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ABSTRACT 1 
Defective truck equipment is a significant cause of many truck accidents and incidents. 2 
Conducting safety inspection programs with a minimum impact on the mobility of commercial 3 
vehicle fleets is a practical challenge for maintaining fleet safety and efficiency. Planned or 4 
unannounced inspections are critical for ensuring truck safety while greatly hindering fleet 5 
operational efficiency and mobility. Vehicle deterioration models concluded by historical 6 
inspection records can realize targeted inspection with priority. Unfortunately, vehicles can have 7 
different deterioration trends including different failure rates of components – called “failure 8 
modes.” A single deterioration model could hardly capture all failure modes of diverse vehicles 9 
and achieve reliable failure predictions. In addition, various inspection databases could capture 10 
different deterioration-related information. So cross-database analysis is essential to overcome 11 
these challenges for comprehensive failure mode analysis. 12 
This research examines commercial heavy-duty vehicles’ safety-efficiency tradeoffs by 13 
analyzing two historical inspection data sources to comprehensively capture and synthesis failure 14 
modes. Two algorithms, K-means clustering, and Latent Dirichlet Allocation collectively 15 
analyzed different temporal-spatial failure modes among vehicles and carriers. The identified 16 
component failure modes could prioritize inspection and maintenance plans for inspectors, 17 
drivers, and fleet managers, which help avoid repetitive out-of-service violations and improve 18 
fleet operational strategies with less mobility reduction.  19 
 20 
Keywords: Vehicle Safety Inspection, Failure Modes, Safety-efficiency Tradeoffs, Clustering 21 
Analysis, Natural Language Processing  22 
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INTRODUCTION 1 
Commercial trucks and trailers must perform different types and levels of inspections 2 

annually. These inspections include periodic inspections (e.g., annual or semi-annual) and 3 
random roadside inspections, which focus on vehicle components such as brakes, tires, and 4 
lights. However, the current inspection strategies are almost performed randomly by individual 5 
inspectors, which may fail to identify the high-risk vehicles from massive truck fleets. Based on 6 
the investigation by Keall and Newstead in 2013, vehicle defects are evident in many crashes, 7 
contributing to about 13.5% (1). They also found that if we reduce the annual inspection interval 8 
from 12 months to 6 months, the injury crash rate decreases by 8%. However, frequent 9 
inspection intervals will constrain mobility and increase unnecessary operating costs.  10 

In spite deterioration model identification is important to provide a threshold set as a 11 
buffer for different vehicles to be alerted when “safe level” is reached (2). But it is complicated 12 
to generalize all the situations of hundreds or even thousands of vehicles regarding totally 13 
different deterioration trends. Failure modes identification becomes important and 14 
straightforward to navigate and instruct legislators and motor carriers with simpler and more 15 
concise clusters rather than threshold sets with time and mileage factors. Suppose we have a list 16 
of failure modes that point to component defects or operation problems in vehicles and carriers 17 
with certain background features and driving behaviors. In that case, inspectors can inspect 18 
vehicles customized and strategically with a more efficient pipeline. Meanwhile, drivers and fleet 19 
managers from carriers can also benefit from this failure mode identification because they can 20 
pay more attention to sensitive and fragile components.   21 

Another shortcoming comes from limited data sources information. For example, Motor 22 
Carrier Management Information System (MCMIS) Catalog contains detailed descriptions of the 23 
violations found during vehicle inspections while having no detailed mileages of vehicles (3). On 24 
the other hand, some commercial vehicle inspection companies maintain databases that capture 25 
detailed mileage while only mentioning the problematic vehicle components without detailed 26 
descriptions of the violations (4). So cross-database analysis can overcome information absence 27 
problems and embodies failure mode analysis in a more complementary and comprehensive way. 28 

The research presented in this paper aims at a more comprehensive failure mode 29 
identification from two databases that contain complementary inspection records for capturing 30 
different information related to the deterioration trends of various commercial vehicles. The 31 
research team used two historical inspection datasets to summarize violation patterns among 32 
various vehicle features or components. We introduce K-means clustering and Latent Dirichlet 33 
Allocation models to identify failure modes based on information integration cross-database. 34 
Finally, we used violation counts or probability as performance metrics to evaluate failure 35 
modes’ effectiveness in identifying groups of vehicles of high risk.  36 

 37 
LITERATURE REVIEW 38 

While legislators are trying to simplify and humanize the inspection process of 39 
inspections, motor carriers should also focus on self-inspection and real-time monitoring to avoid 40 
being cited or given a score below average on FMCSA Safety Measurement System. Besides the 41 
argument of the effectiveness of inspection programs, identifying each component’s violation 42 
probability and crash risk probability can improve carriers’ safety and efficiency performance. 43 
Randhawa et al. (5) found the most often cited component in incidence reports. They reviewed 44 
3,600 selected police reports from six states, and brakes are reported as a major cited mechanical 45 
factor with 1.7% of involvements. Then comes components such as tires, wheels, coupling, and 46 
load securement, all at about 0.4%. Daniel Blower et al also examined the relationship between 47 
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the mechanical condition of heavy trucks and crash involvement (6). They used the Large Truck 1 
Crash Causation Study (LTCCS) to test if trucks with defects and out-of-service (OOS) 2 
conditions were statistically more likely to be involved than trucks without these conditions. 3 
They also found that violations in the brake system (36% of all) and the lighting system (19%) 4 
were the most frequent, and violations related to brake adjustment increased the odds of the 5 
truck’s being the striking vehicle by 1.8 times. Above all the discussion focusing on mechanical 6 
factors, researchers emphasize the importance of component healthy conditions with brakes, 7 
lights, and tires. But how valuable it is for different makes of vehicles and carriers with different 8 
operation patterns to schedule self-pre-trip inspections or install real-time monitoring devices 9 
like telematics remains unknown.  10 

Failure mode identification can provide a tool for drivers and fleet managers to navigate 11 
through different combinations of critical vehicle components in various vehicles to avoid high-12 
risk vehicle operation scenarios. Researchers used statistical approaches to identify individual 13 
high-risk vehicles from annual safety inspection records. Zheng et al. (7) tried a gradient 14 
boosting data mining model to evaluate several factors’ relationship with crash injury severity. 15 
They classified the crash severity into four different categories. They concluded that wet road 16 
surface, bad visualization (dark or low light conditions, or fog/poor weather conditions), a strong 17 
crosswind, heavy gross vehicle weight, and collisions with opposite traffic would increase the 18 
likelihood of more severe outcomes. Liang et al. (8) tested the effectiveness of safety roadside 19 
inspections by exploring accidents caused by reduced caution in driving and lack of vehicle 20 
maintenance. They also applied a classical case in economics by Becker’s research (9) to point 21 
out that if motor carriers or fleet managers are aware of this regulation, such practices will 22 
undermine the effectiveness of the regulation by reducing their compliance. Unfortunately, these 23 
studies have not yet traced how vehicle component defects interact with other features such as 24 
age, mileage, and vehicle properties, leading to high-risk operation scenarios and crashes. 25 

The contributions of the paper include: 1) generalizing failure modes from millions of 26 
vehicle inspection records; 2) revealing distributions of different background features (such as 27 
age, mileage, and urbanity) in each mode; 3) synthesizing text recording into failure topics that 28 
represent a specific failure mode found during random roadside inspections. 29 

 30 
METHODOLOGY 31 

In this paper, we utilized historical truck inspection data from different sources to explore 32 
potential failure modes behind historical inspection records. The first sub-section below 33 
describes data preprocessing pipelines defining reasonable time ranges and validating correct 34 
inspection records. The second sub-section introduces clustering methods, such as K-means 35 
clustering and latent Dirichlet allocation methods applied to different datasets to cluster multiple 36 
failure modes based on descriptions and topics extracted from inspection records. Figure 1 shows 37 
the overall framework of the proposed method.  38 

 39 
Data Sources and Preparation 40 

This research uses two vehicle inspection databases. The first is a database maintained by 41 
a privately owned IT contractor in Pennsylvania. In many states, such as Pennsylvania, 42 
inspection data are collected by the state government and privately owned IT contractors and 43 
inspection companies. CompuSpections, LLC (CompuSpections) is a privately owned IT service 44 
company incorporated in 2003. Their work includes over 30 years of performing State 45 
Inspections and creating record management software services for inspection stations. Their 46 
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software service, SIRPAWeb, is designed for Pennsylvania vehicle safety inspection stations for 1 
recording and printing accurate and uniform MV-431/480 safety inspection forms.  2 

 3 
Figure 1. Research Process Designation. 4 

 5 
MCMIS (Motor Carrier Management Information System), maintained by FMCSA. 6 

MCMIS is a source for FMCSA inspection, crash, compliance review, safety audit, and 7 
registration data (10). From that database, multiple tables are used to extract useful information 8 
for each inspection with violations. These tables include the INSPECTION table, UNIT table, 9 
VIOLATION table, and INSP SUPP VIOLATION table. 10 

Because different inspection stations and inspection agencies have their naming and 11 
recording regulations, dataset checks, transformation, and loading processes are essential for 12 
further analysis. Checking regulations will be introduced in the validation experiment design 13 
section to clean all invalid inspection records and filter commercial vehicles that are heavy-duty 14 
tractors or trailers. A dataset attribute summary is provided in Table 1. 15 

 16 
TABLE 1 Data Summary for Two Different Sources 17 

 Compuspections MCMIS 

Dataset 
Description 

Inspection records that using 
Compuspections software service in 

Pennsylvania  

Inspection records conducted by state 
personnel under the Motor Carrier Safety 

Assistance Program (MCSAP) 
Data 

Source 
Collected by Compuspections 
software service, SIRPA Web 

Captured by FMCSA through 
SAFETYNET 

Inspection 
Type Annual Periodic Inspection Random Roadside Inspection 

Data Range 200– - 2021 2021 

Data Type 

Vehicle identification number 
(VIN), make, model, model year, 

binary inspection geographic 
information, inspection overall 
result and component results, 

vehicle odometer reading 

Vehicle identification number (VIN), 
make, model, model year, non-binary 
inspection geographic information, 

inspection overall result and component 
results, inspection defect descriptions 

 18 
As for urbanity classification for registered vehicles in the Compuspections dataset, this 19 

research used the Urban-Rural classification scheme provided by The Center for Disease 20 
Control’s National Center for Health Statistics (NCHS) (11). This scheme distinguishes urban 21 
and rural areas into six categories, from Type 1 as most urban to Type 6 as most rural. After that, 22 
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we used 2010 Census data to assign the NCHS classification to all the counties shown in the 1 
dataset (12). 2 

 3 
Inspected Vehicles Failure Mode Identification 4 

Given that historical inspection records are high-dimensional and have unstructured 5 
values for some attributes (e.g., text descriptions of violations), generalizing thousands of 6 
inspection records into failure mode clusters is necessary but challenging. According to research 7 
by D. Peck et al.(13), the inspection failure rate is related to three parameters such as urban/rural 8 
county classification, age, and odometer reading. M. Beydoun (14) also suggested that mileage, 9 
age, weight, and vehicle makes such as Chrysler, Ford, GM, Hyundai, and Mazda have 10 
significantly impacted estimations for testing emission failure on passenger vehicles. Based on 11 
all the recent research, this research decided to organize different clusters based on vehicle 12 
information (e.g., mileage, age) and usage contexts (urban/rural county). 13 

This research considered all component inspection results in the CompuSpections dataset 14 
to divide datasets into different clusters and considered violation descriptions in the MCMIS 15 
database to divide datasets into various topics. Perr-Sauer et al.’s research (15) about commercial 16 
vehicle time-series data analysis with K-means clustering shows three steps of K-means 17 
clustering. These steps include 1) extracting the overall and each historical component inspection 18 
results in the Compuspections dataset; 2) applying the elbow method to find the best 19 
performance k values for the components inspection dataset. The Silhouette coefficient assisted 20 
in evaluating the performance of the clustering method; and 3) calculating the difference 21 
between each cluster’s average violation counts and the whole dataset’s violation count, 22 
summarizing the failure modes behind them.  23 

Regarding the fact that the MCMIS database has an individual file that records violation 24 
descriptions on the roadside, topic modeling is another technique that can help cluster inspection 25 
records specifically. This research adopted topic modeling techniques demonstrated in Subasish 26 
Das et al. (16) for processing the FARS database and NHTSA vehicle complaint database to test 27 
the effectiveness of state vehicle inspection. In the MCMIS database, the steps of establishing 28 
topic modeling in this research include 1)  data prepossessing to clean violations unrelated to 29 
vehicle maintenance information. 2) tokenizing each paragraph, cleaning stop words, stemming, 30 
and lemmatizing words to get a final analyzable dataset about violation descriptions; 3) 31 
Calculating the TF-IDF value to evaluate each word’s frequency and importance; 4) 32 
distinguishing each vehicle’s failure mode by the recorded descriptions and LDA topic 33 
modeling. Figure 2 shows the proposed method combining the K-means clustering method and 34 
the LDA model for identifying each vehicle’s specific failure clusters/topics. 35 

 36 
     Figure 2. K-Means Clustering Method and LDA Model Design for Compuspections 37 

Annual Inspection Dataset and MCMIS Random Roadside Inspection Database. 38 
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VALIDATION EXPERIMENT DESIGN 1 
 2 
Data Cleaning and Preprocessing 3 
Cross-analysis of historical inspection data from different inspection types is essential to estimate 4 
the optimal inspection timing interval for drivers and fleet managers. According to FMCSA 5 
(Federal Motor Carrier Safety Administration), four types of inspection are daily driver 6 
inspections, periodic/annual inspections, roadside inspections, and onsite compliance reviews. 7 
From all the inspection types above, periodic/annual inspections and roadside inspections are 8 
required by the federal or state departments of transportation and have relatively uniform 9 
inspection standards.  10 

Because different inspection stations and agencies have their naming and recording 11 
regulations, various checks, transformation, and loading processes are essential for further 12 
analysis. For cleaning all invalid inspection records and filtering commercial vehicles, heavy-13 
duty tractors, and trailers, a checking regulation pipeline is designed, as shown below in Figure 14 
3: 15 
 16 

 17 
Figure 3. Compuspections Dataset Data Preprocessing Flow Chart. 18 

 19 
As for vehicle checks, this research first filtered commercial trucks and trailers and then 20 

used gross vehicle weight and plate number to exclude vehicles that were not heavy-duty tractors 21 
and trailers. There are also naming regulations for VIN numbers to check, such as total length, 22 
security check digit, and model year digit. All these naming regulations exclude invalid VIN 23 
numbers and corresponding illegal inspection records from further analysis. The last step is to 24 
exclude inspection records that are not correct. The algorithm excludes outliers from further 25 
analysis depending on the “passorfailedinspection” column, component test columns, odometer 26 
reading columns, brake thickness, and tire tread columns. 27 

The authors also performed a similar data preprocessing flow for the MCMIS database 28 
compared to Compuspections data. We use “INSPECTION_ID” as a key to join the inspection 29 
table, unit table, and violation table, and “INSP_VIOLATION_ID” as a key to join the violation 30 
table with the violation supplement table so that we can combine each violation record with text 31 
descriptions. In addition, a similar VIN naming regulation check was manipulated as 32 
Compuspections data to exclude incorrect VIN numbers from further analysis. For vehicle types 33 
and gross weight, the further investigation also only kept heavy-duty trucks and trailers. Only 34 
vehicle types related to trucks and trailers are kept according to 35 
“INSP_UNIT_VEHICLE_ID_NUMBER” column. What differs from the Compuspections 36 
dataset is that the MCMIS database also recorded vehicle violations unrelated to component 37 
defects. So only maintenance violation codes that related to components are chosen here. 38 
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K-Means Clustering Algorithm 1 
Clustering algorithms can use various vehicle attributes or background features (e.g., mileage, 2 
age, and urbanity) to identify similar vehicles in multiple aspects. A good set of vehicle attributes 3 
or background features can lead to clustering results with clear boundaries and fewer overlaps 4 
between clusters, where some vehicles fall into both categories and hard to tell the differences 5 
between two clusters. Hopkins statistics measure the clustering tendency of a dataset (17). This 6 
metric aims to measure how different the distances are among the data points in a real dataset 7 
from their neighbors, comparing the distances of a uniformly distributed dataset. A Hopkins 8 
Statistic greater than 0.9 indicates a dataset far different from random uniformly distributed 9 
dataset, with highly clusterable performance. From the results in Table 2, every feature sets are 10 
highly clusterable (Hopkins Statistic > 0.9). Another value used for measuring the quality of 11 
clustering and selecting proper features/attributes is the “Silhouette Coefficient” (18). The 12 
Silhouette Coefficient value closer to 1 means that clusters have clear boundaries and not too 13 
much-overlapped area among them. Besides measuring how suitable clusters can be as failure 14 
modes identification, it is also important to determine what background features are critical 15 
enough to influence failure modes identification results. The authors divided all vehicle features 16 
into five feature sets to check if any lead to clear clustering boundaries for identifying the 17 
vehicle’s failure modes. 18 
 19 

TABLE 2. Summary of the Clusterability Analysis for each Feature Set. 20 

Feature Set Information Included 
Hopkins 
Statistic Silhouette Coefficient 

Feature Set 1 O(1) + EC(2) IR(3) 0.9907 k = 4, SC(4) = 0.8765; k = 
7, SC(4) = 0.8860; 

Feature Set 2 Mileage + O(1) + EC(2) IR(3) 0.9269 0.6305 

Feature Set 3 Age + O(1) + EC(2) IR(3) 0.9863 0.5652 

Feature Set 4 Urbanity + O(1) + EC(2) IR(3) 0.9902 0.6279 

Feature Set 5 All Feature Included 0.9219 0.4027 
(1) O = Overall 21 
(2) EC = Each Component 22 
(3) IR = Inspection Result 23 
(4) SC = Silhouette Coefficient 24 

 25 
After checking that each feature set is suitable to proceed with the K-Means clustering 26 

method, determining K, the number of clusters, is vital to find failure modes. The elbow method 27 
is the first criterion to identify K and Silhouette coefficient assisted in evaluating if clusters have 28 
a clear boundary with fewer overlaps. Based on the performance and evaluation by both elbow 29 
method and Silhouette coefficient, only feature set 1, with overall inspection result and each 30 
component inspection result has two selections for K value. Clustering feature set 1 with K 31 
equaling 7 has a slightly better Silhouette coefficient performance than K equaling 4. However, 32 
Data Version 5 has a Silhouette coefficient that is below 0.5, which shows uncertain boundaries 33 
with clusters and overlapped areas. So, in this case, feature set 5 is not considered further for 34 
clustering analysis. 35 

 36 
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Topics Modeling for Failure Modes Identification 1 
MCMIS, a roadside inspection database established by FMCSA, has a different pattern of 2 
inspection recording compared to Compuspections annual inspection dataset. It has a detailed 3 
description of each violation on commercial trucks and trailers to illustrate the current conditions 4 
of component defects. Based on the information provided, the authors used topic modeling, such 5 
as latent Dirichlet allocation modeling, to explore topics rather than clusters. 6 

Before measuring word importance by TF-IDF for each document, text cleaning is 7 
performed before measurement. A full text cleaning step includes: 8 

● Message Clearance: remove numbers and punctuations and transform all letters to lower 9 
cases. 10 

● Message tokenized: splitting a text object into words from whitespaces. 11 
● Stopword removals: remove all words that have no semantic relevance to the document. 12 

For example, words such as articles, pronouns, and prepositions are stopwords that need 13 
to be removed. 14 

● Stemming and Lemmatization: stemming refers to the process of reducing each word to 15 
its root or base. For example, words such as “warning,” “warned,” and “warner” are all 16 
reduced to the stem “warn.” However, there are still words such as “good,” “better,” and 17 
“best” that cannot be solved by stemming. Lemmatization is introduced to operate on a 18 
single word with knowledge of the context. Lemmatization can discriminate between 19 
words with different meanings depending on the part of speech. 20 

 21 
Based on all the text cleaning processes above, a “word list” was generated for each 22 

vehicle’s inspection documents, and their word importance (TF-IDF) is measured from there on 23 
to implement the LDA model. LDA model is a popular way to convert an unstructured and 24 
complex textual dataset into topics (19). In this method, LDA model assigns each document with 25 
different probabilities of topics, and also assigns each topic with different probabilities of words. 26 
When topics with a sets of words are listed, LDA model gives a parameter (per-topic-per-word 27 
probability) to each word in a certain topic. This parameter shows how likely this word can be 28 
generate in this topic. All these processes can be done by many open-source tools such as NLTK 29 
(20). 30 

After text cleaning and TF-IDF calculation, we should define the exact number of topics 31 
for the LDA model. In general, the number of topics, K, can adjust the granularity of the topic 32 
model. The more topics accepted, the more narrow results it will get, or vice versa. According to 33 
the nature of the LDA model and previous studies, we used a grid search method to assign the 34 
best performance value for each parameter (21). Finally, the best number of topics is eight. 35 

 36 
RESULTS 37 
 38 
K-Means Clustering Results 39 
This research interprets clusters into different failure modes by failure rate analysis. It took 40 
groups of vehicles in each cluster and calculated the average number of violation counts for 41 
them. If some indicators or components’ average number of violation counts are significantly 42 
different from baseline average violation counts, then we can identify this cluster with a specific 43 
failure mode. Based on this logic, Figures 4 – 8 show how significantly different each cluster’s 44 
average violation counts are from baseline (the whole dataset average) average violation counts 45 
and interpretations about what failure modes can conclude from the data. 46 
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After cluster interpretation analysis, k-means clustering can divide the whole vehicle fleet 1 
into four or seven clusters based on Figures 4 and 5. From there, it shows that groups of vehicles 2 
with lighting, brake, and tire problems are significantly above average. This conclusion suggests 3 
that lighting, brakes, and tires can be key inspection components during annual inspection 4 
processes.  5 

 6 
 7 

Figure 4. Failure Mode Heatmap Summary of Feature Set 1 (k = 4). 8 

 9 
 10 

Figure 5. Failure Mode Heatmap Summary of Feature Set 1 (k = 7). 11 
 12 

The K-means clustering that uses feature set 2 (overall plus milage) divides all vehicles 13 
into four groups depending on mileage driven per year. Figure 6 shows the clustering results 14 
using feature set 2. The clustering result shows that the vehicle group with slightly above average 15 
mileage (2988.23 miles) has the most significant lighting and brakes problems. It indicates that 16 
vehicles with average mileage driven per year are the most noticeable cluster if inspected, 17 
especially with lighting and brake components. Identical results are found by adding age and 18 
urbanity features (Figures 7 and 8). Medium age generation and vehicles registered at the large 19 
fringe and medium metro area also have significant problems with lighting and brakes problem, 20 
compared to other age groups and urbanity areas. Overall, brakes, and tire problems are the most 21 
common failure mode when annual inspections are performed based on different vehicle 22 
properties. While talking about background information such as mileage, age, and urbanity, 23 
vehicles with certain features can be key important features to give extra attention to when doing 24 
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annual inspections, such as vehicles with average mileage driven, medium vehicle age and 1 
vehicles from large fringe and medium metro area. 2 

 3 
Figure 6. Failure Mode Heatmap Summary of Feature Set 2 (with mileage, k = 4). 4 

 5 
Figure 7. Failure Mode Heatmap Summary of Feature Set 3 (with age, k = 4). 6 

 7 

 8 
Figure 8. Failure Mode Heatmap Summary of Feature Set 4 (with urbanity, k = 4). 9 

 10 
LDA Topic Modeling Results 11 
By training the LDA model and selecting the best parameters, we can obtain the list of topics and 12 
analyze the meaning of each failure mode. Table 3 shows the list of topics and the top 10 words 13 
of each topic, ranking words by per-topic-per-word probability. For example, the probability of 14 
term “lamp” is generated in topic 1 is 0.045. 15 



Yuan, Shi, Xiong and Tang  

12 
 

TABLE 3. Top 8 topics with ten keywords by LDA model from the MCMIS Database. 1 
Topic 1 Word: 0.051*"inop" + 0.045*"lamp" + 0.034*"inoper" + 0.031*"rear" + 
0.030*"turn" + 0.029*"signal" + 0.026*"front" + 0.026*"right" + 0.026*"left" + 
0.025*"light" 
Topic 2 Word: 0.034*"air" + 0.024*"leak" + 0.024*"axl" + 0.021*"brake" + 0.019*"hose" 
+ 0.016*"x" + 0.015*"l" + 0.014*"chamber" + 0.014*"r" + 0.013*"v"  
Topic 3 Word: 0.051*"tire" + 0.050*"axl" + 0.036*"psi" + 0.035*"right" + 0.031*"left" + 
0.027*"side" + 0.026*"insid" + 0.021*"outsid" + 0.021*"inop" + 0.021*"flat"  
Topic 4 Word: 0.027*"display" + 0.026*"number" + 0.025*"name" + 0.024*"usdot" + 
0.023*"dot" + 0.022*"carrier" + 0.022*"lb" + 0.017*"vehicl" + 0.016*"compani" + 
0.015*"truck"  
Topic 5 Word: 0.021*"none" + 0.020*"trailer" + 0.019*"secur" + 0.019*"chain" + 
0.018*"breakaway" + 0.016*"cabl" + 0.015*"unit" + 0.015*"attach" + 0.013*"strap" + 
0.012*"connect"  
Topic 6 Word: 0.016*"oil" + 0.015*"miss" + 0.014*"leak" + 0.014*"rear" + 0.014*"engin" 
+ 0.012*"right" + 0.012*"side" + 0.011*"left" + 0.010*"inop" + 0.009*"cover"  
Topic 7 Word: 0.049*"expir" + 0.035*"" + 0.034*"registr" + 0.019*"current" + 0.016*"plate" 
+ 0.016*"inspect" + 0.014*"proof" + 0.014*"insur" + 0.013*"card" + 0.013*"display"  
Topic 8 Word: 0.027*"window" + 0.024*"windshield" + 0.023*"tint" + 0.021*"fluid" + 
0.018*"washer" + 0.017*"measur" + 0.016*"crack" + 0.016*"driver" + 0.014*"side" + 
0.013*"adjust"  

 2 
In Table 3, each topic represents a specific failure mode based on the words selected. For 3 

example, Topic 1 is related to lighting violation because it includes words such as “lamp,” 4 
“rear,” “turn,” “signal,” and so on, which represents problems such as signal light problems and 5 
inoperable lights detected during the roadside inspection. Topic 2 refers to another major 6 
violation category, brake problems, because “air,” “leak,” and “hose” are all components related 7 
to the brake system. Topic 3 can also be interpreted as “tire problems” since tire violation 8 
terminology such as “tire,” “psi,” and “flat” is included. Topic 4 and Topic 7 are related topics 9 
that both refer to registration and equipment problems. Topic 4, with words such as “display” 10 
and “usdot,” shows that vague display numbers on vehicle bodies can be a major cause of 11 
registration violations. Topic 7, with the words “expir” and “insur,” discloses another important 12 
insurance proof issue for the registration violation. Other topics, such as topics 5, 6, and 8, also 13 
have specific keywords in their content. Topic 5 implies tractor-trailer connection issue, topic 6 14 
implies engine oil leak issue, and topic 8 implies windshield problem. 15 

Any vehicles from our database can be assigned to the most probable topic based on the 16 
LDA model. Generally, the LDA model assigns a probability vector to each vehicle. We select 17 
the most probable topic for each vehicle and categorize it to that failure mode. Figure 9 shows 18 
how popular each topic is, and how many vehicles are in there. 19 

 20 
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 1 
 2 

Figure 9. Vehicle Population Counts for Each Topic. 3 
 4 

Figure 9 reveals that USDOT Number Display Problems are the most popular. The vague 5 
and incomplete USDOT numbers on the body of vehicles could be a common question for motor 6 
carriers. The following comes to brake, insurance proof, and windshield problems. That indicates 7 
brake and windshield problems lead to failure-prone components during roadside inspections. 8 

 9 
Combination Comparison Between Two Failure Modes Identifications 10 
From clustering analysis and topic model analysis based on previous studies, there are some 11 
possible failure modes that historical inspection data can define. But how much they overlapped 12 
and why certain makes of vehicles can be categorized into these modes remained unknown. This 13 
part of the analysis aims to compare and correlate the failure modes found from different 14 
databases’ records for a potential cross-database analysis that reveals more comprehensive 15 
failure mode information of various vehicles. Here the authors select the most popular vehicle 16 
makes that exist in both vehicle datasets and analyze their information as a combination 17 
comparison. This research adopted feature set 1 with k equaling 7 (since its accuracy among 18 
other feature sets) compared with MCMIS topic modeling results to see if the results are similar. 19 
 20 

TABLE 4 Population Percentage(%) for Each Make and Each Failure Mode from 21 
Compuspections Dataset. 22 

Make / Failure 
Modes* 0 1 2 3 4 5 6 
Make 1 51.2 13.0 1.3 0.6 32.9 0.0 0.9 
Make 2 74.1 4.8 6.7 1.1 6.0 4.9 2.3 
Make 3 69.9 10.6 6.1 0.8 6.0 1.5 5.1 
Make 4 84.0 6.0 2.1 0.1 2.3 1.6 3.8 
Make 5 90.4 2.1 2.1 0.2 2.2 1.8 1.2 
Make 6 74.2 4.3 5.4 5.5 5.2 1.7 3.5 

* For Failure mode codes, refer to Figure 5. Bold fonts indicate top 2 largest percentage of the 23 
mode for a given make without failure mode code 0 (no problem). 24 
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From the percentages tables above with popular makes among data sources, two failure 1 
mode identification methods have good performance in identifying lighting defects. For K-means 2 
clustering with Compuspections dataset, Make 1, 2 and 3 have a high percentage of lighting 3 
defects with failure modes code 1(lighting problems) and failure modes 4 (lighting and brake 4 
problems). And this conclusion is also reflected by LDA topic modeling with the MCMIS 5 
database, which shows a higher percentage of code 1(lighting problems) from the total 6 
population. Besides that, since there are different recording contents in each type of inspection, 7 
some failure modes’ tendencies in one method are not reflected in another. For example, Table 5 8 
shows a different distribution pattern of Make 4 with failure mode codes 3(tires problems) and 9 
5(tractor–trailer connection problems) from other makes, which are failure mode codes 10 
1(Lighting problems) and 6(engine oil leak problems). In addition, failure mode code 5 (tractor-11 
trailer connection problems) in the MCMIS database is not an item detected by Compuspections 12 
annual inspection. However, this finding suggests a correlation analysis between truck makes 13 
and failure modes in the future to explore any potential correlation between truck makes and 14 
component defects. 15 

 16 
TABLE 5 Population Percentage (%) for Each Make and Each Failure Mode from 17 

MCMIS Database. 18 
Make / 
Failure 
Modes** 

0 1 2 3 4 5 6 7 

Make 1 6.9 35.4 6.1 13.1 5.7 5.7 13.7 13.4 
Make 2 6.0 35.1 5.2 16.6 5.2 6.7 14.0 11.2 
Make 3 6.5 34.3 5.7 10.8 6.3 7.8 16.5 12.2 
Make 4 6.9 5.4 4.8 35.1 7.2 18.7 11.3 10.6 
Make 5 7.1 29.4 7.5 11.9 7.6 9.1 14.0 13.5 
Make 6 6.5 38.4 6.9 10.6 4.9 5.0 12.1 15.6 

** For Failure mode codes, refer to Table 3. Bold fonts indicate the top 2 largest percentage of the 19 
mode for a given make. 20 
 21 
DISCUSSION 22 

Previous research only discussed possible optimization strategies based on individual 23 
vehicles on a statistical level. This paper proposes a new way to generalize different vehicles 24 
operated by carriers into groups, showing that potential groups of vehicles need extra attention 25 
when inspected. By exploring potential failure modes with different formats of inspection 26 
recording datasets, the inspection process can be optimized by targeting and strategic plans. 27 
This study considered how to categorize inspection records into groups of failure modes, and if 28 
carriers own similar conditions vehicles, how to make preventive maintenance ahead to avoid 29 
unnecessary risks. For annual inspection, we derive failure-prone components from 30 
Compuspections Dataset, which indicates failure-prone components are brakes, lighting, and 31 
tires. When features such as age, mileage, and urbanity are involved, groups like middle-age 32 
generation, average mileage driven groups, and large fringe and medium metro areas are highly 33 
attention groups to check if there are any unsafe components. These results are consistent with 34 
previous research about brake pad and tire tread deterioration because all these components are 35 
perishable if age and mileage get older and longer. 36 
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When it comes to roadside inspection with the MCMIS database, a topic model indicates 1 
that mechanical component problems are not only popular topics, but some registration problems 2 
such as USDOT number display and insurance proof can also be trivial but critical violations that 3 
influence carriers’ performance in the FMCSA rating system. If motor carriers concentrate on 4 
improving their rating scores on the FMCSA website, these mistakes should be prevented. 5 
Besides that, high probability also makes brake, windshield, and engine violations very popular. 6 
That result suggests that motor carrier workers such as drivers and fleet managers include more 7 
precise and detailed pre-trip inspections or install real-time monitoring devices such as 8 
telematics. 9 

 10 
CONCLUSION 11 

From Compuspections Dataset (annual periodical inspection), this research concludes 12 
that there are approximately four different failure modes, most of which point to brake and light 13 
failures. When background information is included, these feature sets also correlate with 14 
component inspection results. For example, from Figures 6 – 8, vehicle groups with medium 15 
mileage driven, middle age, and from the large fringe metro and medium metro areas have 16 
significant differences compared to the baseline overall average model (more than 1.9 violation 17 
cases). When inspectors inspect vehicles with these features, they should pay extra concern with 18 
key components. From MCMIS Database, eight topics are not only related to component failures 19 
but also to registration and insurance proof problems. That means a basic pre-trip check is 20 
essential for basic display and paperwork materials to prevent the negative influence of tiny 21 
mistakes and ignorance, such as a reduction in CSA safety score and ranking. Both results 22 
indicate that brakes, lights, and tires are failure-prone components that form obvious failure 23 
modes. 24 
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