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Abstract— With the advent and popularity of algorithms
capable of detection-based tracking (DBT), one of its grow-
ing applications is in human detection and tracking (HDT).
Leading research in HDT can be seen in surveillance systems,
anomaly detection (e.g fall detection for senior citizens), and
recently, social distance monitoring. In this paper, we present
an application of contemporary HDT algorithms, on a real-
time and ubiquitous entity—the mid-tech public transit bus
system. All forms of DBT follow two innate steps: first, object
detection, then association of the current object with the
previous object. In the case of human detection, every instance
of a detected human is then analyzed. In our project, we
want to perform visual tracking from the transit bus. Each
implementation is done by aggregating data (mainly pictorial)
from cameras mounted on a bus with the Robotics Operating
System (ROS) acting as the architecture supporting both the
bus and the server structures. Our proposed system will allow
for technological automations and implementations for human-
specific observations.

Index Terms— Kkeywords, Intelligent Transportation Systems,
Surveillance Robotic Systems, Software, Middle-ware and Pro-
gramming Environments, Computer Vision for Transportation

I. INTRODUCTION

With its wide use cases, algorithms involved in Human
Detection and Tracking (HDT) have become relevant in
recent years. Applications of these algorithms can be seen in
surveillance systems, self-driving cars and even anomalous
action detection in environments (i.e. a fall or a vandalism)
[1]. The core steps of these algorithms are: informative
region selection, feature extraction then classification (spec-
ifying person) [2]. Beyond these stages, most of the compu-
tation overhead occurs during the tracking stage [3]. Under-
standing that humans tend to be erratic, and often without
a standardized shape, movement pattern or appearance, this
overhead becomes more evident in cluttered environments
or scenes with dense crowds [1], [4], [5]. Fortunately, many
state-of-the-art (SOA) paradigms have suitable and efficient
means to handle some of these resulting issues.

Our implementation is currently done on a single bus
provided by Freedom Transit, a bus transportation service in
Pennsylvania. Currently, in order for their analysts to review
the recorded video of a bus’ route, they must wait until
the end of the day, when bus drivers are completely done
with their respective routes. Then and only then are they
able to gain access to it. After which analysts must sit and
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manually annotate the highly-repetitive and long streams of
videos. This process is not only tediously time-consuming, it
is prone to errors and it causes delays for timely information
extraction. In this paper, we propose an implementation of
real-time HDT to assist this system. Our proposed system
will involve object detection and classification, to train a
model to detect pedestrians. A classification mechanism to
differentiate pedestrians from passengers either exiting or
entering the bus.

The structure of this paper is as follows: In section II,
we present our background study, showing related works,
SOA object detection and tracking architectures. In section
III, we present our system overview and our contributions to
this system. Section IV will be our results and evaluations.
V will be our conclusions and finally, VI will be our future
work and discussions.

II. BACKGROUND STUDY
A. Related works

1) General Object Detection: Research in object detec-
tion and tracking (ODT) architectures have grown preva-
lent in recent times. Applications of ODT can be seen in
medical imaging, automated robotics, image recognition and
even surveillance systems [6], [7]. As mentioned in [1],
[5] traditional object detection works by informative region
selection, feature extraction, and classification. Traditional
region selection is done with a sliding window approach.
This method works by taking exhaustive sliding rectangular
“patches” of fixed width and height for each image. Fea-
ture extraction then happens on each derived patch. After
which a classifier is used to distinguish between objects in
each frame. Due to the exhaustive nature required with the
sliding windows, this traditional method is ineffective with
real-time analysis [5], [8]. Nowadays, with the prevalence
and utilization of Convolution Neural Networks (CNN) and
deeply trained models, detections algorithms can occur at a
much faster rate. We briefly discuss these SOA models in a
later section.

2) Object Detection on Embedded Devices: Since these
architectures need to be deployed to put to use, another
popular research area is real-time object detection on embed-
ded devices. Applications of object detection on embedded
devices could be seen on autonomous vehicles, robotics, and
C. Ye’s BusEdge system [6]. Despite the recent successes
of these algorithms, an issue common with the applications
of object detection and tracking on embedded systems is
the limited resources of these micro-systems. It becomes
a question of which object detection architectures give us
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the best tradeoff between speed and accuracy, while still
effectively running on much lighter processors [9]. With
the combination of significantly smaller processors and a
computationally expensive algorithm, this is a difficult task.
For one thing, when analyzing real-time data, [6] points out
that most are unusable and very redundant. To that avail,
there have been several successes that circumvent this issue.
For example, Mobileye is a self-driving car company that
implements a Road Experience Management system (REM).
The company claims this system works by automatically
uploading and processes anonymized data from cars already
running its technology onboard [7]. Another company rele-
vant in this space is RoadBotics. RoadBotics allows users to
upload road-specific data to their server, then their deployed
model handles the classification and analysis [10]. Specific to
our needs, another leading approach facilitating this complex
problem is NavLab’s BusEdge system [6]. It employs an
edge computing paradigm and an application called Auto-
Detectron. Being that our system is an extension of his, we
talk more about this in our “System Overview” section.

3) Pedestrian Detection and Tracking: Being that our
project is fixated on how humans interact in relation to the
transit system, our focus is strongly on pedestrian detection,
tracking and observation. With the vast applications of hu-
man specific observations of object detections, there have
been a multitude of implementations of SOA algorithms in
this area. Zhang et al. [11] propose a method based on
Tiny Yolo, training a model to detect the upper body of
passengers entering/exiting a bus. Valastin et al. [12] show
their different approaches to detection, tracking and crowd
counting of pedestrians getting on and off a Metropolitan
Train. They carry out their experiments in their reshape-
able lab Pedestrian Accessibility Movement Environment
Laboratory (PAMELA). This re-shapeable feature allows
their lab to properly train pedestrian models no matter how
rare, common, or messy of an event it is. They are able
to handle problems we meet in our implementation such
as properly detecting passenger flow (i.e. they are able to
differentiate passengers entering from those exiting) and
crowd counting of an active and crowded scene.

B. State of the Art Object Detection Architectures

1) Faster RCNN: Originally proposed by Ren et al. [13]
RCNN, these architectures mainly consist of a layer of
convolution neural networks (CNN) and Region Proposal
Network (RPN). CNN is trained to extract appropriate fea-
tures from the image, in this case features that appropriately
describe humans. The RPN is a small neural network sliding
on the last feature map of the convolution layer, predicting
the existence of an object and the bounding box if an object
is detected. The massive increase in analysis speed from 10
milliseconds per image to 2 milliseconds per image is heavily
credited to this layer.

2) YOLO (You Only Look Once): Redmon et al. [14]
propose a regression approach to object detection that re-
quires only a single look at an image for object detection. It
consists of 24 convolutional layers and two fully connected

layers and as the name suggests, it requires only one single
forward propagation through the layers to detect objects.
When compared to the architectures of RCNN, it tends to
make more localization errors, but false positives are far less
likely. In terms of speed of processing, YOLO’s base model
easily outperforms the already fast Faster RCNN—processing
at 45 frames per second (fps) [15]. YOLO like RCNN comes
with other versions, with its fast version processing at more
than 150 fps. With such a massive processing rate, it is
very suitable for live video processing with less than 25
milliseconds of latency [15].

3) H-YOLO: A Single-Shot Ship Detection Approach
Based on Region of Interest Pre-selected Network: Although
about ships, Tang et al. [16]. proposal of a single-shot
detector on the pre-selected region of interest was the starting
point of our passenger classifier. Using hue, saturation and
value color space operations and a one-shot detector, they
were able to extract pre-processed regions of interest at close
to real-time.

4) Single Shot MultiBox Detector (SSD): Proposed by Liu
et al. [17], SSD is a competing object detection model that
works with a single phase analysis to detect multiple objects
within the image. The SSD network is built on the VGG-
16 model, where the feature map is extracted without the
need of the bounding box proposals like that of RCNN. This
map is then processed through six progressively decreasing
convolution filters (the multi-box), generating. The use of
multiple levels of filters allows about 8732 detections per
object (class). The final layer, non-max suppression layer,
eliminates the overlapping box by performing a bounding
box regression effectively leaving the calculated final box
with the highest overlap [17]. SSD’s strength lies with its
balance of ease of training speed and accuracy—being faster
than both Faster RCNN and the base YOLO model, and more
accurate than other single-stage methods.

C. State of the Art Tracking Models

1) Simple Online and Real-time Tracking with a Deep
Association (Deep SORT): Deep SORT is the successor of
SORT [18]. SORT is a high-performing two-stage tracking-
by-detection framework that performs Kalman filtering in
image space and data association using the Hungarian
method. Put forth by Wojke et al. [18], Deep SORT builds
upon its predecessor by adopting a deep association metric
with recursive Kalman filtering on frame-by-frame data [5].
Although slower than its predecessor, the added association
step drastically reduces the occurrence of identity switches
among detected instances [18].

2) Joint Detection and Embedding (JDE): Proposed by
Wang et al., unlike the two-stage tracking style of Deep
SORT, JDE integrates the detector and embedding model into
a single network. The combination of both stages removes
the need for an additional layer of computation, therefore
reducing the inference time [19]. Unfortunately, with this
combination, these methods tend to be significantly less
accurate than 2-stage methods, although capable of achieving
near video rate inference [1].
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3) FairMOT: A one-stage tracker that aims to bal-
ance speed and accuracy. Using an anchor-free detector, a
heatmap, then a multiple-level data association step involving
bounding box intersection over union, re-id features and
Kalman filtering [20]. FairMOT’s advantage comes from
understanding that previous SOA’s re-identification system is
poor, due to its detection module being heavily favored over
its re-id module. This work proposed by Zhang et al., aims
to balance both modules. By implementing a multi-layer
feature aggregation framework, its re-id module improves
significantly.

III. SYSTEM OVERVIEW

Our detection pipeline will be deployed on the Gabriel
BusEdge system as proposed and explained by C. Ye. [6].
The system’s major components are hardware, early-discard
filters, cognitive engines and finally sinks. Hardware on the
bus are multiple wide angle cameras mounted at different
positions on the bus, interior cameras, GPS, network antenna
and an accelerometer (see Figures 1 and 2). The early-
discard filters are Ye’s lightweight preprocessing mecha-
nism, and we choose SSD with MobileNet. This allows ad
hoc analysis instead of analysis on highly-repetitive data
effectively promoting scalability. Cognitive engines are the
more computationally heavy computer vision models that
handle and analyze distilled data from the bus, YOLO is
our choice here. Finally the sinks, which represent the final
component used for data analytics and visualizations. Our
choice here is Christensen’s proposed LiveMap system [21].
The complete system uses Robotics Operating System (ROS)
as its base architecture. See [6] for a more detailed and
thorough description for the Gabriel BusEdge system.

Wireless

Ne'(wirk

Pipeline 1 with source name: “MobileNet Detection”
Pt k

Cognitive

EMEs Engines

Sensors Sinks

7/

Filter 1 Engine 1 sink 1|
Engine 2

Filter 2 J——-‘{ Engine 3 ]—>[ Sink 2 J

Bus N\
A%
Pipaline 2 with source name: “Trajectory™

I‘ [ Sensor 1

[ Sensor 2

|
4 L Cloudlet ¥

Fig. 1: An abstraction of C Ye’s BusEdge pipeline.

Fig. 2: Pictures of the Hardware. (From left to right: bus computer;
exterior camera; interior camera; GPS and network antenna.)

A. Our Contributions

Our implementation is centered around aggregating data
for human activity around the transit system. Although at

the beginning stages, we implement a human detection
model, then a classification module capable of differentiating
pedestrians around from those boarding on a specific transit
route. Being that humans are the focal point of public transit,
this creates a solid starting point for future automations.

B. Proposed Methodology for our Pedestrian Detection and
Passenger Classification.

1) Grab and read a frame.

2) Apply a fine-tuned object detection model to each
individual frame. To only detect people, we simply
discard the information of every other class.

3) Get and store bounding boxes, scores and labels of each
instance of each detected human.

4) Select only pedestrians above a .70 confidence score—
this way we eliminate false positives such as man-
nequins and road signs at a distance.

5) Instantiate a passenger counter.

6) Create an invisible bounding box (we call this our
boarding zone) where passengers must enter or exit.

7) For cach properly identified pedestrian instance, if the
instance crosses the boarding zone, we compute the
intersection over union (IoU) of our zone against the
detected pedestrian.

8) If the resulting confidence score is greater than .50, this
person instance is treated as a passenger.

IV. RESULTS AND EVALUATIONS

1) Results: Although promising, there are still some
challenges with our pipeline. First off, as shown in Fig 3,
there tends to be some mislabelling of pedestrian instances.
Instances such as this, and accidental mannequin selections
occur at a confidence threshold of .75. Increasing the thresh-
old further would cause the model to ignore instances in
darkened scenes (such as that in Fig 4). Another common
issue that came up are pedestrian instances missed because
of slight occlusions (shown in Fig 5). This specific instance
is barely covered by the obstructing sign, yet it was com-
pletely ignored. This same instance in the frame before
commanded a .90 confidence score. This can easily be fixed
by either implementing a SOA tracker, allowing preservation
of the identity of each instance between each frame change,
even behind partial obstructions or the re-identification of
instances even through complete obstruction.

Fig. 3: Sign to the extreme right mislabelled as a person.

2) Evaluations: Evaluating our logic on unseen data, we
see some issues. Our pedestrian detector seems to get all
pedestrians in a given scene, but it fails to differentiate
between a reflection and the actual passenger as seen in
Fig. 6b. This was an unanticipated event, as it is the first
time such a detection occurred. Being that the passenger
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(a) Ori_ginal frame.

(b) Object detection.

(¢) Fine-tuning for pedestrians.

(d) Passenger specification.

Fig. 4: Successful pedestrian detector and passenger selection.

classification module only cares about the instance in the
invisible boarding zone, this still seems like an effective
method of passenger classification.

V. CONCLUSIONS

In this paper, we proposed an addition to Freedom Tran-
sit’s current analysis pipeline. With the help of SOA al-
gorithms, and C Ye’s BusEgde system as the architecture
behind this, we were able to effectively detect humans
around specific bus routes. The research and work done here
provides a foundation to assist Freedom transit with their
data analysis processes.

VI. FUTURE AND DISCUSSIONS

Future plans will be to use already existing bench-
marks such as those provided by [22], [11] and [23]. [22]
works well with detecting occluded instances in urban ar-
eas, whereas [11] is a significantly more diverse pedes-
trian dataset. [23] claims to have a strong generalization
ability. Evaluation of these datasets, recommended training
paradigms and more were presented well by Hasan et al.
[2]. Another implementation we plan on is for people with
disabilities. Rarely are they adequately represented in popular
pedestrian datasets. Then, a tracker for all instances. Giving
our system the ability to tell detected humans apart, effec-
tively establishing metrics for possible analysis. A counter-

(a) Pedestrian on the extreme left will
be missed in the next frame.

(b) Instance missed due to occlusion.

Fig. 5: Interesting, yet correctable misses.

(c) Passenger specification evaluation.

Fig. 6: Evaluation of pedestrian detector and passenger selection.

intuitive, yet interesting notion put forth by [2] is that general
object detection models tend to work better than current
SOA pedestrian-specific detectors on new and population-
dense scenes. We will analyze and compare SOA pedestrian-
detectors, SOA general object detection models, and our
pedestrian-specific model, specific to the Pittsburgh area to
see how cach fares and which is best for our specific needs.
To correct the issue with detection reflections as humans,
being that having the bus in the image is not necessary
for any of our analysis, we will simply only perform our
detection in a section of each frame without the bus in it.
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