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ABSTRACT 1 
An increasing number of jurisdictions are considering mileage-based user fees (MBUFs) to replace fuel 2 
taxes, to fund transportation infrastructure. To support the design and evaluation of MBUF programs, and 3 
compare them to the existing fuel tax, we leverage over 119 million records across a fifteen-year period, 4 
from annual vehicle inspections in Pennsylvania, to develop high-resolution estimates of the annual cost 5 
to vehicle owners of fuel taxes, and of MBUF’s at various rates. Applying numerous data cleaning and 6 
analytical methods, we use odometer readings from subsequent vehicle inspection records to assess 7 
annual vehicle miles travelled (VMT) per vehicle aggregated at the state, county, and ZIP code level. 8 
Web-scraping was used to assess the fuel economy of each vehicle in the records and develop estimates 9 
for fleetwide fuel economy in each area. Based on these estimates, we find that fees for passenger 10 
vehicles would vary by county and ZIP code between ¢2.4 and ¢3.2 per mile, to cost vehicle-owners the 11 
same as the existing fuel tax. We also find that vehicles registered in urban areas travel 10-30% fewer 12 
miles per year and tend to consume about 10% less fuel per year than average. Our results show that a 13 
shift to MBUF’s will in general lead to drivers in urban areas, and drivers of hybrid electric vehicles, 14 
paying a higher amount than they currently do, while drivers in suburban and rural counties will spend 15 
less each year.  16 



   
 

   
 

1. INTRODUCTION 1 

Since being introduced in 1932, gasoline taxes have been the primary means of funding the U.S. 2 
road network. The federal fuel tax has been stagnant for nearly three decades ($0.185/gal since 1993) and 3 
has not been adjusted for increases in construction and maintenance costs despite a 240% increase in the 4 
construction cost index in that time (1). Several concerns have been raised around the lower funding 5 
levels, most notably that it may lead to deferred or delayed maintenance, which would in turn lead to 6 
reduced safety, and lower resilience of infrastructure over time. The significant decline in the purchasing 7 
power of fuel taxes has been compounded by fuel-efficient (and electric) vehicles, which effectively pay 8 
lower (or no) taxes per mile driven (2).  9 

Various states have been considering alternatives to motor fuel taxes by directly charging owners 10 
of vehicles based on driving activity like miles driven instead of indirectly through fuel consumption.  11 
Vehicle miles traveled (VMT) fees, road user charges (RUCs), or mileage-based user fees (MBUFs) have 12 
been proposed as a successor to fuel taxes. Despite some differences in implementation, in the rest of this 13 
paper we refer to these interchangeably as MBUFs.  14 

While several pilots (and programs) have been deployed in the U.S., MBUFs are yet to be 15 
deployed at scale. Many of these deployments have been a result of collaboration between multiple state 16 
agencies—most notably, the RUC West consortium and the Eastern Transport Coalition’s pilot programs 17 
across many states (3). Over 10 state and local transportation departments are also members in the 18 
Mileage-Based User Fee Alliance, a “a national non-profit organization that brings together government, 19 
business, academic, and transportation policy leaders to conduct education and outreach on the potential 20 
for” MBUF’s (4). 21 

States and other jurisdictions use a variety of methods to estimate VMT for planning and analysis 22 
purposes. Top-down methods like randomized surveys, such as the National Household Transportation 23 
Survey (NHTS) have been conducted for about 50 years (5). However, these methods rely on relatively 24 
small sample sizes (in some cases as few as 200 for a state) and may result in estimates with high standard 25 
deviations. Travel diaries have also been used to build bottom-up estimates of VMT and contain 26 
additional information such as trip types. Some studies have also evaluated registration data, but these 27 
studies can suffer from time lags.  28 

Other emerging methods seek to scavenge data from existing datasets such as inspection records 29 
(6). In this paper, we leverage odometer readings from consecutive periodic safety and emissions 30 
inspections for passenger vehicles to estimate miles driven during that period. Given millions of 31 
inspections per year from across the state, it is possible to have large sample sizes that allow for improved 32 
and higher resolution VMT estimates across a jurisdiction. 33 

We apply these high-resolution estimates of VMT to produce vehicle-level comparisons of what 34 
drivers are currently paying in fuel taxes versus what they may pay in hypothetical MBUFs. Specifically, 35 
we first aggregate inspection records for each individual vehicle (after conducting data cleaning and 36 
filtering as described below), to estimate vehicle-level VMT. Next, we estimate VMT distribution at the 37 
state, county, and ZIP level. Based on this, we calculate the annual fuel tax that each vehicle is likely 38 
currently paying, based on these VMT estimates and fuel economy data scraped from numerous websites 39 
as described below. Finally, we provide balance points between fuel taxes and MBUFs for each county, 40 
and each ZIP code area. To show these results at a vehicle-level, we also provide eight example cases and 41 
discuss their circumstances under a transition from fuel tax to different MBUF rate settings. 42 

 43 



   
 

   
 

2. REVIEW OF LITERATURE 1 

Researchers have discussed and modeled the influence of a transition from fuel tax to MBUF in 2 
different ways. Sorenson et al. (7) demonstrate how MBUFs would not only provide stable revenues and 3 
equitable distribution of tax burden, but also, transitioning from fuel taxes to MBUF can reduce traffic, 4 
emissions, and road wear. While positing these benefits, they also acknowledge the lack of public uptake 5 
for the idea of MBUF, and argue that jurisdictions must ensure clear messaging on these fees, especially 6 
in the context of the urban-rural divide and that MBUF programs must consider factors like household 7 
income and variations in fleet fuel economy. 8 

Given that any inequitable distribution of costs and benefits between urban and rural areas are an 9 
important factor for policymakers, Fitzroy et al. (8) estimated revenue-neutral MBUF for urban and rural 10 
households. They use U.S. Department of Agriculture Rural-Urban Commuting data to classify eight 11 
western states into ten different commuting areas, and estimate VMT in each area based on demographics 12 
(household size and income, etc.) as developed by the National Household Travel Survey (NHTS) (5,9). 13 
Their analyses also decoded VINs through the NHTSA web Application Programming Interface (API), 14 
acquired fuel economy information, estimated the effects of mileage-based fees, and compared their 15 
percent change with current fuel tax in each state. 16 

Instead of focusing on factors such as commuting time and household demographics, Matteson et 17 
al. (10) develop another fuel consumption and mileage allocation comparison model to support revenue-18 
neutral MBUF in the state of Washington. They also use a VMT database and fuel consumption records 19 
with VIN configuration data provided by state authorities. Applying a statistical matching process to 20 
leverage EPA fuel economy data, they adjusted the VMT distributions and calculated a fuel tax and 21 
MBUF at the county level. They use several comparison bases such as geography, vehicle type, vehicle 22 
age range and fuel economy to discuss the impact of transitioning from fuel taxes to RUC in each county.  23 

It is clear from the literature that the design and establishment of MBUF programs must consider 24 
social, geographical, and economic factors to ensure that programs are equitable and sustainable. It is 25 
particularly important to consider rural-urban differences and sweeping changes in fleet fuel economy 26 
across time and space. Building on the literature, we develop a data-driven, granular assessment of the 27 
impact of a potential transition in Pennsylvania, conducting individual vehicle-level analyses, and 28 
aggregating these at the state, county, and ZIP code level. 29 

 30 

3. DATA SOURCES 31 

The data used in this analysis are vehicle safety and emissions inspection records from 32 
Pennsylvania, provided by the state Department of Transportation (PennDOT) and by a private safety 33 
inspection software company, CompuSpections Inc. Table 1 shows a summary of all raw records by year 34 
and source. Pennsylvania has a decentralized inspection program that requires annual safety inspections 35 
for all vehicles in all counties, in addition to annual emissions inspections in a subset of counties with air 36 
quality non-attainment issues, mostly near urban areas (11). PennDOT’s data (2000-2016) consist of three 37 
types of records: Emissions (for all vehicles in the state that underwent an emissions test), Exempt (for all 38 
vehicles that were exempted from an emissions test due to age or lack of mileage but some information is 39 
still collected), and Safety. While emissions inspection and exemption records are assumed to be 40 
exhaustive, safety inspection data from PennDOT was only available for vehicles receiving a safety 41 
inspection at a station that voluntarily paid a fee to report the inspection result to the state. As shown in 42 
Table 1, very few safety inspections are voluntarily reported to the State. CompuSpections does not serve 43 



   
 

   
 

all safety inspection stations in the state, so data is a sample of vehicle inspection records from 1999 to 1 
2018. In recent years, a significant share of the safety inspection records for the state’s 6 million vehicles 2 
are recorded. While all datasets contain many variables for our analysis, we require only the Vehicle 3 
Identification Number (VIN), inspection date, and the vehicle’s odometer reading on that date. We 4 
augmented station addresses not provided in the data with supplemental information from PennDOT.  5 

Table 1: Raw Inspection Data Record Count by Data Source and Inspection Year. 6 
       Origin     
Year CompuSpections Exempt Safety Emissions Overall 

1999 2 / / / 2 
2000 1 780,800 / 3,000,804 3,781,605 
2001 1 728,400 / 3,057,150 3,785,551 
2002 7 658,378 / 3,103,306 3,761,691 
2003 5 662,381 / 3,151,591 3,813,977 
2004 15 984,715 / 5,562,887 6,547,617 
2005 17,324 1,172,051 / 5,611,680 6,801,055 
2006 59,622 1,243,627 / 5,494,224 6,797,473 
2007 143,859 1,078,123 28,336 5,450,212 6,700,530 
2008 193,770 1,382,762 215,787 5,511,450 7,303,769 
2009 308,012 1,465,220 288,678 5,544,118 7,606,028 
2010 655,482 1,687,027 315,102 5,599,702 8,257,313 
2011 857,507 1,705,361 353,423 5,507,609 8,423,900 
2012 1,040,980 1,736,269 372,393 5,479,813 8,629,455 
2013 1,183,380 1,781,218 570,497 5,558,013 9,093,108 
2014 1,320,397 1,831,794 602,998 5,578,552 9,333,741 
2015 1,548,213 / 625,877 5,250,120 7,424,210 
2016 1,680,438 / 637,209 6,477,578 8,795,225 
2017 1,639,841 / / / 1,639,841 
2018 660,365 / / / 660,365 
Invalid Date 286,278 0 0 0 286,278 
Overall 11,595,499 18,898,126 4,010,300 84,938,809 119,442,734 

 7 

For the MBUF analysis, we also require information on fuel economy for each vehicle. Since 8 
inspection records do not include this information, four website sources were scraped to ‘decode’ VINs to 9 
acquire details (such as fuel economy) for specific make/model/year/trim levels of vehicles in the 10 
inspection records—decodethis.com (12), vinquery.com (13), fueleconomy.gov (14), and the National 11 
Highway Traffic Safety Administration (NHTSA) API (15).  12 

The decodethis.com and vinquery.com sites decode VINs with diverse vehicle characteristics, 13 
including vehicle make, model year, transmission type, number of cylinders and fuel economy (i.e., 14 
separate city and highway fuel economy estimates). However, these two websites contain data on a 15 
limited model year range and require full 17-digit VIN codes to decode. We also decoded VINs using a 16 
combination of information from the EPA fueleconomy.gov and NHTSA website APIs. Instead of using 17 
17-character unique VINs, NHTSA API requires ‘squish VIN’ to get detailed vehicle information. The 18 
definition of squish VIN is the first 11 digits of unique VIN, except the 9th digit which is a check digit. By 19 
using squish VIN, we can aggregate multiple unique VIN's to avoid a large volume of repetitive retrieval 20 
(e.g., identical model year and trim level Honda Accords that differ only by their serial numbers). EPA’s 21 
fueleconomy.gov provides fuel economy data about different vehicle type (e.g., a 2012 4-cylinder Honda 22 
Accord). As needed, we use key characteristics acquired from the NHTSA API to match with 23 
fueleconomy.gov. 24 



   
 

   
 

4. DATA CLEANING AND MANIPULATION 1 

In the datasets described above, inspection records for each vehicle are distributed irregularly 2 
over time. While inspections are required to be annual, it is exceedingly rare for consequent records to be 3 
exactly one year apart. To estimate VMT for each vehicle, we use Python’s dictionary data structure (key-4 
value pair) to store each vehicle’s VIN as a key and store this key’s odometer readings and inspection 5 
dates as value pairs in a list. In other words, we transform four datasets into a single VIN-based database, 6 
so each vehicle’s odometer readings and inspection dates can be retrieved by its unique VIN. The raw 7 
datasets contain records with missing, manually entered, or corrupted data, and records with 8 
typographical errors (for VINs and inspection dates). Therefore, prior to the development of a vehicle-9 
level key-value database, it was necessary to filter out a small percentage of records based on the criteria 10 
listed below:  11 

1. VINs not 17 digits (no-entry; invalid VIN's; old vehicles manufactured before 1981 when the 17-12 
digit standard began),  13 

2. invalid odometer readings (no entry, non-numeric entry), and, 14 
3. invalid date (no entry; invalid date format). 15 

Table 2 shows a summary of the remaining inspection records and unique VINs in the datasets 16 
through every filtering step. After filtering, there were 118,107,460 (96%) records and 22,041,151 (98%) 17 
unique VINs preserved (an average of about 5 inspection records per VIN).   18 

Table 2: Summary of Records During Data Cleaning Process 19 
Data Source  Cleaning Step  Data Records  Percent (%)  Unique VIN's  Percent (%)   
All Before Cleaning  119,442,734  100  22,386,103  100   

Emissions  

Before Cleaning  84,938,809  100  18,861,333  100   
VIN Length = 17  84,695,893  99.71  18,694,080  99.11   
Odometer Reading is 
Numeric  84,695,892  99.71  18,694,080  99.11   

Exempt  

Before Cleaning  18,898,126  100  9,301,598  100   
VIN Length = 17  18,539,714  98.1  9,206,091  98.97   
Odometer Reading is 
Numeric  18,352,239  98.06  9,140,539  98.27   

Safety  

Before Cleaning  4,010,300  100  2,086,635  100   
VIN Length = 17  3,950,055  98.5  2,043,710  97.94   
Odometer Reading is 
Numeric  3,885,014  96.88  2,011,443  96.4   

CompuSpections 

Before Cleaning  11,595,499  100  4,779,092  100   
VIN Length = 17  11,244,110  96.97  4,766,240  99.73   
Odometer Reading is 
Numeric  11,174,328  96.37  4,751,444  99.42   

 Valid Date Format  11,174,315  96.37  4,751,443  99.42   
All After Cleaning  118,107,460  95.93  22,041,151  98.46   

 20 

The cleaned dataset contains over 22 million inspection records over time. Using this database, 21 
we estimate a distribution for vehicle-level VMT for the state of Pennsylvania. Each vehicle’s annual 22 
VMT was calculated through normalized daily VMT using equation 1, which requires a unique VIN to 23 
have (at least) two (odometer reading; inspection date) value pairs. However, we consider vehicles that 24 
have more than 3 pairs, as two pairs can generate only one VMT estimate. There were 14 million vehicles 25 
with ≥3 pairs (64% of all in dataset), 12 million with ≥ 4 (54%), 10 million with ≥5 (45%), and 8.5 26 
million with ≥6 (40%).  To ensure every vehicle has sufficient inspection data, the subsequent analysis 27 



   
 

   
 

will use a threshold of ≥3 pairs, meaning every vehicle has at least three pairs, to generate two annual 1 
VMT estimates using equation 1. 2 

  𝑎𝑛𝑛𝑢𝑎𝑙	𝑉𝑀𝑇 = 	365	𝑑𝑎𝑦𝑠 ×	!"#$%&%'	)%*"+,-!"##$%.	!"#$%&%'	)%*"+,-&'%($%	
/,01%2&+#,	3*&%!"##$%.	/,01%2&+#,	3*&%&'%($%

                 (1) 3 

We also consider the intervals between inspection dates for vehicles. While subsequent 4 
inspections are expected about one year apart, this was not always the case. We filtered data for the 5 
interval between subsequent inspections to be less than a threshold, to ensure that VMT for each pair of 6 
records were assigned to an appropriate year. We estimated the distribution of day intervals between all 7 
inspection dates in the database. The 5th percentile of day difference is 146 days, and the 25th-50th-75th to 8 
be 347, 369, and 395, respectively (the average is 391 days). We find inspection date gaps are 9 
inconsistent, and large date intervals account for a small amount of records but may be far away from the 10 
median value, so we use the interquartile range (IQR) measure of statistical dispersion, which can be 11 
calculated by the difference between the third and first quartiles (Q3 – Q1). We treat large day differences 12 
as outliers if a value is larger than Q3 + 1.5 IQR. Consequently, a date difference value of 467 (about 90th 13 
percentile) is picked as a threshold for large inspection dates (outliers). In other words, we do not generate 14 
a VMT estimate for a vehicle when the inspections differ by more than 467 days. 15 

Before applying this threshold, we also consider the relationship between odometer readings and 16 
inspection dates for a vehicle. For some inspection records, the odometer reading on the latter date is 17 
recorded as being lower than the former, indicating a likely error either in the odometer reading or date on 18 
record (e.g., from manual data entry). These records were exempted from our analyses even if only one of 19 
the pairs is invalid. Besides, there might exist some vehicles that have different odometer readings on the 20 
same date which come from different data sources. We also regard these vehicles as invalid. Overall, 21 
921,438 vehicles were removed and 13,088,212 reserved in this check process, as indicated in Table 3. 22 

For date series whose days interval are acceptable, i.e., less than 467 days, there were three typical cases: 23 

Case 1. Purely Consecutive Years, i.e., there are no gap years in the series, or there are multiple 24 
inspections are within one year, e.g., ['10/27/2009', '9/21/2010', '11/2/2011', '11/28/2012', '11/6/2013'] 25 

Case 2. Consecutive Years, i.e., there are no gap years in the year cohort, but multiple inspections are in 26 
one year. Case (1) is included in this case, e.g., ['8/30/2011', '10/3/2011', '1/11/2012', '4/10/2012', 27 
'6/1/2013'] 28 

Case 3. Acceptable Gap Years, i.e., there may be a year gap between neighboring dates, but this gap is 29 
within the 467 days threshold, e.g., ['10/27/2009', '10/9/2010', '1/9/2012', '3/1/2013'] 30 

To assess which of these cases to use when developing VMT estimates, we considered three options, and 31 
totaled the number of records which would fit the requirements of each. Table 3 shows a summary of 32 
vehicles remained in database when applying for valid check and different restrictions conditions. Option 33 
3 has only 1% more data than Option 2, so, rather than considering these two options separately, we chose 34 
to use Option 2, which is less restrictive than Option 1 and is still able to use half of the 13 million 35 
records, after filtering out vehicles that have invalid (odometer reading; inspection date) pairs. 36 



   
 

   
 

Table 3: Vehicle count by inspection information conditions. 1 
Option Description Count Percent (%) 
 Dataset from previous step 14,009,650  
 Valid VINs and odometer reading–inspection date pairs 13,088,212 100 
1 Purely Consecutive Years AND Max Days Difference < 467 4,984,900 38.1 
2 Consecutive Years AND Max Days Difference < 467 6,861,493 52.4 

3 (Consecutive Years OR Acceptable Gap Years) AND Max Days 
Difference < 467 7,009,612 53.6 

 2 

Although we have defined a method to calculate daily VMT, each vehicle’s inspection records 3 
generally straddle calendar years, so differences in odometer readings provide estimates of driving across 4 
two years, which need to be allocated to derive estimates per calendar year. For instance, given an 5 
odometer reading R1 at year Y1, and an odometer reading R2 at year Y2 (Y1 < Y2), we can calculate 6 
daily VMT using equation 1, but does this VMT belong to Y1 or Y2? We set four allocation options here 7 
and discuss the difference among them.  8 

• Assumption 1 – Calculate annual VMT, then allocate it to Y1 (former year).  9 
• Assumption 2 – Calculate annual VMT, then allocate it to Y2 (latter year). 10 
• Assumption 3 – Allocate VMT on both years. First calculate daily VMT, then multiply this daily 11 

VMT by number of days in each year.  12 
• Assumption 4 – Similar to Assumption 3 but add a supplementary assumption: if an inspection 13 

date is less than 30 days from the beginning or end of a year, we do not include these days’ miles 14 
within that year. 15 

Using these assumptions, we generate four versions of annual VMT estimates, for several years. 16 
Figure 1 show histograms after filtering out outliers larger than 3IQR for the four allocation methods, 17 
using year 2005 and 2015 as examples. The density plot shows that the distribution of VMT under each of 18 
the four allocations are remarkably like each other. However, the plots with Assumption 3 and 19 
Assumption 4 are smoother and always in between the lines of Assumption 1 and 2.  Adding a 30-day 20 
threshold in Assumption 4 seems not to bring any difference. Consequently, we conclude that the 21 
allocating method used in Assumption 3 can better reflect how VMT estimates distribute from 2000 to 22 
2018 and use this assumption for the remaining work.   23 

Given millions of VINs, finding additional vehicle information via web scraping would be time 24 
consuming and complex. After the filtering step, the next data preprocessing and cleaning step was the 25 
use of ‘squish VINs’ to aid in web scraping. As described in an earlier section, a ‘squish VIN’ is a 26 
compressed version of unique VIN code. The 14 million vehicles mentioned in Table 3 were mapped to 27 
only 88,000 unique squish VINs. After mapping all VINs into their corresponding squish VIN group, the 28 
following methods were used to exclude squish VIN that violate naming regulation: (1) illegal 29 
alphanumeric characters, (2) other vehicle type (trucks, motorbikes, and buses). For the first case, illegal 30 
characters in squish VIN include any lower-case letters, capital letters ‘I’, ‘Q’, ‘O’, ‘U’, ‘Z’ and number 31 
‘0’, which are not allowed in a VIN. Only 181 squish VIN with illegal alphanumeric characters were 32 
found in the dataset. 3,513 squish VINs were excluded when other vehicle types were filtered out.  33 



   
 

   
 

 1 

Figure 1: VMT distribution for vehicles in Pennsylvania, (A) 2005, (B) 2015. 2 
 3 

After data cleaning and pre-processing, two web scraping methods were designed to collect fuel 4 
economy data. The first one used decodethis.com and vinquery.com website to decode each unique VIN; 5 
approximately 10% of our records could be decoded from these sources. The second method was a two-6 
step method using the NHTSA API and the EPA Fuel Economy website. Data on model year, make, 7 
model name, transmission type, number of cylinders and engine displacement for each squish VIN were 8 
first retrieved from the NHTSA API, which does not provide information on fuel economy. We thus 9 
supplemented with information from the EPA Fuel Economy website. By querying that website with key 10 
characteristics (model year, model, make transmission type and so on) provided by NHTSA API, we 11 
collected city and highway fuel economy, in miles per gallon (MPG) for each squish VIN. 12 

 13 

5. VMT ESTIMATION 14 

Before developing higher geographic resolution estimates, we assessed temporal changes to estimated 15 
annual VMT for the state of Pennsylvania from year to year. Since the same vehicle may appear in 16 
multiple records, the number of records is higher than the number of registered vehicles. Figure 2 shows 17 
density plots of VMT and number of vehicles used for calculation from 2000 to 2016 (excluding outliers 18 
larger than 3IQR), giving an explicit interpretation of distribution for all years analyzed. Year 2017 had 19 
only 227 vehicles and year 2018 has only 3 in our dataset, so these two years are not plotted. The VMT 20 
appears to have an average of around 10,000 miles (per vehicle, per year), with a left-skewed distribution. 21 
We also find that that of more recent years, 2014 has more records than later years. 22 

To provide higher resolution fuel consumption estimates, we calculated annual VMT at the county 23 
and ZIP code level. For this purpose, we assumed each vehicle to be based in the same county or ZIP code 24 
as the station where it was inspected, since no additional geographic information was available in the 25 
inspections database. If available, registration data could have improved this location assignment. The 26 
PennDOT Safety and emissions datasets, as well as the CompuSpections data, have ZIP codes for the 27 
inspection sites, whereas the Exempt dataset did not. PennDOT separately provided location information 28 
for all inspection stations, including all stations’ unique identifier (OIS), county and ZIP code. Nevertheless, 29 
not every station appearing in the inspection records could be successfully matched, so a small number of 30 

A B 



   
 

   
 

records still lack location information. We recognize that vehicles may move (be inspected in several 1 
locations over time). Of the vehicles in our database, 71% were inspected in the same county over time 2 
across all their inspection records, and 10% inspected in the same ZIP code.  3 

 4 

 5 

Figure 2: Annual statewide VMT Distribution from 2000 to 2016. 6 
 7 

To assess how urbanity affected VMT and fleet fuel economy, we pick five counties: Allegheny, 8 
Dauphin, Erie, Lehigh, and Montgomery, which have a mix of urban, suburban, and rural ZIP code areas 9 
as case studies.  Figure 3 shows the average VMT of these five counties separated into urban, rural, and 10 
suburban regions in each county. The x-axis ticks show the years and the corresponding number of unique 11 
vehicles included in the estimation for that year. We find that annual VMT increases slightly over time in 12 
nearly all regions, with vehicles in rural areas typically travelling more miles per year than those in urban 13 
areas. Some fluctuations in the trendlines (e.g., Erie rural 2003, Lehigh urban 2003, Dauphin rural 2017) 14 
are explained by there being a miniscule number of records for these regions, leading to unreliable 15 
estimations of average VMT. Moreover, given that year 2014 has the most records of the most recent five 16 
years, we choose to use year 2014 as representative to estimate and compare fuel taxes and MBUFs in the 17 
subsequent analysis. 18 



   
 

   
 

 1 

Figure 3: Average VMT by counties and urbanity in 2000-2018. 2 
 3 

6. COMPARING THE USER COSTS OF FUEL TAXES AND MBUF 4 

To better understand the differences between fuel taxes and MBUFs, and their impact on vehicle 5 
owners, we compared the annual consumer cost of the two. As discussed in Section 5, we chose to 6 
conduct our analyses on data from the year 2014, but updated estimates can easily be derived by applying 7 
these methods by re-running code to new data as it becomes available. In contrast to a flat fuel tax per 8 
gallon, the equity of MBUF programs are an ongoing concern, especially when considering their disparate 9 
effects on rural or urban drivers, and the potential penalization of lower income households. We show this 10 
effect by calculating “balance points”—i.e., the MBUF rate at which 50% of drivers in a region would 11 
pay less under an MBUF system, while the other half would pay more, than they currently spend in fuel 12 
taxes. Additionally, we compared county and ZIP code level estimates of VMT and fuel consumption 13 
with the statewide average estimates. County-level estimates were not calculated in counties with sparse 14 
(fewer than 20 total inspection records) data, which not coincidentally are also low population counties 15 
and not subject to emissions inspections. We also show examples of eight sample vehicles, and how 16 
policy transitions would affect them. To estimate fuel taxes, we used the current tax rate in Pennsylvania, 17 
$0.576 per gallon, as standard. This rate includes the federal and state fuel tax (but not sales tax).  Despite 18 
the VMT data being for 2014, we believe this to be an appropriate comparison given the small changes in 19 
VMT from year to year as shown in Figure 2. To calculate fuel taxes per year, we calculated the fuel 20 
economy and VMT for each vehicle. As described in Sections 3 and 4 we used web scraping to collect 21 
city and highway fuel economy for each VIN. We calculated a ‘combined fuel economy’ by applying the 22 
EPA’s formula of a geometric mean, which weighs the city and highway fuel economies (in MPG) at 0.55 23 
and 0.45 respectively (16).  24 

 25 

After estimating the fuel taxes (by using VMT and combined fuel economy estimates to calculate fuel 26 
consumption, and hence fuel taxes), we calculated MBUF at the vehicle level by using the same VMT 27 
estimates. The annual MBUF rates considered in these analyses were between ¢1 and ¢3 per mile. For the 28 
rough state average annual VMT of 10,000 miles, a vehicle owner would pay $100 a year at an MBUF 29 
rate of ¢1 per mile, and $300 for ¢3 per mile. For vehicles driven near the upper end of our distribution 30 



   
 

   
 

(35,000 miles annually) the cost would be $350 a year at the lower rate, and more than $1,000 at the 1 
higher rate. Figure 4 illustrates the effect of changing the MBUF rate on the number of passenger vehicles 2 
in Pennsylvania which would spend more or less on taxes per year in Pennsylvania, and shows how the 3 
“balance point” of around ¢2.7 per mile, was estimated for the statewide fleet. Next, we applied a similar 4 
calculation to study the “balance point” for each county.  5 

 6 

Figure 4: Comparison of fuel tax and hypothetical MBUF fee with combined fuel tax in state level. 7 

Before calculating the county “balance points”, we assessed how VMT and fuel economy vary 8 
between counties. Figure 5 shows how these estimates vary between each county and the statewide mean. 9 
In urban and suburban counties (denoted by grey borders), VMT and fuel consumption are at, or slightly 10 
less than, average. However, in rural areas, the situation differs by county. Rural counties like Schuylkill, 11 
Venango, Greene and Northumberland county have an average VMT and fuel consumed significantly 12 
below average. However, other rural counties remain at average, or slightly higher. Figure 6 shows the 13 
“balance points” for each county. In most counties, the “balance points” are around ¢2.7 per mile.  14 

As a proof-of-concept for even more granular estimates, we also estimated ZIP code level VMT, 15 
fuel economy, and MBUF balance points, for Allegheny County (which includes the city of Pittsburgh in 16 
the center, and several suburban and rural areas). In 2014, the county had a mean VMT of 10,100 miles, 17 
and estimated fuel consumption of 492 gallons per vehicle. Figure 7 shows that, most urban ZIP code 18 
areas in the county (surrounded by bold grey lines), have VMT and fuel consumption below the county 19 
average, whereas in suburban and rural areas in the county, VMT and fuel consumption are higher than 20 
average. In Figure 8, we see that in some urban areas such as downtown and the east suburbs, the balance 21 
points of fuel tax and MBUF are lower than ¢2.75 per mile, whereas in the relatively more rural 22 
northeastern part of the county, the balance points are as high as ¢3.25 per mile. 23 



   
 

   
 

 1 

Figure 5: CMT and fuel tax percentage differences in each county in Pennsylvania in year 2014, A: VMT 2 
percentage difference (%), B: Fuel consumed percentage difference (%) 3 

 4 

 5 

Figure 6: Balance point between MBUF and fuel tax in each county in Pennsylvania. 6 
 7 

 8 



   
 

   
 

 1 

Figure 7: VMT and fuel tax percentage differences in each ZIP code area in Allegheny County in year 2 
2014, A VMT percentage difference (%), B Fuel consumed percentage difference (%). 3 

 4 

 5 

Figure 8: Balance point between MBUF and fuel tax in each ZIP code area in Allegheny County (urban 6 
area border in County drawn in bold grey line). 7 



   
 

   
 

The state, county, and ZIP code level analysis shows the high geographical variation between 1 
counties, in estimated annual VMT, fuel economy, and MBUF “balance point”. This can also be 2 
demonstrated by example at the individual vehicle level. Eight vehicles of four types with high and low 3 
VMT have been selected as examples; Table 4 shows how much more or less their owners would spend if 4 
transitioning from the current fuel tax to an MBUF at various rates. High fuel economy vehicles with high 5 
VMT will pay more with MBUF than a fuel tax. Hybrid vehicles (such as the Toyota Prius) may cost over 6 
150% more with a ¢3 per mile MBUF than a fuel tax. Low fuel economy vehicles (such as a Honda Pilot, 7 
or most pickup trucks) will likely have a lower overall annual cost with MBUF than with the existing per-8 
gallon tax. Overall, this emphasizes the point that fuel economy and VMT are both very important in 9 
determining whether a vehicle owner would be better or worse off with a MBUF system. 10 

 11 

Table 4 Vehicle level analyses show that hybrid electric vehicles may be penalized by MBUFs. 12 

Make/Model Vehicle 
Type 

VMT  
(miles/year) 

Fuel 
economy 
(MPG) 

Annual Fuel 
Tax ($) 

Change in cost between fuel 
tax and MBUF of: 

¢1/mi ¢2/mi ¢3/mi 

2013 Chevrolet Malibu Sedan 13,277 26 292 -55% -9% 36% 

2013 Ford Fusion Sedan 33,399 36 541 -38% 23% 85% 

2013 Honda Insight Hybrid Sedan 16,323 42 222 -27% 47% 120% 

2010 Toyota Prius Hybrid Sedan 6,364 50 74 -14% 72% 158% 

2008 Honda Pilot SUV 35,348 18 1159 -70% -39% -8% 

2011 Toyota RAV4 SUV 8,121 24 196 -59% -17% 24% 

2012 Ford F-150 Pickup 27,162 16 985 -72% -45% -17% 

2010 Dodge Ram 1500 Pickup 9,266 15 359 -74% -48% -23% 

 13 

7. DISCUSSION AND CONCLUSIONS 14 

Our analyses estimate the “balance point” MBUF rate at the county and ZIP code level by leveraging 15 
100+ million inspection records to assess variations in annual VMT and fleet fuel economy. As a result, 16 
we found the “balance point” MBUF to be about ¢2.75 per mile for the state of Pennsylvania, but to vary 17 
substantially (from ¢2.4 to ¢3.2 per mile) between counties. From these results, it also appears that drivers 18 
in rural counties will generally pay a higher per-mile fee for this balance point to be achieved. This was 19 
true in both the county and ZIP code level results. We also show that these analyses can be conducted for 20 
individual vehicles, and quantify how hybrid vehicles, and those with higher fuel economy will likely pay 21 
more in taxes annually, with a flat MBUF than with per-gallon fuel taxes. Such results would be useful to 22 
present to the public in informational materials about such a transition. 23 

Policymakers must consider the implications of potentially penalizing smaller, and higher fuel 24 
efficiency vehicles in developing MBUF rate structures, as energy and environmental concerns have led 25 



   
 

   
 

agencies to promote and subsidize them. It would be easy to tailor slightly lower (but non-zero) MBUF 1 
fees for such vehicles without compromising the need to gain incremental transportation revenue. There 2 
are also large possible equity implications associated with the resulting changes in fees paid per vehicle 3 
given urban and rural, vehicle age, ability to live near work, and other differences that will need to be 4 
studied more before pursuing such efforts. 5 

What is also evident from these results is that jurisdictions will require to carefully tailor marketing 6 
around an MBUF program, to ensure that vehicle owners’ perceptions are not swayed by generalized 7 
statements about specific types of counties or ZIP codes paying a higher cost. Our results show that the 8 
difference between fuel tax and MBUF costs vary significantly based on the individual driving 9 
characteristics of each vehicle, and that these broad generalizations are likely to be misleading. 10 
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