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Abstract— Waste bins assist in preventing the spread of
trash by serving as central locations where people can discard
their garbage. In recent years, researchers have explored using
computers to monitor waste bin garbage levels and eliminate
the need for human monitoring. Both Internet of Things
(IoT) and computer vision technologies have been exploited to
accomplish this task. However, IoT approaches require devices
to be attached to waste bins which can be costly and time-
consuming, and most computer vision methods have not been
analyzed in real-world settings. In this paper, we present a
waste bin detection and classification system designed for transit
buses that utilizes already installed bus cameras to observe the
bins. This application is needed because waste bin monitoring
systems that rely on humans are ineffective for transportation
companies whose bins are spread across large geographical
areas. We label bus camera data to create a dataset used to
train and evaluate our detection and classification models. Our
results show that we can reliably detect waste bins of interest.
Moving forward, we plan to complete our system’s pipeline and
deploy it on a transit bus to evaluate its live-action performance.

Index Terms— Computer Vision for Transportation, Intelli-
gent Transportation Systems, Object Detection, Segmentation
and Categorization

I. INTRODUCTION

It is estimated that the world produces approximately
two billion metric tons of trash annually [1]. High levels
of municipal solid waste resulting from the consumption
of goods, high standards of living, and population growth
threaten to pollute the planet if not properly handled [2].
Therefore, it is crucial that communities utilize trash disposal
methods, such as using waste bins, to reduce the amount
of new garbage introduced to the environment. Today, most
waste bins are monitored by humans to determine when
they must be emptied. However, this method is inefficient
as it becomes increasingly time consuming and tedious for
individuals to check on all waste bins when additional ones
are deployed. This is especially problematic in cities where
waste bins are commonly located on every block. As cities
continue to grow and expand, officials will need to develop
new methods of monitoring and determining when waste bins
located along streets need to be emptied to help reduce the
spread of garbage.

We propose accomplishing this job by using the cameras
found on public transportation vehicles to monitor street
waste bins. In particular, transit buses are well equipped
for this task as many have exterior cameras for security
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Fig. 1. Examples of an empty (left) and a full (right) waste bin found at
different bus stops.

purposes and drive along streets picking up and dropping off
individuals at bus stops. Additionally, since most bus routes
are traversed multiple times throughout the day, waste bins
along these routes can be continually monitored. Utilizing
buses for this task also benefits the transit companies as they
are often responsible for maintaining the waste bins along
their routes and therefore an automated monitoring system
would reduce their operation costs.

In this paper, we present a waste bin detector that will
eventually be deployed onto the BusEdge [3] system and
used in a garbage level classification pipeline designed to
determine when waste bins along bus routes need to be
emptied. Using recorded videos captured by a bus’s camera
while traveling along its route from Washington, PA to
Pittsburgh, PA, we create and label datasets using CVAT
[4]. We develop a RetinaNet [5] detector model created
using the detectron2 framework [6] and train on our custom
dataset. The detector’s success is measured using average
precision and recall metrics to determine if the detector can
consistently identify waste bins of interest. Based on the
collected results, our detector can detect the waste bins we
are most interested in with reasonable success. Even though
we developed this detector for transit buses, it can easily
be deployed on other mobile or fixed cameras that observe
waste bins.
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Fig. 2. A transit bus similar to the one above was used to collect our
training data. Likewise, our finished pipeline will be deployed onto such a
bus.

Once completed, a pipeline containing our trained model
will be deployed on a transit bus to evaluate its live-action
performance. Video frames captured by the bus’s camera
will be passed to the pipeline using Robot Operating System
(ROS) [7]. Waste bin detection using a light-weight model
will take place on the bus, and all images with detections
will be sent to a cloudlet server to be processed once more
by an increased performance detector. Once the system is
confident that a waste bin has been detected, the classifier
will determine if the bin must be emptied or needs to be
attended to. Whenever a waste bin is identified as needing
to be emptied, a notification will be generated and sent out
to the appropriate parties.

The structure of this paper is as follows: In Section II,
a literature review is given on previous works surrounding
detecting waste bins and monitoring their garbage levels.
Section III provides an overview of the proposed system.
The conducted experiments are described in Section IV, and
their results presented in Section V. Lastly, a conclusion is
provided in Section VI and future works are discussed.

II. RELATED WORK
A. Waste Bin Detection and Garbage Level Classification

Over the years, researchers have proposed using different
techniques to create autonomous waste bin garbage level
monitoring systems [8]-[11]. Existing works can be divided
into two groups based on the underlying technologies: Inter-
net of Things (IoT) and computer vision.

IoT methods address the waste level monitoring problem
by attaching IoT sensors to the waste bins [8], [9]. These
sensors monitor the fullness of waste bins and report back
to central monitoring systems. Different types of sensors can
be utilized to determine how full the bins are. For example,
Y. Zhao et al. [8] developed sensors that monitor how
full waste bins are by sensing changes in the bins’ motor-
induced vibrations. Alternatively, the sensors presented by S.
J. Ramson et al. [9] rely on ultrasonic waves to detect what
garbage level has been reached within the bins.

While IoT sensors have proven to be effective at monitor-
ing waste levels and are commercially available, they are not

without their faults. Each waste bin requires its own sensor,
making such an approach expensive when install these IoT
devices to a large number of bins. Additionally, as noted by
Y. Zhao et al. [8], sensors can become damaged or knocked
off after deployment. This greatly increases the difficulty of
maintaining such a system as someone must be prepared to
replace the sensors when necessary.

Computer vision algorithms have also been explored to
monitor the garbage level in waste bins [10], [11]. Such
algorithms are developed by extracting a set of key features
from images in a training dataset that are then used to train
a classifier. In [10], M. A. Hannan et al. propose two waste
level classifiers that extract the gray level aura matrix of
an images before using a multilayer perceptron or K-nearest
neighbor classifier to determine how full the waste bin is. F.
Aziz et al. [11] take a different approach. First, the waste bin
opening is located using the Canny Edge Operator followed
by applying the Hough transform. A Gabor filter is then
applied to the image to extract additional properties. Using
the collected features, F. Aziz et al. then pass them to a
support vector machine or multilayer perceptron classifier
that will place the image into one of three classes: empty,
partially full, or full [11].

As was the case with the IoT approaches, computer
vision algorithms still need to be improved and further
explored before they can be fully exploited for garbage
level monitoring. Such algorithms require large amounts of
training data to properly and reliably function as intended.
Creating appropriate datasets using real-world data is a time
consuming and often costly endeavor. To our knowledge, no
such datasets are publicly available for detecting waste bins
and classifying them based on their garbage levels. While
both [10] and [11] show promising results, these algorithms
were trained and evaluated using artificial datasets. As a
result, there is no guarantee that these approaches will work
in real-world environments, and so their performance is still
largely unknown from a practical application standpoint.

B. Deep Learning

In more recent years, computer vision research has heavily
shifted to using deep learning methods. Within the area of
waste management, many researchers have successfully uti-
lized deep learning algorithms to detect, segment, or classify
garbage and garbage-related objects in a wide arrangement
of environments [12]-[15]. Deep learning techniques are
also readily available to researchers through the use of
frameworks such as detectron2 [6]. One advantage of using
these frameworks is that they often provide common models
that are already pre-trained using popular datasets such as
ImageNet [16] and COCO [17] and therefore only need to
be fine-tuned.

Today, there exists many different object detection models
including RetinaNet [5], Faster R-CNN [18], R-FCN [19],
SSD [20], and YOLO [21]. Convolutional neural networks
(CNNs) approaches such as these have been shown to
produce high performing models for various object detec-
tion tasks [22]. When selecting which architecture to use,
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researchers need to take into account model accuracy and
available resources as different approaches balance these
requirements differently and often put a heavier emphasis on
one over the other. Additionally, feature extractor methods
such as ResNet50 [23] and MobileNet_V1 [24] can be used to
further improve the performance of object detection models.

C. Vehicle Edge Computing

As the automotive industry works to develop connected
vehicle systems, edge computing will play a crucial role in
balancing the need for real-time computing within vehicles
while allowing for some tasks to be offloaded to remote
servers [25]. While vehicle edge computer poses many
challenges, researchers such as X. Xu et al. [26] are working
to ensure that edge computing transmitting tasks can take
place without compromising the safety or functionality of
vehicles. One example of a system that utilizes vehicle edge
computing is proposed by C. Ye [3]. The system, referred
to as BusEdge, runs on public transit buses and provides a
platform for applications to access bus data in real-time such
as camera video streams and the bus’s latitude and longitude
coordinates.

ITII. SYSTEM OVERVIEW

In this section, we discuss the components that make up
our proposed system which was inspired by the pipeline
proposed in [3]. Fig. 3 visualizes how the individual pieces
are connected and provides an example of the output or
triggered response after each segment is finished running.

Fig. 4. Hardware components located on the bus (from left to right: onboard
computer, exterior camera, GPS and network antenna).
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Waste bin detection and classification pipeline.

A. Bus Sensors and Data Pre-Processing

The transit bus is equipped with a series of sensors
including multiple exterior cameras and a global positioning
system (GPS). The sensors communicate with the bus’s
onboard computer using ROS [7] through individual topic
publish-subscription channels between each sensor and the
computer. For our application, we utilize the exterior camera
on the right side of the bus angled towards the front of
the bus and the GPS. Latitude and longitude coordinates
are encoded into the individual frames from the camera’s
video stream. These images are then continually processed
through a filter before being sent to the onboard waste
bin detector. This filter removes frames so that the overall
frames-per-second rate is lowered to ensure that the light-
weight detector can process new frames in real-time without
creating a bottleneck. Several components belonging to the
bus’s hardware system can be seen in Fig. 4.

B. Waste Bin Detection

Within the pipeline, there are two main constraints we
must address relating to the transit bus. The first is that
the bus is only equipped with a basic computer system that
has limited memory and no graphics processing unit. As
a result, the applications running on the bus must require
only minimal resources. The second limitation with using
the bus is that there only exists a finite amount of bandwidth
to be used when communicating between the bus’s onboard
system and the cloudlet server. Even after undergoing pre-
processing, it is infeasible to transfer all the data collected
by the bus’s sensors to the cloudlet. Therefore, we need
to further reduce the number of video frames by using a
model to identify the frames of interest within the waste bin
detection task.

To resolve these constraints, we propose the use of two
waste bin detection models within our pipeline. The transit
bus’s onboard computer will run a lightweight model, such as
an SSD [20], to detect waste bins as the bus drives past them.
While this simpler detector will have a lower performance
compared to models that consist of more complex neural
networks, it will significantly reduce the overhead on the
bus’s internal system. Additionally, this model can be tuned
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to be more lenient in identifying waste bins even if it results
in more false positives as these instances will be eliminated
later on the servers where more computational power is
available. Since most waste bins of interest appear in multiple
frames, this detector will also have multiple chances to
identify instances as the bus drives past them. Once this
model detects a waste bin instance in the current frame, the
system will send it to the cloudlet through the edge network.

Once the cloudlet server receives a frame from the bus,
it will pass the image to another detection model which has
more computing resources at its disposal. This detector will
use a more complex architecture, such as RetinaNet [5],
therefore enabling it to better recognize waste bins when
compared against the bus’s lightweight model. Additionally,
once a waste bin is detected by the cloudlet model, it
will crop the region containing the bin from the original
frame before passing it to the garbage level classifier. This
functionality eliminates the need for the classifier to locate
the waste bin of interest before assigning it to a class.

C. Garbage Level Classification

The final model within the pipeline will be the classifier
used to determine if a detected waste bin needs to be emptied.
To reduce the number of classes within the model, all waste
bins with no visible trash will be considered not full and any
bin with visible trash will be classified as full regardless of
how much trash is present. Additionally, the classifier will
also determine if there are any garbage bags surrounding the
waste bins as this signals that someone still needs to attend
these bins. Similar to the second detector, the garbage level
classifier will use a model that focuses on performance such
as a RetinaNet [5] or Faster R-CNN [18]. When a full waste
bin is detected, the information will be passed to the last
component within the pipeline responsible for notifying the
appropriate parties.

D. Full Waste Bin Response

The last piece of our proposed pipeline is responsible
for informing the transit bus company or associated party
that there is a waste bin that needs to be attended to. After
receiving a full classification instance, this system component
will decode the GPS location associated with the instance
to determine if the detected and classified waste bin is
within the jurisdiction of the overseeing parties. Once this
information is confirmed, an automatic email containing the
image associated with the full instance and its GPS location
will be sent to the necessary individuals. Additionally, this
information will be used to update an interactive webpage
that maps out the bus route so that the locations of all full
waste bins can be found in one centralized location. The
webpage will also contain the images of the full instances
so that the involved party members can confirm that the bins
are truly full before sending someone to collect the garbage
in the event that a false positive occurred.

IV. EXPERIMENTATION

A. Dataset

To evaluate the performance of our models, we created
custom datasets using recorded video streams obtained dur-
ing normal operations. Annotations were manually added to
the datasets through the use of CVAT [4]. Bounding boxes
were placed over instances of waste bins in the detection
dataset, and three classes were identified for the classification
dataset: full, not full, and garbage bag besides a waste bin.
For training purposes, both datasets were split by a 60-20-20
ratio for the training, validation, and test sets, respectively.
All images used in the training set were taken from the same
date. The images used in the validation and test sets come
from the same run taken at a different date than the training
set, although images are only used in one set and not the
other. Tables I and II provide the distribution of samples
in each subset. For grouping purposes, small refers to a
bounding box area less than 1,024 pixels, medium refers to a
bounding box area between 1,024 and 9,216 pixels, and large
refers to a bounding box area greater than 9,216 pixels. Our
datasets are publicly available and can be accessed through
the kraggle website [27], [28].

TABLE I
DETECTION DATASET - WASTE BIN DISTRIBUTION AMONGST THE
TRAINING, VALIDATION, AND TEST SETS

Bounding Box Size Training | Validation | Test
Small 818 268 268
Medium 604 247 247
Large 141 72 71
All Sizes 1563 587 586
TABLE II

CLASSIFICATION DATASET - CLASS DISTRIBUTIONS AMONGST THE
TRAINING, VALIDATION, AND TEST SETS

Class Bounding Box Size Training | Validation | Test
Small 767 265 268
Not Full Medium 518 241 239
Waste Bins Large 116 65 66
All Sizes 1401 571 573
Small 53 2 1
Full Waste Medium 87 7 6
Bins Large 26 7 5
All Sizes 166 16 12
Small 54 31 31
Garbage Medium 61 42 47
Bags Large 19 6 4
All Sizes 134 79 82
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B. Model Training and Evaluation

Within the scope of this paper, two experiments will be
analyzed. The first evaluates the performance of a RetinaNet
[5] waste bin detector similar to the final detector model
that will run on the cloudlet server. The second experiment
provides a proof-of-concept test to determine if a single
model can be used to both detect and classify full waste bins.
Our selected model for this proof-of-concept experiment
is a RetinaNet [5] multi-class detector. Both models are
created using the detectron2 framework and start with pre-
trained RetinaNets [5] that are then trained on their respective
datasets as previously described. Each model is trained for
20,000 iterations on the training dataset with periodic evalu-
ations on the validation set every 1,000 iterations. After the
training procedure is completed, both models are evaluated
on their respective test sets using the standard detectron2
COCO evaluator and their metric scores are recorded. These
results are presented in the following section.

V. RESULTS

A. Server-Based Waste Bin Detector

After training our waste bin detector as defined in the
previous section, our model achieves an overall average
precision of 44.2% as computed by the detectron2 COCO
evaluator when assessed on the test set. This score increases
to 67.4% when the Intersection over Union (IoU) metric
is restricted to 0.5. Additionally, the model yields an
average recall of 56.9%. However, we see that these scores
increase when we restrict the evaluation to take into account
different bounding box area sizes of detected waste bins.
For example, our model reaches an average precision of
57.3% and an average recall of 67.1% when detecting
medium-sized waste bins. These scores further increase
to AP = 74.8% and AR = 79.2% when only considering
the large-sized waste bin detections. Figs. 5 and 6 show
the precision-recall curves for the medium and large-sized
waste bins. Based on the results, there is still room for
improvement in training the server-based waste bin detector.
However, the average precision and recall metrics for
large-sized waste bins confirm that our current detector
can reasonably identify bins of interest since most fall
under the large-sized category in at least one video frame.
This is further supported by the precision-recall curve for
large-sized waste bins.

TABLE 111
SERVER-BASED WASTE BIN DETECTOR METRICS

Bounding Box Size | Average Precision | Average Recall
All Sizes 44.2% 56.9%
Medium 57.3% 67.1%

Large 74.8% 79.2%
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Fig. 5. Precision-recall curve for medium-sized waste bins (bounding box
area is between 1,024 and 9,216 pixels).
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Fig. 6. Precision-recall curve for large-sized waste bins (bounding box
area is greater than 9,216 pixels).

B. Proof-of-Concept Waste Bin Multi-Class Detector

After following the training procedure detailed in Section
IV, our waste bin multi-class detector was evaluated using
the classification test set. For each class, the average pre-
cision score was recorded. The model achieves an average
precision of 45.3% for not-full waste bins, 7.0% for full
waste bins, and 54.0% for garbage bags. These metrics
signal that the multi-class detection approach is insufficient
for completing our desired task. Moving forward, we will
separate the detection and classification tasks from one
another to determine if using separate but connected models
improves the final classification performance.

VI. CONCLUSIONS

In this paper, we present a waste bin detection and garbage
level classification system that can be installed onto public
transit buses to monitor waste bins along bus routes. Our
results support that we can train detection models to identify
waste bins as the bus drives past them. In particular, our
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evaluated model frequently detects waste bins of interest
since these instances are always medium or large-sized
within the captured images. Additionally, important waste
bin instances are usually captured in several frames, further
increasing our system’s capabilities of detecting all bins of
interest. This paper also explores the possibility of using
a single model to both detect and classify full waste bins.
However, the results do not support that such a model can
successfully accomplish this task.

A. Future Works

Before advancing with the development of our proposed
pipeline, we will gather and label more bus data. While all
parts of the system will benefit from having access to more
training data, the classification of full waste bins will improve
the most as our dataset currently has very few instances
belonging to this class. The data will be collected along the
same bus route using the same transit bus company to keep
data collection consistent.

Upon completion of our pipeline, we will deploy the
respective models onto the transit bus and cloudlet server
to evaluate their performance in real-time. Once we have
collected enough results after deployment, we will re-analyze
our pipeline and make appropriate changes until it can detect
and classify full waste bins with high consistency. We will
then deploy the system onto other buses traveling along dif-
ferent routes within the same area to evaluate how the system
performs in environments independent of the training data.
We hope our work will inspire other researchers to develop
similar useful systems that utilize public transportation to
accomplish their tasks.
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