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1. Problem 
  
Every year about 1.3 million people die, and 50 million people are injured from road traffic 
crashes [1].  In particular, traffic related death is the leading cause  of  death  among the  young  
world-wide  and  is  projected  to  continue  to  increase.  Among many causes for road traffic 
injuries, driver  distraction  has  been  identified  as  an  increasing  concern  for  policy  makers 
and  researchers,  including  the  usage  of  mobile  phones  and  other  technologies.  Recently, 
the National Safety Council’s studies have shown that smartphones are responsible for 26% of 
these accidents [2, 3].  

However, comprehensive monitoring of driver distraction without further interference is a 
challenging  task.  Causes of  driver  distraction  is  a  complicated  process  and  is  categorized  
into four different types: visual, auditory, cognitive, and  physical. Combination of more than one 
type can  happen  simultaneously,  triggered  by  either  internal  (in  vehicle)  or  external  
sources  of distraction  [1].  Prior work  has  explored  camera,  or  on-body  sensors  to  monitor  
and  maintain  a particular type of distraction of the driver [4-8]. These works often have sensing 
requirements that require direct  contact  or  line-of-sight  with  the  driver,  making  them  
unsuitable  for  casual  drivers and  can  in  cases  increase  driver  distraction.  In  addition,  
these  system  sense  a  predetermined effects, while other effects are hidden. While  the  
causes  of  distraction  are  various,  the  response  of  the  driver  tends  to  be  physical 
(changing  radio  stations,  leg  placements,  etc.)  or  cognitive  (stressed,  inattention,  etc.).  
Among them, heart rate variability is a key indicator of driver’s stress level. By capturing  the 
heart rate variability of the  driver,  we  can  combine it with other driver’s physiological states, 
extracted using our prior work with previous support from the University Transportation Center 
(UTC) in 2015 and 2016, to comprehensively infer both physical and cognitive distraction  of  
the  driver.   

Building  on  our  prior  work  on using  inertial  sensors for driver status monitoring [4, 8] 
(supported by the University Transportation Center (UTC) in 2015 and 2016),  we  developed 
more in-depth analysis methods to extract heart rate variability of a driver using inertial   sensors 
that   are   embedded   into   car   seats. Specifically, we developed data analysis methods to 
extract heartbeats of a driver in a running car.  

 
 
2. Our Approach 
 
We introduced a system of inertial sensors in a car seat to provide ambient monitoring of a 
driver's heart rate and heart rate variability (specifically, RR intervals). At every beat, the heart is 
polarized and depolarized to trigger its contraction, electrical activity which is often measured by 
an ECG. The R interval describes the depolarization of the main mass of the ventricle, causing 
the largest peak in an ECG. The RR interval is defined as the distance between the peaks of 
two R waves. The RR-interval, then, describes the duration of one complete cardiac cycle. In 
this project, we use inertial sensors instead of ECG, so the peaks of the waves we measure 



correspond to the heart's movement, not its electrical activity. The RR interval can be used to 
calculate heart rate and heart rate variability. This heart rate variability is a key indicator of 
stress. We have been focusing on acquiring successive RR intervals of drivers from a car seat 
in noisy in-car scenarios.  
 
 
3. Methodology 
          
Our research attempts to use the vibration of heartbeats through the body’s forces on the car 
seat in an automobile to measure RR-intervals. This poses many challenges which our system 
addresses with a multifold approach. Our main challenges are: 

1. the sometimes low signal to noise ratio (heartbeat forces on the seats are small),  
2. human motion noise (movement noise can overwhelm the signal),  
3. engine noise (periodic engine noise increases the noise floor), and  
4. sensor placement (the best location to capture the heart motion varies between 

persons and over time. We can intuitively understand this because people are 
different heights and they sit in different ways).  

 
Below we show a diagram of the system overview with 3 modules. 1) The sensing module 
acquires the signal using a grid of accelerometers to capture the heart motion that can occur at 
different locations. 2) The target signal extraction module removes high motion parts induced by 
human motion. Then it performs denoising on the remaining signal to remove periodic noise 
(e.g. engine noise). Next, it smooths the signal to enhance peaks, followed by a wavelet filter to 
further enhance the impulse signal in the heart rate frequency range. 3) Finally, the RR-interval 
estimation module addresses the sensor placement challenge with a sensor selection algorithm, 
and outputs the final RR-interval estimation.          
 

Figure 1: System Overview 

 
In the sensing module, we use a set of inertial sensors to pick up movement caused by the 
subject’s beating heart as the subject sits in the car seat. The heartbeat causes their chest and 
stomach to vibrate, which in turn causes the seat to vibrate. Because we detect the vibration of 
heartbeats from the vibration of the seat, the location of the sensor relative to the body greatly 
impacts the signal magnitude. Intuitively, the closer the sensor is to the heart, the stronger the 
signal. This raises two challenges: 1) People are different heights, so when they sit in the car 
their hearts are in different locations. And 2) people sometimes shift position and do not always 
sit leaning back. To address the first challenge, we use a network of sensors that lie against the 



backrest of the car seat and can pick up signals from a larger area. To address the second 
challenge, we use a sensor in the seat belt to pick up the stomach vibration caused by the 
heartbeat. We choose a sparse sensor array instead of many sensors for a lower-cost and low-
computational-power design. We use piezoelectric accelerometers, which are excellent for 
vibration monitoring due to their wide frequency response, linear frequency response curve, and 
high sensitivity. We use the W354C03_010G10 piezoelectric accelerometer, sampled at 2 kHz 
[9]. 
 
The target signal extraction module handles both human motion and engine noise. It first 
extracts windows of data where there is less human motion noise. It then applies denoising and 
a wavelet filter to remove engine noise. 
 
Our first step is recognizing and discarding portions of the signal that are excessively noisy due 
to person movement. We found that most large spikes of noise in the data were due to person 
movement, either talking, coughing, laughing, gesturing, or shifting positions. To identify this 
type of signal, we use a sliding window on the vibration signal and extract the maximum value of 
the window. If this value is above a threshold, we skip one second of data (i.e., label it as motion 
noise) and try again with a new window, moving forward by one second each time until we have 
a window that doesn’t exceed our threshold. We skip one second at a time because we observe 
experimentally that noise in the data tends to last from between half a second to several 
seconds and takes about half a second to subside. We set our threshold by fitting a probability 
distribution to the first minute of data for each person using kernel density estimation and then 
using the inverse cumulative distribution function (ICDF) to compute a threshold to detect high 
motion noise. The threshold is determined empirically, considering the tradeoff between data 
preservation and accuracy (i.e., high threshold leads to more data but lower accuracy, while low 
threshold increases accuracy but wastes lots of data). 
      

 

Figure 2: As we lower our noise threshold and keep less data, our error lowers due to 
increased sensitivity to including heartbeats and then increases due to erroneous 
detections. 

 



We note that as we lower our noise threshold, there are sometimes small peaks that buck the 
general trend. This is because our thresholding method occasionally cuts out some data that 
gives good results, causing a small rise in our error. We observe that at about 41% of data from 
the optimal sensor kept across all subjects, the error starts to rise. Setting the threshold to the 
ICDF function for 89% minimizes this error. 
 
We then do denoising to further reduce the noise in the signal. We place one sensor near the 
bottom of the backrest, away from the heart, to characterize noise. We observed that the level 
of noise recorded by each sensor is different, so it works best to partially subtract one sensor’s 
signal from the other. We multiply the noise sensor signal by a fraction (we obtained 20% 
heuristically) and subtract it from the rest of the sensors. 
 
In order to enhance the weak peaks of the heartbeat signal, we do root-mean- square 
averaging, which preserves the peaks in the data and smooths the high-frequency noise. 
 
To further reduce the noise, we isolate the periodic nature of the heartbeat using a continuous 
wavelet transform (CWT). The CWT compares the signal to compressed and stretched versions 
of a wavelet, the CWT ’s analyzing function. The Mexican hat wavelet has been widely used for 
characterizing impulse signals, which fits our target signal profiling. It is described by 

 
The stretching and compressing of the wavelet performed by the CWT is known as "scaling": 
the CWT is a function of scale (a) and position (b): 

 
Where f(t) is the signal, t is time, and ψ(t) is the wavelet function. By varying the values of the 
scale parameter, a, and the position parameter, b, we obtain the CWT coefficients C(a,b). We 
chose the scale that best represents our data and varied the position coefficients to obtain a 
one-dimensional filtered signal.   
 
Once the signal is enhanced and filtered, the RR-interval estimation module calculates RR-
interval with the sensor with the highest signal amplitude. 
 
To adapt to a wide range of heart positions with sparse sensors, we displace the sensors with 
minimum overlapping sensing range and choose the sensor closest to the heart. In each 
window, we calculate the mean of the wavelet coefficients for each sensor, and select the one 
with highest mean, indicating highest Signal-to-Noise Ratio. This algorithm depends on our 
having removed noisy parts in the signal and reduced the noise in the remaining signal, as high 
amounts of noise could also cause a higher mean, and cause the incorrect selection of a sensor 
as "optimal". 
 



For the first step in our peak detection algorithm, we do root-mean-square averaging of the 
wavelet coefficients, which smooths the data, limiting small false peaks and emphasizing larger 
peaks. We find local maxima by calculating the derivative of our signal in two points in time and 
comparing them to see if the difference lies above a given threshold. Then we pick points near 
the local maxima and apply Least Squares Curve Fitting over them to refine the peak location 
 
We occasionally detect extra peaks or drifted peaks from noise in the signal, which we remove 
to get accurate RR-intervals. Since heartbeats occur at periodic intervals, we discard the lowest 
magnitude peak of any pair of peaks that are closer than 220 beats per minute, which we take 
as our maximum heart rate (well above the normal resting heart rate of 60-100 beats per 
minute). This will not affect HRV monitoring in healthy subjects, because while heart rate does 
oscillate over time, it is not so irregular that it would have beats this close together and maintain 
a normal heart rate. Then we find the distance in time between the first two peaks in our sliding 
window and consider that our RR-interval. Now that we have our RR-interval, we take our next 
window of data starting at a location just past the 1st peak, ensuring that we don’t miss any 
heartbeats as we move the window forward.          
 
 
4. Findings 
 
We found that our research can accurately use the vibration of heartbeats through the body’s 
forces on the car seat in an automobile to measure RR-intervals. The outcomes include our 
hardware system integrated with algorithm software that removes noise from car and driver 
movements and extracts RR-interval. Filtering, wavelet signal decomposition and extreme value 
analysis techniques are used for effective separation of heart rate information from other noise. 
The system has been tested on real cars and drivers when the car is on and off.  
 
We tested our system on four subjects, who laughed, talked, shifted positions, gestured, and 
coughed at various times. We noted the time when these activities happened, and found that 
laughing and coughing caused the most obvious noise in the data. We found that the system 
was able to effectively recognize and ignore these noisy parts of the data by fitting a distribution 
to the data and introducing a threshold, as described in the methodology section. The following 
figure shows the results of these experiments by subject. When we look at the data by subject, 
we can see that there is some variation in the data. This can partly be explained by the way the 
subjects behaved. The extent to which the different subjects talked, laughed, coughed and 
shifted positions is reflected in the error rate and percent of data under the noise threshold for 
each subject. 



 

Figure 3: Graph (a) shows the 25% and 75% confidence intervals of the RR-interval 
absolute error for each human subject. The circles mark the mean error and the 
horizontal lines mark the median error. (b) shows how much data for each human 
subject was kept before and after the thresholding algorithm. One can see that there is 
variation per person in the amount of data under the noise threshold and the error. 

 
Subject 1 watched funny videos while sitting in the car, and his frequent laughter caused 
significant noise in the data. However, data with laughing noise was effectively ignored by our 
algorithm, which greatly reduced both the amount of his data that we used and the error 
associated with it. 
 
Subject 2 talked frequently and fidgeted. The thresholding algorithm also discarded a lot of her 
data, but it didn’t reduce the error by as much. This could be because some of her periodic 
fidgeting was confused with heart motion. Subjects 1, 3 and 4 were all between 177 and 180 
cm, while subject 2 was 167 cm, significantly shorter than the other subjects. Additionally, the 
sensor selected for Subject 2 was the one across the lap, while for the other subjects it was a 
sensor in the backrest. This suggests that either Subject 2 spent a lot of time leaning forward, or 
the sensors in the backrest were in a bad location to pick up heart rate for shorter subjects. In 
the future, more subjects with varying heights will help us determine this. 
 
Subject 3 also talked during most of the data collection, with occasional coughing or laughing. 
This behavior occurred less than subject 1, so less of his data was discarded. 
      
Subject 4 preferred to sit quietly and meditate, so his data had much less motion noise and the 
lowest error. Subject 4’s results suggest that keeping as much data as possible to acquire RR-
intervals is a crucial component of obtaining accurate HRV measurements. 
      
Overall the mean absolute error for RR-intervals was 54 ms across all subjects. 84% of our data 
under threshold was accurately categorized to within the 100 ms error defined in medical 
literature. [10]  
 



5. Outcomes 
 
Publications, conference papers and presentations 

1. Bonde, A., Pan, S., Jia, Z., Zhang, Y., Noh, H., & Zhang, P. (2018). VVRRM: Vehicular 
Vibration-based Heart RR-Interval Monitoring System. The 19th ACM International Workshop on 
Mobile Computing Systems and Applications (HotMobile 2018). 

2. Bonde, A., Mirshekari, M., Fagert, J., Pan, S., Noh, H., & Zhang, P. Seat Vibration for Heart 
Monitoring in a Moving Automobile. The First International Workshop on Data: Acquisition To 
Analysis (DATA '18) in SenSys 2018, Shenzhen, China. 

3. Mokaya, F., Noh, H., Lucas, R., & Zhang, P. (2018). MyoVibe: Enabling Inertial Sensor-
Based Muscle Activation Detection In High Mobility Exercise Environments. ACM Transactions 
on Sensor Network, 14(1), 6:1-26. 

4. Bonde, A., Pan, S., Noh, H., & Zhang, P. (2017). Demo Abstract: Heart and Sole: Shoe-
based heart rate monitoring. Proceedings of the 15th International Conference on Information 
Processing in Sensor Networks (IPSN '17). Pittsburgh, PA. 

   

Other Dissemination Activities 

1. We presented our work at University of Houston, Houston, TX, Mar. 23, 2018. 
2. We presented our work at University of Duisburg-Essen, Essen, Germany, Nov. 10, 2017. 
3. We gave a seminar on this project at Princeton University, Princeton, NJ, Sep. 28, 2017. 
4. We gave a seminar at Tianfeng Securities Co Ltd., Shanghai, China, Jul. 18, 2017. 
5. We presented at Chulalongkorn University, Bangkok, Thailand, Jul. 4, 2017. 
6. We presented at University of California San Diego, San Diego, CA, Jun. 7, 2017. 
7. We presented at Seoul National University, Seoul, South Korea, May 12, 2017. 
8. We presented at Georgia Institute of Technology (GeorgiaTech), Atlanta, GA, Apr. 22, 2017. 
9. We presented at Stanford University, Stanford, CA, Mar. 14, 2017. 
10. We presented at California Institute of Technology (Caltech), Pasadena, CA, Feb. 2, 2017. 
11. The technology was demoed at the 2017 Cyber Physical Systems Week held in Pittsburgh 
12. We also utilized our system as a data collection platform in the graduate level project 
courses that the PIs teach – Sensing and Data Mining in Smart Structures and Systems and 
Mobile and Pervasive Computing. These project courses promote the students’ interest in 
project related to safe transportation systems. 
  
Two PhD students (both female) have been supported by this funding. 
 
Open-source dataset: Our data collection with associated description has been accepted by 
the Data: Acquisition To Analysis (DATA 2018) workshop, which aims to foster data sharing and 
collaboration and will provide a central repository to archive the data we’ve collected for at least 
five years. More information can be found at https://workshopdata.github.io/DATA2018/. We 
also plan to make our data open source to allow other researchers to work with it and 
collaborate.  
   



6. Conclusions 
  
We presented a vibration-based system that can be imbedded into a car seat to measure key 
indicator of stress (heart rate and heart rate variability). The system leverages the fact that 
heartbeats create minute vibrations that change over time. In addition, our algorithm presents 
several methods to extract small signals of interests from the large motion noise and car noise 
that is present in the automotive environment. 
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