evaluate performance on these tasks make two sim-
plifying assumptions: first, the point clouds are sampled
from complete shapes; second, the shapes are aligned in
a canonical coordinate system1 (see Figure 2). These as-
sumptions are rarely met in real world scenarios. First, due
to occlusions and sensor limitations, real world 3D scans
usually contain holes and missing regions. Second, point
clouds are often obtained in the sensors coordinates, which
do not align with the canonical coordinates of the object
model. In other words, real 3D point cloud data are partial
and unaligned.

1In ModelNet [23], shapes are allowed to have rotations, but only along
the vertical axis.

ar
X

iv
:1

81
1.

11
20

9v
1

 [
cs

.C
V

]
 2

7
N

ov
 2

01
8

Figure 2: Complete point clouds in canonical frame (top
row) versus partial point clouds in our dataset (bottom row).
Note how the canonical frame defines a correspondence
across different models in the same category.

In this work, we tackle the problem of learning from
partial, unaligned point cloud data. To this end, we build
a dataset consisting of partial point clouds generated from
virtual scans of CAD models in ModelNet and ShapeNet.
Our dataset contains challenging inputs with arbitrary 3D
rotation, translation and realistic self-occlusion patterns.

A key challenge in learning from such data is how to
learn features that are invariant or equivariant with respect
to geometric transformations. For tasks like classification,
we want the output to remain the same if the input is trans-
formed. This is called invariance. For tasks like pose esti-
mation, we want the output to vary according to the trans-
formation applied on the input. This is called equivariance.

This property can be achieved via a transformer network
[9], which predicts a transformation that is applied to the in-
put before feature extraction. This allows explicit geometric
manipulation of data within networks, so the networks can
learn to align the inputs into a canonical space that makes
subsequent tasks easier. T-Net [16] is a transformer network
based on PointNet that operates on 3D point clouds. How-
ever, T-Net outputs an unconstrained affine transformation.
This can introduce undesirable shearing and scaling which
causes the object to lose its shape (see Figure 3). Moreover,
T-Net is evaluated on inputs with 2D rotations only.

Therefore, we propose a novel transformer network on
3D point clouds, named Iterative Transformer Network (IT-
Net). It has two major differences from T-Net. First, it out-
puts a rigid transformation instead of an affine transforma-
tion. This preserves the shape of the inputs and leads to bet-
ter performance on subsequent tasks such as shape classifi-
cation and part segmentation. Further, this allows us to use
the outputs of IT-Net directly as estimates of object poses.
Second, instead of predicting the transformation in a single
step, IT-Net takes advantage of an iterative scheme which
decomposes a large transformation into smaller ones that
are easier to predict. We note that similar ideas of iterative
pose refinement have been employed by classical image and
point cloud alignment algorithms [3, 15].

(a) Input (b) Transformed input

Figure 3: T-Net [16] scales and distorts the input. Note the
different scales on the plots.

We evaluate the performance of IT-Net on 3 different
tasks – pose estimation, shape classification and object part
segmentation (Figure 1) – using inputs with 3D rotation and
translation from our partial point cloud dataset. Our ex-
periments demonstrate that models trained with IT-Net can
learn transformation-invariant or equivariant features from
challenging partial inputs. Further, IT-Net can be readily in-
tegrated into various state-of-the-art networks and improve
their performance on different tasks.

The key contributions of our work are as follows:

• We propose a new transformer network on 3D point
clouds that uses iterative refinement to predict rigid
transformations;

• We show that our transformer can be used indepen-
dently as a pose estimator or trained jointly with classi-
fication and segmentation networks and increases per-
formance over baselines in both sets of tasks;

• We introduce a benchmark dataset for shape classifica-
tion and object part segmentation consisting of partial,
unaligned point clouds.

2. Related Work

Feature Learning on Point Clouds Traditional point
cloud features [1, 19, 21] rely on statistical properties of
points such as local curvatures. They do not encode seman-
tic information and it is non-trivial to find the combination
of features that is optimal for specific tasks.

PointNet [16, 17] proposes a way to extract semantic and
task-specific features from point clouds using a deep neural
network. The key idea of PointNet is to use a symmetric
function (e.g. max-pooling) to aggregate pointwise features
so that the global feature is invariant to permutations of the
points. A drawback of PointNet is that it does not account
for local interactions among points. Thus, several exten-
sions [13, 22] which augment the input with information
from local neighborhoods of points have been proposed.

Most datasets [23, 25] used to evaluate feature learning
on point clouds consist of complete point clouds. A few
works [16, 26] have investigated feature learning from par-
tial point clouds. However, they all assume that the point
clouds are aligned in a canonical coordinate system. In
this work, we show how to remove this assumption using
a transformer network.

Spatial Transformer Network Spatial Transformer Net-
work (STN) [9] is a network module that performs explicit
geometric transformations on the input data. STN can be
thought of as a geometry predictor which models the com-
plicated non-linear relationship between the appearance of
the image and geometric transformations. It can be trained
jointly with classification networks and has the benefit of
introducing invariance to geometric transformations.

Inverse Compositional Spatial Transformer Network
(IC-STN) [14] is an extension of STN that makes use of an
iterative alignment scheme analogous to the Lucas-Kanade
algorithm [15]. It demonstrates that geometric transforma-
tions can be predicted from images more accurately in an
iterative fashion.

3. Iterative Transformer Network
Iterative Transformer Network (IT-Net) takes a 3D point

cloud and produces a transformation that can be used di-
rectly as a pose estimate or applied to the input before fea-
ture extraction for subsequent tasks. Alternatively, we can
think of its output as the transformation between the input’s
coordinates and the canonical coordinates of the semantic
concept represented by input, which can be defined either
explicitly as in Figure 2 or implicitly as any coordinate sys-
tem that makes subsequent tasks (e.g. classification) easier.

IT-Net has two key features that differentiate it from ex-
isting transformer networks on 3D point clouds: first, it pre-
dicts a 3D rigid transformation; second, the final output is
composed of multiple transformations produced in an iter-
ative fashion. We will introduce these features one by one
followed by additional implementation details.

3.1. Rigid Transformation Prediction

A 3D rigid transformation T is an element of the Spe-
cial Euclidean group SE(3). It consists of a rotation R and
translation t where R is a 3 × 3 matrix satisfying RRT =
I, det(R) = 1 and t is a 3×1 vector. Due to the constraints
on R, it is inconvenient to represent the rotation as a 3 × 3
matrix during optimization. Thus, many classical [3] as
well as modern deep learning methods [10, 24] parametrize
3D rotations with unit quaternions. This parametrization al-
lows us to map an arbitrary 4D vector to a valid rotation.

Similar to PointNet [16] used for classification, a single
iteration IT-Net consists of a shared multi-layer perceptron

for each point and a max-pooling aggregation function fol-
lowed by fully connected layers, but instead of predicting
class scores, it outputs 7 numbers – the first 4 are normal-
ized into a unit quaternion q and the last 3 are treated as a
3D translation vector t. Then, q and t are assembled into a

4 × 4 matrix T =

[
R(q) t
0 1

]
where R(q) is the rotation

matrix corresponding to q. Representing the output trans-
formation as 4 × 4 matrices turns the composition of two
rigid transformations into a matrix multiplication, which is
useful for the multi-iteration IT-Net introduced in 3.2.

In contrast to the affine transformation produced by T-
Net, the rigid transformation predicted by IT-Net can be di-
rectly interpreted as a 6D pose, making it possible to use IT-
Net independently for pose estimation. More importantly,
rigid transformations preserve scales and angles. As a re-
sult, the appearance of a point cloud will not vary drastically
if it is transformed by the output of IT-Net. This makes it
possible to apply the same network iteratively (see Figure 4)
to obtain a more accurate estimation of the transformation.

We note that it is possible to add a regularization term
‖AAT − I‖ that forces an affine matrix A to be orthogonal
in order to achieve similar effects of predicting a rigid trans-
formation2. We explore this possibility (named T-Net reg)
in our experiments and show that the results are not as good
as the network that directly predicts a rigid transformation.

3.2. Iterative Alignment

The idea of using an iterative scheme for predicting ge-
ometric transformations goes back to the classical Lucas-
Kanade (LK) algorithm [15] for estimating dense alignment
between images. The key insight of LK is that the com-
plex non-linear mapping from image appearance to geomet-
ric transformations can be estimated iteratively using sim-
ple linear predictors. Specifically, at each iteration, a warp
transformation ∆p is predicted with a linear function that
takes a source and a target image as inputs. Then, the source
image is warped by ∆p and the process is repeated. The
final transformation is a composition of ∆p at each step.
Later, [2] shows that the parameters used to predict ∆p can
remain constant across iterations while achieving the same
effect as non-constant predictors.

The same idea is employed in the Iterative Closest Point
(ICP) algorithm [3] for the alignment of 3D point clouds.
At each iteration of ICP, a corresponding set is identified
and a rigid transformation ∆T is produced to align the cor-
responding points. Then, the source point cloud is trans-
formed by ∆T and the process is repeated. Again, the final
output is a composition of ∆T at each step. The effective-
ness of ICP shows that the iterative refinement framework
applies not only to images, but also to 3D point clouds.

2In [16], this regularization is added to the feature transformation, but
not to the input transformation.

Figure 4: Illustration of the iterative scheme employed by IT-Net. At each iteration, the output of the network is used to
transform the input for the next iteration. The network parameters (green arrows) are shared across iterations. The final
output is a composition of the transformations predicted at each iteration. Arrows colored in red indicate places where the
gradient flow is stopped to decorrelate the inputs at different iterations.

The multi-iteration IT-Net (Figure 4) can be viewed as
an instantiation of this iterative framework. Specifically, the
prediction of the transformation T is unfolded into multiple
iterations. At the i-th iteration, an update transformation
∆Ti is predicted using the network introduced in 3.1. Then,
the input is transformed by ∆Ti and the process is repeated.
The final output after n iterations is a composition of the
transformations predicted at each iteration, which can be
written as a simple matrix product Tn =

∏1
i=n ∆Ti. Fol-

lowing [2], we use a fixed predictor (i.e. share the network’s
parameters) across iterations.

The iterative refinement scheme can be interpreted as a
form of gradient descent. In LK, each update is a gradient
step that brings the source closer to the target. In ICP, the
update is no longer a gradient step, but it has similar effects
of bringing the source closer to the target. Consequently,
the magnitudes of the update transformations diminish as
the algorithms converge, just like the gradient approaches 0
near a local optimum. In the case of IT-Net, the input is a
single point cloud instead of a pair of images or point clouds
and the transformation is predicted by a neural network. De-
spite these differences, we observe that the transformations
predicted by IT-Net also have diminishing magnitudes (Fig-
ure 5). This behavior shows that in a sense, IT-Net is learn-
ing the “gradient transformation” that will bring the input
shape closer to its appearance in the canonical frame.

3.3. Implementation Details

In addition to the key ingredients above, there are a cou-
ple of details that are important for the training of IT-Net.

First, we initialize the network to predict the identity
transformation, i.e. q = [1 0 0 0], t = [0 0 0]. In this
way, the default behavior of each iteration is to preserve the
transformation predicted by previous iterations, similar to
residual networks [8]. This initialization is especially im-

Figure 5: Magnitude of rotation (left) and translation (right)
predicted by IT-Net decreases with more iterations.

portant when the number of iterations becomes large.
Second, we stop the gradients flowing through the input

transformations, indicated by red edges in Figure 4. This
removes the dependence of the input at each iteration from
the predictions of previous iterations. The reason behind
this design choice can be perceived in terms of the analogy
between IT-Net and gradient descent. If we interpret the
prediction of IT-Net at each iteration as the gradient direc-
tion at a point, then it should not depend on the path that
leads to the point.

4. Experiments
In this section, we evaluate the efficacy of IT-Net on var-

ious tasks. First, we demonstrate its use as a plug-in module
that improves the performance of state-of-the-art classifica-
tion and segmentation networks. Next, we show that it can
also be used independently for pose estimation.

4.1. Partial 3D Shape Classification

In this section, we evaluate IT-Net on the classification
of partial, unaligned shapes and show that it can improve
the performance of classification networks by introducing
invariance to geometric transformations.

Data As noted in Section 1, existing benchmark datasets
for 3D shape classification such as ModelNet40 [23] fail to
capture the incomplete and unaligned nature of real world
3D data. To test the performance of classifiers under a more
realistic setting, we build the partial ModelNet40 dataset.
To the best of our knowledge, this is the first controlled
dataset for partial 3D shape classification.

The dataset consists of 81,212 point clouds from 40 cat-
egories, split into 78,744 for training and 2,468 for testing.
Each point cloud is generated by fusing a sequence of depth
scans of models in ModelNet40 into a point cloud. Figure
6 includes some qualitative examples. It can be seen that
the point clouds are in a variety of poses with realistic self-
occlusion patterns. Please refer to the supplementary for
more details on the data generation.

Model The network used for the partial shape classifica-
tion task consists of two parts – the transformer and the clas-
sifier. The transformer takes a point cloud and produces a
transformation T . The classifier takes the point cloud trans-
formed by T and outputs a score for each class. The en-
tire network is trained with cross-entropy loss on the class
scores and no explicit supervision is applied on T .

We compare classifiers trained with three different trans-
formers, IT-Net, T-Net and regularized T-Net (T-Net reg)
against the baseline classifier that does not use a trans-
former. All three transformers have the same architecture
except for the last layer. Specifically, the architecture con-
sists of three parts. The first part is a multi-layer percep-
tron that is applied on each point independently. It takes the
N × 3 coordinate matrix and produces a N × 1024 feature
matrix. The second part is a max-pooling function which
aggregates the features in to a 1×1024 vector. The third part
is another multi-layer perceptron which outputs the trans-
formation parameters. For IT-Net, the last layer outputs 7
numbers for rotation (quaternion) and translation. For T-
Net and T-Net reg, the last layer outputs 9 numbers to form
a 3 × 3 affine transformation matrix A. For T-Net reg, a
regularization term ‖AAT − I‖ is added to the loss with
weight 0.001. Batch normalization is applied to all layers
except the last layer. Further, we apply the iterative scheme
described in Section 3.2 to each transformer for 2 iterations.

For the classifier, we use two state-of-the-art networks,
PointNet [16] and Dynamic Graph CNN (DGCNN) [22].
The model architectures are identical to the ones used in
their ModelNet40 experiments.

Training The networks are trained for 50 epochs with
batch size 32. We use the Adam optimizer with an initial
learning rate of 0.001, decayed by 0.7 every 6250 steps. The
initial decay rate for batch normalization is 0.5 and gradu-
ally increased to 0.99. We clip the gradient norm to 20.

Classifier PointNet

Transformer None T-Net T-Net reg IT-Net (ours)

Iterations 0 1 2 1 2 1 2

Accuracy
(overall) 59.97 66.04 35.13 65.84 67.06 68.72 69.94

Accuracy
(class avg) 53.07 60.57 30.57 60.38 62.19 63.42 65.05

Classifier DGCNN

Transformer None T-Net T-Net reg IT-Net (ours)

Iterations 0 1 2 1 2 1 2

Accuracy
(overall) 65.60 70.38 16.61 71.15 72.69 72.57 74.15

Accuracy
(class avg) 58.34 62.66 13.73 65.49 66.40 65.16 68.34

Table 1: Classification accuracy on partial ModelNet40.

Results The overall accuracy and the average of accuracy
per class are reported in Table 1. For both classifiers, IT-
Net trained with 2 iterations brings the largest amount of
improvement in accuracy over baselines that do not use any
transformer network. This is evidence that the advantage
of IT-Net over other transformer networks is agnostic to the
architecture of the classifier.

Figure 6 shows some examples of how the inputs are
transformed by IT-Net. It can be seen that without explicit
supervision, IT-Net learns to transform the inputs into a
canonical frame similar to the manually defined one shown
in Figure 2. Inputs in various initial poses and even dif-
ferent categories are aligned in this canonical frame. This
removes the variations introduced by geometric transforma-
tions of the input and simplifies the classification problem.
Moreover, unlike T-Net, IT-Net does not introduce any scal-
ing or shearing and preserves the shape of the input.

We note that in this experiment, we don’t need to iterate
as many times as in the case of pose estimation shown later
in 4.3. The reason is that the classifiers themselves should
be robust against small transformations to the input. Thus,
instead of getting precise alignments, the transformer’s job
is to roughly align the inputs so that they can be recognized
by the classifiers. Nevertheless, there is still a critical dif-
ference between using and not using the iterative scheme,
as shown by the difference between IT-Net trained with 2
iterations and 1 iteration.

We also note that the performance of T-Net drops signif-
icantly if we try to apply the same iterative scheme on its
output. This can be explained by the fact that the output of
T-Net is on a very different scale than the original input (see
Figure 6). As a result, the network sees vastly different in-
puts from different iterations. This will cause the training to
diverge. This issue is resolved with the regularized T-Net.
However, its performance is still worse than IT-Net.

Input
IT-Net

Iteration 1
IT-Net

Iteration 2
T-Net

(scaled by 0.1) Input
IT-Net

Iteration 1
IT-Net

Iteration 2
T-Net

(scaled by 0.1)

Figure 6: Inputs transformed by IT-Net and T-Net trained jointly with DGCNN. Note how the input pose converges with
more iterations and the similarity of final poses across different categories (columns 3, 7). T-Net’s outputs are on a much
different scale (10 times bigger) than the original inputs (columns 4, 8).

mean table chair air
plane

lamp car guitar laptop knife pistol motor
cycle

mug skate
board

bag ear
phone

rocket cap

shapes 5271 3758 2690 1547 898 787 451 392 283 202 184 152 76 68 66 55
parts 3 4 4 4 4 3 2 2 3 6 2 3 2 3 3 2

None 76.9 78.8 82.6 77.3 71.3 52.3 90.1 76.8 80.0 70.1 40.4 86.1 67.6 71.0 66.7 53.1 76.9
T-Net 77.1 79.2 82.5 78.0 70.1 55.7 89.1 73.1 81.5 73.0 39.1 81.1 69.1 74.1 71.1 51.4 74.6

IT-Net-1 78.2 79.9 84.3 78.2 72.9 54.9 91.0 78.7 78.1 71.8 44.6 84.8 66.6 71.2 72.7 55.0 77.9
IT-Net-2 79.1 80.2 84.7 79.9 72.1 62.6 91.1 76.4 82.8 76.9 44.0 84.4 71.8 68.1 66.8 54.2 80.4

Table 2: Part segmentation results on partial shapes from ShapeNet. The number appending IT-Net indicates the number of
iterations. The base segmentation model is DGCNN [22]. The metric is mIoU(%) on points. The mean is calculated as the
average of per-category mIoUs weighted by the number of shapes. We order the categories by number of shapes since the
performance is more unstable for categories with fewer shapes.

4.2. Partial Object Part Segmentation

To show that the invariance to geometric transformations
learnt by IT-Net is not specific to the classification task, we
demonstrate IT-Net’s capability to improve the performance
of part segmentation networks.

Data Similar to ModelNet40, the ShapeNet part dataset
[25] commonly used for the evaluation of object part seg-
mentation also consists of complete and aligned point
clouds. Thus, similar to partial ModelNet40, we build a
more realistic version of the ShapeNet part dataset with par-
tial and unaligned point clouds to evaluate the performance
of part segmentation models. Since the ShapeNet part
dataset does not come with meshed models, we use an ap-
proximate rendering procedure that mimics an orthographic
depth camera to create realistic-looking partial point clouds.
Please refer to the supplementary for more details.

The dataset contains 16,881 shapes from 16 categories,

annotated with 50 parts in total and 2-6 parts per category.
We use the same training and testing split provided in [25].

Model The network used for part segmentation simply re-
places the classifier in the joint transformer-classifier model
from 4.1 with a segmentation network. We use DGCNN
[22] as the baseline segmentation network and compare the
performance gain of adding T-Net and IT-Net. The archi-
tecture of the transformers are identical to the ones in 4.1.
Following [16, 22], we treat part segmentation as a per-point
classification problem and train the network with per-point
cross entropy loss. Similar to 4.1, no explicit supervision is
applied on the transformations.

Training The networks are trained for 200 epochs with
batch size 32. Other hyperparameters are the same as the
ones used in partial shape classification.

Original Transformed Original Transformed

Figure 7: Inputs transformed by IT-Net trained with
DGCNN on part segmentation. The colors indicate predic-
tions of the segmentation network.

Results We use the mean Intersection-over-Union (mIoU)
on points as the evaluation metric following [16, 22]. The
results are summarized in Table 2. Again, IT-Net with 2
iterations leads to the largest amount of improvement in
mean mIoU and mIoU for most categories. As in the case
of classification, IT-Net removes variations in the inputs
caused by geometric transformations (see Figure 7). This
demonstrates the potential of IT-Net as a plug-in for any
task that requires invariance to geometric transformations
without task-specific adjustments to the model architecture.

4.3. Pose Estimation

We have shown that IT-Net outperforms existing trans-
formers on the tasks of partial shape classification and par-
tial object part segmentation. Next, we perform an analysis
to try to better understand the efficacy of the iterative re-
finement scheme on predicting accurate geometric transfor-
mations. To this end, we choose the task of estimating the
canonical pose of an object from a partial observation.

Specifically, given a partial point cloud, we use IT-Net
to estimate the transformation that aligns it to a canoni-
cal frame defined across all models in the same category,
as illustrated in Figure 2. Unlike most existing works on
pose estimation, we do not assume knowledge of the ob-
ject’s model and we train a single network that generalizes
to different objects in the same category.

Data Our dataset for pose estimation consists of 12,000
partial point clouds from 2,400 car models in ShapeNet [5].
The point clouds are generated by back-projecting depth
scans of models from random viewpoints into the camera’s
coordinates. Each point cloud is labeled with the transfor-
mation that aligns it to the model’s coordinates. The data
are split into training, validation and testing with a 10:1:1
ratio. Note that the test set and the training set are created
using different car models.

Model We use the same transformer architecture as in 4.1
and 4.2, but here an explicit loss is applied on the transfor-
mation. We compare IT-Nets trained with up to 6 iterations
using the scheme described in 3.2.

Loss For the loss function, we use a variant of PLoss pro-
posed in [24]. It measures the average distance between the
same set of points under the estimated pose and the ground
truth pose. Compared to the L2 loss used in earlier works
[10], this loss has the advantage of automatically handling
the tradeoff between small rotations and small translations.
The loss can be written as

L((R, t), (R̃, t̃)) =
1

|X|
∑
x∈X
‖(Rx+t)−(R̃x+ t̃)‖22, (1)

where R, t are the ground truth pose and R̃, t̃ are the esti-
mated pose. In the original formulation, X is the set of 3D
model points. Since we do not assume knowledge of the
model, we let X be the set of input points instead.

Training The networks are trained for 20000 steps with
batch size 100. We use Adam optimizer with an initial
learning rate of 0.001, decayed by 0.7 every 2000 steps. The
initial decay rate for batch normalization is 0.5 and gradu-
ally increased to 0.99.

Results The results are summarized in Figure 8. From
Figure 8b, we can observe that for all but the single itera-
tion network, the pose accuracy keeps increasing even if we
apply the network for more iterations than it is trained for.
This is another evidence that IT-Net is learning the “gradient
transformation” noted in Section 3.2. Moreover, this prop-
erty allows us to use IT-Net as an any-time pose estimator.
In particular, we can train IT-Net for a fixed number of iter-
ations. During inference, we can keep applying the trained
IT-Net to obtain increasingly accurate pose estimates until
the time budget runs out.

We note that another way to interpret the iterative
scheme is to treat it as a form of Dataset Aggregation (DAG-
GER) method [18] used in imitation learning. From Figure
8c, we can see that there is almost no example with rotation
error less than 15 degrees in the initial inputs (iteration 0),
but there are many such examples in the inputs to later iter-
ations. In some sense, the network is generating the data it
needs to learn more accurate pose estimates. It is even more
convenient than DAGGER since there is no need to explic-
itly add examples to the dataset as the aggregation happens
automatically with the training.

5. Conclusion
In this work, we propose a new transformer network on

3D point clouds. IT-Net predicts a rigid transformation by
iteratively outputting update transformations that are used
to transform the input for the next iteration. The advantage
of using iterative transformers in various tasks shows that
the classical idea of iterative pose refinement still applies in
the context of deep learning.

Model ≤ 5◦, 0.05 ≤ 10◦, 0.1 ≤ 20◦, 0.2

IT-Net-1 9.7 36.9 67.5
IT-Net-2 12.7 41.7 62.6
IT-Net-3 21.8 47.7 58.9
IT-Net-4 36.0 61.1 69.5
IT-Net-5 44.4 67.6 75.4
IT-Net-6 29.8 62.6 74.8

(a) Pose accuracy (%) under different error thresholds (b) Pose accuracy with more iterations applied during testing

Iteration 0 Iteration 3 Iteration 6

(c) Distribution of rotation and translation errors at different iterations

Input Iteration 3 Iteration 6 Ground truth Input Iteration 3 Iteration 6 Ground truth

(d) Qualitative examples

Figure 8: Results on ShapeNet car pose estimation. (a) Pose accuracy (percentage of examples below an error threshold) of
IT-Nets trained with different number of iterations. The number following the model names indicates the number of iterations
used in training. (b) Pose accuracy against the number of iterations applied in testing. The dotted line corresponds to the
number of iterations used in training. Note how the accuracy keeps improving even when more iterations are applied than
the networks are trained for. (c) The distribution of rotation and translation error of all test instances at different iterations.
Note how the error distribution is much spikier in later iterations. The peak at 180 degrees for rotation error is caused by
symmetries in the car models. (d) Qualitative examples.

Our transformer can be easily integrated with existing
deep learning architectures for shape classification and seg-
mentation, and improve the performance on these tasks with
partial, unaligned inputs by introducing invariance to geo-
metric transformations. This opens up many avenues for
future research on using neural networks to extract seman-
tic information from real world point cloud data.

Acknowledgements
This project is supported by Carnegie Mellon Univer-

sity’s Mobility21 National University Transportation Cen-
ter, which is sponsored by the US Department of Trans-
portation. We would like to thank Brian Okorn and Chen-
Hsuan Lin for their helpful comments and suggestions.

References
[1] M. Aubry, U. Schlickewei, and D. Cremers. The wave kernel

signature: A quantum mechanical approach to shape analy-
sis. In Computer Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on, pages 1626–1633. IEEE,
2011. 2

[2] S. Baker and I. Matthews. Lucas-kanade 20 years on: A uni-
fying framework. International journal of computer vision,
56(3):221–255, 2004. 3, 4

[3] P. J. Besl and N. D. McKay. Method for registration of 3-d
shapes. In Sensor Fusion IV: Control Paradigms and Data
Structures, volume 1611, pages 586–607. International Soci-
ety for Optics and Photonics, 1992. 2, 3

[4] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Blender Institute,
Amsterdam, 2018. 10

[5] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015. 7, 10

[6] Y. Furukawa and J. Ponce. Accurate, dense, and robust mul-
tiview stereopsis. IEEE transactions on pattern analysis and
machine intelligence, 32(8):1362–1376, 2010. 1

[7] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 3354–3361. IEEE, 2012. 1

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770–778, 2016. 1, 4

[9] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial
transformer networks. In Advances in neural information
processing systems, pages 2017–2025, 2015. 2, 3

[10] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolu-
tional network for real-time 6-dof camera relocalization. In
Proceedings of the IEEE international conference on com-
puter vision, pages 2938–2946, 2015. 3, 7

[11] G. Klein and D. Murray. Parallel tracking and mapping for
small ar workspaces. In Mixed and Augmented Reality, 2007.

ISMAR 2007. 6th IEEE and ACM International Symposium
on, pages 225–234. IEEE, 2007. 1

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 1

[13] Y. Li, R. Bu, M. Sun, and B. Chen. Pointcnn. arXiv preprint
arXiv:1801.07791, 2018. 2

[14] C.-H. Lin and S. Lucey. Inverse compositional spatial trans-
former networks. arXiv preprint arXiv:1612.03897, 2016.
3

[15] B. D. Lucas, T. Kanade, et al. An iterative image registration
technique with an application to stereo vision. 1981. 2, 3

[16] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 1(2):4, 2017. 1, 2, 3, 5, 6, 7, 10, 11

[17] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hi-
erarchical feature learning on point sets in a metric space. In
Advances in Neural Information Processing Systems, pages
5099–5108, 2017. 2

[18] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learn-
ing. In Proceedings of the fourteenth international confer-
ence on artificial intelligence and statistics, pages 627–635,
2011. 7

[19] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature
histograms (fpfh) for 3d registration. In Robotics and Au-
tomation, 2009. ICRA’09. IEEE International Conference
on, pages 3212–3217, 2009. 2

[20] N. Sedaghat, M. Zolfaghari, E. Amiri, and T. Brox.
Orientation-boosted voxel nets for 3d object recognition.
arXiv preprint arXiv:1604.03351, 2016. 10

[21] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and prov-
ably informative multi-scale signature based on heat diffu-
sion. In Computer graphics forum, volume 28, pages 1383–
1392. Wiley Online Library, 2009. 2

[22] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon. Dynamic graph cnn for learning on point
clouds. arXiv preprint arXiv:1801.07829, 2018. 2, 5, 6, 7,
10

[23] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015. 1,
3, 5

[24] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn:
A convolutional neural network for 6d object pose estimation
in cluttered scenes. arXiv preprint arXiv:1711.00199, 2017.
3, 7

[25] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, C. Lu,
Q. Huang, A. Sheffer, L. Guibas, et al. A scalable active
framework for region annotation in 3d shape collections.
ACM Transactions on Graphics (TOG), 35(6):210, 2016. 1,
3, 6, 10, 11

[26] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. Pcn:
Point completion network. In 2018 International Conference
on 3D Vision (3DV), pages 728–737. IEEE, 2018. 3

Suppelementary

A. Overview
In this document we provide technical details, ablation

studies and visualizations in support of our paper. Here is a
summary of the contents:

In Section B, we describe the generation of partial point
clouds in our dataset. Section C contains additional results
on part segmentation and Section D includes more archi-
tecture details. Section E provides ablation studies on the
network design. Finally, we show visualizations of pose
clusters learned by IT-Net in Section F.

B. Data Generation
In this section, we cover details of the generation of par-

tial, unaligned point clouds used in our experiments.
Each partial point cloud is generated by fusing a se-

quence of depth scans in the initial camera’s coordinates.
The initial camera’s orientation is random and the distance
between the camera center and the object center is varied.
Subsequent camera positions are generated by rotating the
camera around the object center for up to 30 degrees. Com-
pared to the datasets used in [16, 22], which consist of point
clouds uniformly sampled from mesh models, our dataset
contains much more challenging inputs with various poses,
densities and levels of incompleteness (see Figure 9). More
statistics and detail parameters are summarized in Table 3.

Task Classification Segmentation
Pose

estimation

Model
source

ModelNet40
[20]

ShapeNet
part [25]

ShapeNet [5]

classes 40 16 1
train 78,744 12,137 12,000
test 2,468 1,870 2,000

scans 1-4 1 1
Scan size 64× 64 50× 50 128× 128

Focal length 57 ∞ 64

Camera
distance to

object center
2-4 ∞ 1-2

Table 3: Statistics and parameters of our partial point cloud
dataset for classification, segmentation and pose estimation.

We use Blender [4] to render depth scans of mesh models
in ModelNet and ShapeNet, but the ShapeNet part dataset
only has point clouds, so we use an approximate render-
ing procedure that mimics an orthographic depth camera.
Specifically, we randomly rotate the complete point cloud
and project the points onto a virtual image with pixel size

ModelNet40 Partial
ModelNet40 ModelNet40 Partial

ModelNet40

Figure 9: Comparison between ModelNet40 used in [16,
22] and partial ModelNet40 used in our experiments.

0.02 in the xy-plane. For each pixel of the virtual image,
we keep the point with the smallest z value and discard all
other points that project onto the same pixel as they are con-
sidered as occluded by the selected point.

We translate the partial point clouds so that their cen-
troids are at the origin. This reduces the range of translation
and makes training more stable.

C. Additional Part Segmentation Results
Table 4 shows part segmentation results using PointNet

[16] as the base segmentation model. The results are sim-
ilar to those using DGCNN [22] as the base segmentation
model. This is evidence that the advantage of IT-Net is ag-
nostic to the architecture of the segmentation network.

D. Architecture Details
Figure 10 shows the detailed architecture of the trans-

former networks used in all the experiments. For the classi-
fication and segmentation networks, we use publicly avail-
able implementations of PointNet [16] and DGCNN [22].
The detailed architectures can be found in Section C of the
supplementary for [16] and Section 5.1 and 5.4 of [22].

E. Ablation Studies
In this section, we provide ablation studies for the design

decisions mentioned in Section 3.3 of our paper. In par-
ticular, we evaluate the effect of initializing the network’s
prediction with the identity transformation and stopping the
gradient during input transformations.

Table 5 and Table 6 show the performance of ablated
models on classification and pose estimation respectively.

mean table chair air
plane

lamp car guitar laptop knife pistol motor
cycle

mug skate
board

bag ear
phone

rocket cap

shapes 5271 3758 2690 1547 898 787 451 392 283 202 184 152 76 68 66 55
parts 3 4 4 4 4 3 2 2 3 6 2 3 2 3 3 2

None 67.9 71.6 75.2 68.8 56.9 48.2 82.4 58.0 68.5 61.7 39.0 65.6 49.6 41.9 43.5 28.1 50.9
T-Net 71.1 73.7 77.5 73.6 60.2 53.0 85.8 63.2 73.6 65.4 48.5 70.3 57.7 15.9 41.8 41.7 48.5

IT-Net-1 72.3 74.5 78.7 75.9 60.6 57.7 85.1 58.3 78.6 67.9 51.5 70.3 61.6 31.6 53.9 35.2 45.3
IT-Net-2 72.6 75.1 78.3 76.3 62.1 56.3 86.8 58.9 74.5 68.6 46.4 70.6 65.9 43.5 51.6 42.6 45.9

Table 4: Part segmentation results on partial shapes from ShapeNet part dataset [25]. The number appending IT-Net indicates
the number of iterations. The base segmentation model is PointNet [16]. The metric is mIoU(%) on points. The mean is
calculated as the average of per-category mIoUs weighted by the number of shapes.

Figure 10: Detailed transformer architecture. Numbers in the parenthesis indicate the number of neurons in each MLP layer.
The output dimension M is 7 for IT-Net and 9 for T-Net and T-Net reg.

Classifier PointNet

Transformer IT-Net (no init) IT-Net (no stop) IT-Net

Iterations 1 2 1 2 1 2

Accuracy
(overall) 44.21 3.65 66.73 66.65 68.72 69.94

Accuracy
(class avg) 36.68 2.55 61.05 61.38 63.42 65.05

Table 5: Comparison of ablated models on classification ac-
curacy on partial ModelNet40. No init means the output is
not initialized as the identity transformation. No stop means
the gradient is not stopped during input transformations.

As expected, the performance degrades especially for IT-
Net trained with larger number of iterations, which indi-
cates that both identity initialization and gradient stopping
are crucial for the iterative refinement scheme to achieve
desired behavior.

F. Pose Cluster Visualizations
In this section, we visualize the transformations learned

by IT-Net. Specifically, we take the IT-Net trained with
DGCNN on the classification task and calculate the differ-
ence between the canonical orientation of the input shape
and the orientation of the transformed input at different it-
erations. Then, we convert the orientation difference into
axis-angle representation, which is a 3D vector, and plot
these vectors for all test examples in a particular category.

Model Ablation

No init No stop -

IT-Net-1 17.1 36.0 36.9
IT-Net-2 0.5 5.0 41.7
IT-Net-3 18.4 0.0 47.7
IT-Net-4 7.3 0.0 61.1
IT-Net-5 6.2 4.1 67.6

Table 6: Comparison of ablated models on pose accuracy
with error threshold 10◦, 0.1. No init means the output is not
initialized as the identity transformation. No stop means the
gradient is not stopped during input transformations. The
number appending IT-Net is the number of iterations.

The visualizations for the guitar and bottle category are
shown in Figure 11 and Figure 12 respectively. We observe
that although the object poses are uniformly distributed ini-
tially, clusters of poses emerge after applying the transfor-
mations predicted by IT-Net (Figure 11a, 12a). This is ev-
idence that IT-Net discover a canonical space to align the
inputs with no explicit supervision. Interestingly, there are
usually more than one cluster and the shapes of the clus-
ters are related to the symmetries of the object (Figure 11b,
12b). Further, we note that sometimes even objects across
different categories are aligned after being transformed by
IT-Net (Figure 11d, 12d). Nevertheless, the pose clusters
are less apparent for certain categories where the shapes are
nearly spherical, e.g. flower pots.

Input (Iteration 0) Iteration 1 Iteration 2

(a) Distribution of orientations at different iterations.

(b) Reflection
symmetry of
guitars.

(c) Examples of original inputs (Iteration 0). (d) Examples of transformed inputs (Iteration 2).

Figure 11: Pose cluster visualization for guitars. (a) Distribution of axis-angle representation of orientations of all test
examples at different iterations. Note how clusters emerge from uniformly distributed poses. Correctly classified examples
are shown in blue and incorrectly classified examples are shown in red. (b) The reflection symmetry present in most guitars.
(c) Examples of original inputs at iteration 0. The object orientations are uniformly distributed. (d) Examples of transformed
inputs at iteration 2. Note that these are the inputs received by the classifier. The object orientations are grouped into 4
clusters, but visually there seems to be only 2 major orientations due to the reflection symmetry shown in (b). A failure case
is shown in the red box. Due to the heavy occlusion the model’s failure is expected.

Input (Iteration 0) Iteration 1 Iteration 2

(a) Distribution of orientations at different iterations.
(b) Rotational
symmetry of
bottles.

(c) Examples of original inputs (Iteration 0). (d) Examples of transformed inputs (Iteration 2).

Figure 12: Pose cluster visualization for bottles. (a) Distribution of axis-angle representation of orientations of all test ex-
amples at different iterations. Note how clusters emerge from uniformly distributed poses. Correctly classified examples are
shown in blue and incorrectly classified examples are shown in red. (b) The rotational symmetry present in most bottles. (c)
Examples of original inputs at iteration 0. The object orientations are uniformly distributed. (d) Examples of transformed
inputs at iteration 2. Note that these are the inputs received by the classifier. The object orientations after transformation
are grouped into 2 clusters. The clusters have semicircle shapes since any orientation in these semicircles are in fact indis-
tinguishable due to the rotational symmetry shown in (b). A failure case is shown in the red box. In this case the model
misclassifies the bottle as a vase.

