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Chapter 1 

1. Introduction 
 
Geologic hazards including slope failures, landslides, mudflows, debris flows, etc. 
and hydrological hazards related to floods and stormwater surge can be destructive 
to transportation infrastructure and threaten property and human life along the 
highway and roads. Landslides alone cause thousands of deaths and many billions 
of dollars in damage every year.  Therefore, there is a great need in advancing our 
knowledge in slope instability and failure risks and developing technologies in 
detecting and monitoring, and preventing landslides, in turn sustaining safety of 
transportation infrastructure and system operations in changing environment.   
 
As member of the National University Transportation Center (UTC) – Safety 21 led 
by Carnegie Mellon University, Morgan State University team proposes a multi-
phase project focusing on safety of transportation infrastructure systems by 
preventing geohazard, specifically slope failure and landslides and minimizing 
impacts of geohazard. This project will employ an integrated approach of 
geotechnical and AI/Machine Learning methods for assessing conditions of 
geotechnical assets, such as cut slopes and embankment of the DOT/SHA and 
delineating landslides and high-risk areas.  
 
This report summaries research findings of the Phase 1 of project titled Improve 
Highway Safety by Reducing the Risks of Landslides, sponsored by National UTC – 
Safety 21 program. The report is organized in the following order. We provide a brief 
background about the project. We follow with field and lab investigation 
approaches. We then introduce applications of LiDAR and InSAR data in detection 
and characterization of landslides. Precipitation, one of major triggering factors is 
simulated with numerical model and used in the slope instability analysis. We then 
provide a review of physical models for slope stability analysis and their 
applications in risk assessment of landslides. At the last we introduced an initial 
assessment of economic impacts.    
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Chapter 2 

2. Background  
 

2.1 Landslides 
Geologic hazards, such as land subsidence and earth fissures, landslides, and 
earthquakes, etc. and hydrological hazards, such as floods and stormwater surge 
owing to extreme weather events (tropical storms, hurricanes, tornadoes, etc.), 
compounding with sea-level rising due to global warming and climate change, have 
caused great impacts on transportation infrastructure and traffic, in turn resulting 
in great economic damages. Landslides are among the most devastating and costly 
natural disasters, causing thousands of deaths and many billions of dollars in 
damages annually [1 – 3].  
 
The majority of landslides are precipitation-triggered [4] even though they occur 
over a broad range of lithological, climatological, and hydrological conditions, and 
land use types [5]. However, for most precipitation-triggered landslides, other 
complex atmospheric, surface, and subsurface conditions also play a role in slope 
failure by increasing the effects of downgradient forces and/or reducing the 
strength of the underlying slope soils/rocks [6, 7]. the effect of precipitation from 
these confounding factors is thus essential both for enhancing fundamental 
understanding of landslides and for evaluating the impact of climate change on 
slope failure. 
 

2.2 Landslides detection and warning smart system 
framework 

We noted that it is common practice in many regions around the world to create an 
inventory of landslide, debris flow and/or slope failure occurrence. In addition, 
many studies have attempted to quantify the likelihood of the occurrence of 
landslides or identify areas that are susceptible to slope failures or instability, e.g., 
landsides susceptibility (LS) analysis based on GIS models and machine learning 
models [8]. MDOT/SHA manages an extensive portfolio of geotechnical assets, 
including slopes, embankments, and ground modifications, along the State of 
Maryland’s roadway infrastructure. Its geotechnical asset management plan (AMP) 
establishes MDOT SHA’s asset class strategy with a robust plan to guide 
infrastructure decisions; optimize the total cost of ownership; and meet 
performance, reliability, and risk objectives [9]. With MDOT/SHA sponsorship, 
MSU and Carnegie University initiated a project for incorporating precipitation 
data into the geotechnical asset management.   
 
With additional support from National UTC Safety 21 program, Morgan State 
University team proposed a multi-phase (multi-year) project focusing on safety of 
transportation infrastructure systems by preventing geohazard, specifically slope 
failure and landslides and minimizing impacts of geohazard. This project will 
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employ an integrated approach of geotechnical and AI/Machine Learning methods 
for assessing conditions of geotechnical assets, such as cut slopes and embankment 
of the DOT/SHA and delineating landslides and high-risk areas. Figure 2.1 shows a 
framework for landslides detection and monitoring smart system. It will be built on 
GIS platform.  
 

 
Figure 2.1: Framework for landslides risk assessment and monitoring smart 
system.  

 
2.3 Objectives of Studies 

This project is unique by integrating geotechnical and machine learning approaches 
in assessing slope instability and risk of landslides and mapping high-risk areas. 
This project is built upon ongoing project sponsored by Maryland Department of 
Transportation/State Highway Administration (MDOT/SHA) project.  
 
The objectives of the proposal include: (1) with AI/Machine Learning approaches 
assess the risks of landslides based on soil/rock types, weather conditions, 
mechanical properties of slope materials, and the status of existing retaining 
structures along the selected highway sections, using Maryland as case studies, (2) 
identify and map the high-risk areas based on controlling factors such as geometry 
and mechanical properties of soil or rock, and triggering factors, including 
gravitational and hydraulic forces, using available survey data, remote sensing and 
LIDAR data and other factors like transportation modes, (3) design and test 
protocols for real time monitoring at selected sites in consultation with DOT SHA 
staff, and (4) recommend strategies for reducing the risks of landslides with real-
time monitoring for the high-risk areas, and improving the safety of the 
transportation infrastructure. All the methods and strategies can be transferred to 
other states or regions with similar geological conditions and engineering 
configurations. Phase 1 of this project will primarily cover task 1 and part of task 2.  
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2.4 Alignment with the USDOT strategic plan 
 
The proposed project will address transportation safety, especially physical 
infrastructure systems and roadway design, covering the following US DOT goals:  
• Update roadway design standards to protect vulnerable road users and 
vehicle occupants.  
• Use regulatory and policy tools to advance roadway safety to reduce fatalities 
and injuries across modes. 
• Support the adoption and maturation of safety management systems across 
modes. 
• Use data and data analytics to take proactive actions to address emerging 
safety risks and support compliance. 
 
The project will provide technical assistance to better identify, assess, and address 
critical physical vulnerabilities. 
• Incorporate physical protections in the standards for design of emerging 
automated and connected systems and technologies, such as real time sensing and 
monitoring systems. 
• Strengthen system response and recovery plans and protocols to minimize 
the effects of system 
disruptions and hasten system recovery from the natural disasters. 
• Promote guidelines on vulnerability assessments with enhancement of 
AI/ML approaches.  
 
The project will assess and mitigate the vulnerability of transportation 
infrastructure to climate change and natural disasters: 
• Assess the vulnerability of assets and identify novel climate adaptation and 
mitigation strategies. 
• Enhance resilience throughout transportation planning and project 
development processes by updating guidance and regulations. 
• Conduct case studies and pilot projects to develop and evaluate new and 
innovative adaptation and resiliency technologies, tools, and opportunities, such as 
motion sensors and early warning systems.  
 
This project will build research capacity in the critical area of designing resilient 
infrastructure for geohazards and changing climate conditions. It will also provide 
educational opportunities for graduate and undergraduate students to gain 
knowledge and experience in this important new area for sustainable and resilient 
engineering. Thus, the project will also build human capacity to address the 
challenge of geohazards adaptation related to transportation systems.  
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Chapter 3 

3. Field and Laboratory 
Investigation 

 

Sunil Lamsal, Atieh Hosseinizadeh, Yi Liu, Zhuping Sheng, Oludare 

Owolabi 

 
3.1 Background 

Understanding and reducing the risk of landslides and other geotechnical hazards 
requires an understanding of slope stability and soil properties. Extensive soil 
sampling and laboratory analysis yield the crucial information required for an 
appropriate assessment of these components. This chapter details the 
methodologies and results of soil sampling and subsequent laboratory works 
conducted to assess slope stability and various soil parameters. 

The study focuses on the systematic collection of soil samples from strategically 
chosen locations, considering factors such as topography, vegetation, and land use. 
Each sample undergoes a series of tests to determine key soil properties, including 
moisture content, grain size distribution, soil cohesion, internal friction angle, and 
bulk density. These parameters are integral to slope stability analysis, which 
typically involves assessing the shear strength of the soil and its ability to resist 
slope failure under different loading conditions. 

The integration of field data with laboratory results facilitates a thorough evaluation 
of slope stability. By understanding the physical and mechanical properties of the 
soil, we can apply more landslide models to simulate historical slope failure and 
predict potential slope failures with climate change and suggest effective mitigation 
strategies. This report aims to present a detailed account of the soil sampling 
process, the laboratory procedures employed, and the preliminary findings that 
contribute to the overall assessment of slope stability in the study area. 

In conclusion, this chapter not only documents the methodologies and findings but 
also underscores the importance of soil analysis in geotechnical engineering. The 
insights gained from this study are expected to enhance our understanding of slope 
stability and inform the development of more resilient infrastructure and land-use 
planning strategies.  

 

3.2 Methodology 

To assess soil properties and suitability, soil testing is crucial. For this research, we 
test our collected samples to find out their basic, mechanical, and hydraulic 
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properties. Finding each property requires different types of laboratory analysis and 
this report discusses several methodologies we used in laboratory soil testing.  They 
include basic soil properties: Particle Size Analysis, Atterberg limit test, and 
mechanical properties: direct shear and triaxial tests and hydraulic properties (See 
more details in Appendix 3A). 

  

3.3 In-Situ Observations and Measurements 
3.3.1 Summary for Day 1, Monday, June 24, 2024 

 

Site 1 (39° 03.168 N, -76° 58.611 W) 

Site 1 comprises two locations, Site 1A and Site 1B, approximately 500 feet apart. 
They are situated on the southbound slope of Columbia Pike in Fairland, 
Montgomery County and can be accessed via a back road. A trail leads to the site, 
and we located its starting point for easier access in the future.  

Site 1A: This location features a manhole and culvert on an embankment slope 
covered with dense vegetation, making fallen slopes difficult to detect. Initial reason 
was reported due to the failure of drainage structure (pipes and manhole). The slope 
failure is reported as progressive and is being repaired as of June 2014 (Table 3.1). 

Table 3.1: Historical information provided by SHA for site 1A 

PRO
JECT 

ID 

PROJE
CT 

ROAD 

FAILUR
EDATE 

LOCATION 
and 

DETAILS 

FAILURE 
TYPE 

INFORMATION 
SLOP
ETYP

E 
SOIL TYPE 

SUGGES
TED 

REPAIR 
STATUS 

46 

US 29 
SWM 

Retrofi
t 

2/1/201
2 

Erosion 
was due to 
failure of 
drainage 

structures 
(pipe and 
Manhole) 

Erosion-
Body; 

Erosion-
Head; 

Erosion-Toe 

Slope Failure 
has been 

progressive. 
OHD developed 

a project to 
retrofit the 

SWM facility in 
the area and 

repair the slope 
failure. Being 
repaired as of 

6/10/14. 

Fill 

Boulders/ 
cobbles; 

Silty sand; 
Other 

Soil 
Nailing 

Post 
Constructio

n 
Monitoring 

The samples collected contain topsoil, fill materials with gravel and silty soil. 

o GPS Coordinates: 39° 03.168 N, -76° 58.611 W 
o Elevation: 400 ft 
o Slope Length: 63 ft 
o Slope Width: 41 ft 
o Slope Angle: 25° 
o Samples: Site 1A Sample 1 & 2 (Figure 3.1 – 3.3) 
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Figure 3.1: The location of site 1A. 
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Figure 3.2: Site 1A slope. 

 

Figure 3.3: Slope sketch of site 1A. 

Site 1B: Located 500 feet away from Site 1A along the trail, this area is free of 
vegetation, with an outward 4ft shift of trail horizontally due to fallen slopes, which 
indicates the landslide (Table 3.2). The failure of slope is below the roadway. The 
sample collected contains sandy silt materials.  

Table 3.2: Historical information provided by SHA for site 1B 

PROJE
CTID 

PROJEC
T ROAD 

FAILURE 
DATE 

FAILURE TYPE 
INFORM

ATION 
SLOPE 
TYPE 

SOIL 
TYPE 

SUGGESTED 
REPAIR 
STATUS 

47 
US 29 
SWM 

retrofit 
2/9/2012 

Compound/Comple
x; Deep Non-

circular Rotational 
failure; Erosion-

Head 

Repair 
done as 

of 
6/10/14. 

Fill 
Silty 
sand 

Regrading or 
Flattening 

Slope 

Post 
Constructio

n 
Monitoring 
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The samples details: 

o Slope Length: 119 ft 
o Slope Width: 42 ft 
o Samples: Site 1B Sample 1, 2 & 3 (Figure 3.4 and 3.5) 

 

 

Figure 3.4: Site 1 B slope, clear difference in vegetation. 
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Figure 3.5: Slope sketch of Site 1 B. 

Site 2 (39°01.221 N, -76°58.841 W) 
Site 2 presents a more concerning situation with visible tree roots hanging, indicating 

erosion at the foot of the slope. It is situated on the opposite side of the highway from the 

original GPS coordinates, on the I-495 capital beltway outer loop Silver Spring (Figure 3.6, 

Table 3.3), Montgomery County. The erosion is reported due to the drainage failure.  It is 

accessible with a parking permit from the nearby facility. The samples contain topsoil, 

residual soil, samples of weathering bedrock and other materials. 
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Figure 3.6. The location of site 2. 
 

Table 3.3: Historical information provided by SHA for site 2 
PROJECT 

ID 
PROJECT 

ROAD 
FAILURED

ATE 
LOCATION 

and DETAILS 
FAILURE 

TYPE 
INFORMATI

ON 
SLOPE 
TYPE 

SOIL 
TYPE 

REPAIR 
STATUS 

19 

Slope 
Failure on 

I-495 @ MP 
28 

10/1/200
9 

drainage 
pipe failure 

Erosion-
Body 

multiple 
locations 

(4) 
Fill 

Silty 
sand 

Design 

The samples details: 
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● GPS Coordinates: 39°01.221 N, -76°58.841 W 

● Slope Length: 53 ft 

● Slope Width: 42 ft 

● Slope Angle: 35° 

● Samples: Site 2 Samples 1, 2, 3 & 4 (Figure 3.7 and 3.8) 

  

  

Figure 3.7: Site 2 landslide looks active and needs immediate attention. 
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Figure 3.8:  Slope sketch of site 2. 

Site 3 (39° 0.9336, -77° 1.827) 
This site is in the capital beltway I-495 inner loop Silver Spring, Montgomery 
County. The site is reported to be repaired using riprap as of June 2014 (Table 3.4). 
Access to Site 3 requires permission from the golf course owner via a back road or 
traffic control via the highway. An alternative route through a paved drainage ditch 
is blocked by dense vegetation and a wire fence (Figure 3.9). 

Table 3.4: Historical information provided by SHA for site 3 
PROJECT 

ID 
PROJECT 

ROAD 
FAILURED

ATE 
FAILURE 

TYPE 
INFORMAT

ION 
SLOPE 
TYPE 

SOIL 
TYPE 

SUGGESTE
D 

REPAIR 
STATUS 

45 

Slope 
failure on 
I-495 at 

m.p 
11.06 

11/3/201
1 

Erosion-
Body 

revisit on 
6/27/14. 
Repaired 

with 
riprap 

(dumped) 

Cut and 
Fill 

Silty 
sand 

Rip-rap 

Post 
Constructio

n 
Monitoring 



- 14 - 
 

 

Figure 3.9: The location of site 3. 
 

Site 10 (38° 59.3232, -77° 13.3656) 

Site 10 was not visited during this trip and is scheduled for a future visit. It is located 
on the side of Belfast RD in Potomac, Montgomery County. 

3.3.2 Summary of Day 2, Tuesday, June 25, 2024 
 
Site 12 (39°24.266 N, -77°23.584 W) 
Site 12 is easily accessible via a back road, situated between the slopes of Highway 
40 West and Monocacy Boulevard near Frederick, Fedrick county. Parking is 
available nearby, potentially across the street in a nearby business area. The slope 
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is an embankment that has been stabilized with riprap covered in stone. Soil 
samples collected appear to be silt in nature (Figure 3.10). 

 
Figure 3.10: The location of site 12. 

The samples details: 

● GPS Coordinates: 39°24.266 N, -77°23.584 W 
● Elevation: 302 ft 
● Slope Length: 41.6-9-41.3 ft 
● Slope Width: 42 ft 
● Slope Angles: 39.5° & 40.5° 
● Samples: Site 12 Samples 1, 2 & 3 (Figure 3.11 and 3.12) 
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Figure 3.11: Collection of soil sample, and the view slope in site 12. 
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Figure 3.12: Slope Sketch of site 12. 

Site 13 (39°38.563 N, -78°47.780 W) 
Site 13 is approximately a 1.5-hour drive from Site 12, located on Rt68 National 
Freeway in Cumberland, Allegany County. The large slope has experienced collapse, 
with mitigation efforts including soil nailing and benching. The stones present are 
brittle in nature. Parking is available alongside the road but may require traffic 
control. Samples collected include stone samples, brittle topsoil, and original soil 
from tree roots (Figure 3.13 to 3.17).  

The samples details: 

● GPS Coordinates: 39°38.563 N, -78°47.780 W 
● Elevation: 930 ft 
● Slope Length: 28 ft (first slope), 10 ft (second slope at west) / 76 ft and 22 ft 
● Slope Angles: 47.5° & 36.5° (slope at west) / 26.3° and 32.2° 
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● Samples: Site 13 Samples 1, 2 & 3 (Figure 3.13 to 3.17)

 

Figure 3.13: The location of site 13. 
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Figure 3.14. Soil nailing to mitigate landslide at site 13. 

    

Figure 3.15: Starting point of landslide at the top (left) and benches built during 
the mitigation. 
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Figure 3.16: Slope Sketch of site 13 (west side). 

 

Figure 317: Slope Sketch of site 13 (East side). 

 

Site 11 (39° 13.75397436N, -76° 41.58593298W) 
Site 11 is located near Catonsville on southeastern Blvd, Baltimore County. Due to 
time constraints, detailed samples and measurements were not taken at Site 11. 



- 21 - 
 

However, visual observations suggest the slope is stabilized using riprap. 
Photographs were taken for future reference and analysis. (Revisit /Traffic Control 
& Utilities Marking) (Figure 3.18 and 3.19). 

 
Figure 3.18: The location of site 11. 

 



- 22 - 
 

 

 

Figure 3.19. Landslide happened on April 4, 2024, at site 11. 

3.3.3 Summary of Day 3, Wednesday, June 26, 2024 
 
Site 8 (38° 59.997801, -76° 53.5477128) 
This site is located on the slope of I-495 Capital Beltway Outer Loop at Exit 23 in 
Greenbelt, Prince George’s County, Site 8 is accessible via a back road. Parking is 
available at a nearby business complex. Clear cutting of vegetation provides a 



- 23 - 
 

walking path to the site. The site is reported to be fixed using riprap previously but 
again has fallen (Table 3.5). Unfortunately, no fallen slopes were discovered during 
this visit. The fence has already been cut, facilitating easy access for further 
investigation (Figure 3.20). 

Table 3.5: Historical information provided by SHA for site 8 

PROJECT 
ID 

PROJECT ROAD 
FAILURE 

DATE 
LOCATION  FAILURE TYPE INFORMATION REPAIR STATUS 

230 

Ramp from I-
495OL to MD 

201 Slope 
Failure 

11/14/2018  
Erosion-Body; 
Erosion-Head 

Slope previously 
fixed with 

riprap failed 
again 

Design Complete 
and Waiting for 

Construction 

 
Figure 3.20. The location of site 8. 

 

Site 7 (38° 58.1124996, -76° 52.1010792) 
This site is situated on I-95 Capital Beltway Outer Loop near New Carrollton, Prince 
George's Maryland (Table 3.6). Site 7 is currently inaccessible due to a wire fence 
on the back road. This site has I-95/495 Slope and Drainage Failures between US 
50 and MD 295. Parking options include the temple parking space if accessed from 
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the back road (Figure 3.21 and 3.22). Traffic control is necessary for further 
investigation of this site. 

Table 3.6: Historical information provided by SHA for site 7 

PROJECT 
ID 

PROJECT ROAD 
FAILURE 

DATE 
FAILURE 

TYPE 
INFORMATION 

REPAIR 
STATUS 

227 
I-95/495 

Improvements from 
US 50 to MD 295 

1/11/2019 
Erosion-

Body 

I-95/495 Slope and 
Drainage Failures 

between US 50 and 
MD 295 

In Review 

 
Figure 3.21: The location of site 7. 
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Figure 3.22: Site 7 behind the wire fence. 

Site 6 (38° 57.2620944, -76° 51.7830684) 
This site also is located on I-495 Capital Beltway Outer Loop near New Carrollton, 
Maryland, Site 6 features large walls on the highway side and a wire fence on the 
back road. It is reported that Slope failure is due to drainage pipe failure (Table 3.7). 
To investigate this site, we may request SHA (State Highway Administration) 
assistance to access the site. Approval from property owners may also be required 
to traverse through their backyard (Figure 3.23). 
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Table 3.7: Historical information provided by SHA for site 6 

PROJE
CT ID 

PROJEC
T ROAD 

FAILURE
DATE 

LOCATION 
and 

DETAILS 
FAILUR
E TYPE INFORMATION SLOPE 

TYPE 
SOIL 
TYPE 

SUGGEST
ED 

REPAIR 
STATUS 

151 

Slope 
failure 

on 95 at 
m.p 19.2 

3/27/201
4 

drainage 
pipe 

failure 
caused a 

erosion at 
the top 

Erosion
-Head 

Slope failure 
due to 

drainage pipe 
failure (24 inch 

CMP) 

Fill 
Silty 
sand 

Soil 
Nailing 

Design 

 

  

Figure 3.23. Site 6 from the beltway.  

Site 5 (38° 56.6474736, -76° 52.4194362) 
This site is situated on US-50 John Hanson Way, on the side slope of Beaverdam 
Creek in Ardwick Park, PG county Maryland. This site is reported to have minor 
erosions and is fixed using riprap (Table 3.8). This site requires traffic control for 
access. It is not accessible via the back road (Figure 3.24). 
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Table 3.8: Historical information provided by SHA for site 5 

PROJEC
T ID 

PROJECT 
ROAD 

FAILURE 
DATE 

FAILURE
TYPE INFORMATION SLOPE 

TYPE 
SOIL 
TYPE 

REPAIR 
STATUS 

122 

Slope 
failure on 
US 50 at 
m.p 4.5 

1/29/201
4 

Erosion-
Head 

Minor erosion. revisit on 
4/10/14. No repair and 

similar condition. 
Temporary fix around 
lamp pole with riprap. 

Natural 
Silty 
sand 

Design 

  

Figure 3.24: Site 5 when seen from bridge at John Hanson way. 

 

3.3.4 Summary of Day 4, Thursday, June 27, 2024 
 
Site 9 (38° 41.60128758, -76° 43.63729926) 
This is located near the slope of Croom Road in Dunkirk, PG county, Maryland, 
Site 9 allows parking on the shoulder of the road. Traffic control or continuous 
monitoring of traffic may be necessary due to its proximity to the road. The slope 
appears fixed using riprap and new pavement was done recently; however, erosion 
is evident due to poor drainage. Rainwater runoff has caused significant erosion 
on the slope (Figure 3.25 and 3.26). 

● Slope Length: 19 ft 

● Slope Angle: 30.2° 

● Samples: Site 9 Samples 1, 2 & 3 
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Before repair (August 24, 2023) 

   

After repair: The side slope is already eroded by bad drainage (June 27, 2024) 

Figure 3.25. Site 9 slope.  

 

Figure 3.26. Slope sketch of site 9. 
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Site 4 (38° 55.1824128, -76° 54.5872188) 
This is situated on John Hanson Way in Cheverly, Maryland, Site 4 requires traffic control 

for access and cannot be reached via the back road (Figure 3.27 and Table 3.9). 

 

Figure 3.27: Site 4 as seen from satellite image. This site is not accessible through 
the back road. 

 

Table 3.9: Historical information provided by SHA for site 4 

PROJE
CT ID 

PROJECT 
ROAD 

FAILURE 
DATE 

FAILUR
ETYPE INFORMATION SLOPE 

TYPE 
SOIL 
TYPE 

SUGGES
TED 

REPAIR 
STATUS 

123 

Slope 
failure on 
US 50 at 
m.p 1.8 

1/28/201
4 

Erosion-
Body 

Slope failure, 
Revisit on 

4/10/14, repaired 
with riprap. 

Cut Silty soil Rip-rap 
Post 

Construction 
Monitoring 
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Chapter 4 

4 Characterization and detection 
of landslides with LiDAR and 
InSAR data 

Adebayo Olude, Ahmir Muley, Katherine Nieto Correa, Oludare Owolabi, Yi Liu, 
Zhuping Sheng,  

 
4.1 Background 

Landslides are a common natural disaster that can occur anywhere in the world. A 
landslide occurs when soil, rocks, or debris are pulled down a slope by gravity. 
Between 1998 and 2017, landslides affected approximately 4.8 million people and 
resulted in more than 18 000 deaths. Climate change and rising temperatures are 
expected to trigger more landslides [10]. Although landslides are a natural 
phenomenon that will likely always occur globally, scientists continue to develop 
new methods to prevent and detect landslides before they occur.  
 
The world's remote sensing methods have continued to improve drastically as new 
technologies are developed to assist with them. In recent years, the use of Light 
Detection and Ranging (LiDAR) and Interferometric Synthetic Aperture Radar 
(InSAR) imagery has proven to be efficient in providing highly detailed imagery of 
areas with potential landslides. LiDAR is a form of remote sensing that uses light in 
the form of a pulsed laser to measure ranges (variable distances) to the Earth. These 
light pulses—combined with other data recorded by the airborne system—generate 
precise, three-dimensional information about the shape of the Earth and its surface 
characteristics. [11]. The three-dimensional images provided by LiDAR can be used 
to examine the topography of different areas. 
 
InSAR is also a form of remote sensing. InSAR can detect small differences in the 
distance between its position and the ground as the land surface moves—whether 
up, down, or sideways. InSAR shows spatial patterns of deformation in remarkable 
detail [12]. InSAR’s ability to detect slope failures in the ground is a key benefactor 
for detecting landslides, as one of the major contributors to landslides occurring is 
slope failures in the soil. When using both Lidar and InSAR, along with other 
remote sensing techniques, scientists have a much higher chance of predicting 
potential areas where a landslide can occur.  
 
The goal of this research is to process highly detailed topographic imagery on the 
various counties in Maryland using geospatial technologies and remote sensing 
methods for the purpose of determining which areas are the most susceptible to 
landslides. 
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4.2 Literature Review 
4. 2.1 LiDAR 

LiDAR uses laser beams to determine distances to the Earth's surface, resulting in 
detailed 3D terrain models. A detailed overview of LiDAR concepts and uses in 
landslide investigations was presented in [13]. The technology is implemented in 
two major ways: Airborne LiDAR Scanning (ALS) has been proven to be successful 
in mapping large-scale landslides and recognizing minor geomorphological 
characteristics, as demonstrated by [14]. Terrestrial LiDAR Scanning (TLS)’s 
applications for monitoring deformations in rock slopes and detecting movements 
might help predict future occurrence [15]. Despite the advantages of LiDAR, it has 
some limitations and knowledge gaps that need to be addressed. Challenges in data 
collection, such as vegetation cover, cloud cover and accessibility can affect the 
accuracy and precision of the terrain models. Combining LiDAR data with 
additional datasets such as hydrological, geological and land use data is often 
needed to gain a better understanding of landslides mechanism and susceptibility. 
It is essential to validate the identification and monitoring methods for slope failure 
using remote sensing by conducting field surveys. This validation is necessary to 
verify the accuracy and dependability of the results. Furthermore, the process of 
measuring and determining the specific properties of landslides, such as their size, 
speed, and other attributes, is still being actively studied. Creating precise 
predictive models for landslide susceptibility using only LiDAR data might be 
difficult, and using advanced analytical approaches may be necessary to improve 
the model's dependability. 
 

4.2.2 InSAR 
InSAR detects surface deformations using phase difference between radar signals. 

Ferretti et al. [16] explored a comprehensive analysis of the fundamental principles 

and practical uses of InSAR in the context of monitoring landslides. Several 

techniques include: Differential Interferometric Synthetic Aperture Radar 

(DInSAR) is a technique used to map the movement of landslides in urban settings 

with low velocity. Evidence of the effectiveness of DInSAR in this application were 

provided by [17]. Persistent Scatterer InSAR (PSI) was introduced by [18] and has 

since been widely used for long-term deformation monitoring. Small baseline 

subset technique (SBAS) used for time series analysis of SAR (Synthetic Aperture 

Radar) images is particularly effective for monitoring and measuring ground 

deformation over time [19]. 

 

Indeed, the SBAS technique is of main interest for this study due to its advanced 
applicability and the direct relationship with the goals of our study. This technique 
selects pairs of SAR images that have small spatial and temporal baselines. A small 
spatial baseline means the images are taken from nearby satellite positions, while a 
small temporal baseline minimizes temporal decorrelation caused by changes on 
the Earth's surface. SBAS generates interferograms by using this SAR data reducing 
the spatial and temporal decorrelation [20].  
 



- 32 - 
 

The SBAS approach is used in various applications, including monitoring urban 
subsidence, detecting ground movements in mining areas, assessing the stability of 
infrastructure, and studying volcanic and seismic activity [21, 22]. Despite its 
advantages [21] highlighted several limitations of the classic SBAS technique. One 
major issue is that the method often results in sparse coverage of high-coherence 
points (HPs), especially in vegetated, forested, or low-reflectivity areas, reducing 
the method's effectiveness for measuring deformation in such regions. Additionally, 
the method's dependence on the selection of stable points means that any 
inadequacy in this selection can lead to inaccuracies in deformation measurements. 
Furthermore, the method is also limited by its reliance on single-polarization, 
single-mode, and single-channel information from SAR satellites, which fails to 
fully exploit the advanced capabilities of newer multi-polarization and multi-mode 
satellite data. These inherent limitations have led to the development of various 
improved SBAS methods aimed at enhancing the technique's applicability and 
accuracy in diverse scenarios. 
 
The application of InSAR SBAS analysis has grown significantly over the years, 
establishing itself as a reliable method for investigating landslides worldwide.  This 
time series technique was used to study slow-moving landslides in the Zhouqu 
region of China [23]. Their research identified 11 active earthflows and 19 active 
landslides, each with deformation rates exceeding 100 mm/year. Furthermore, they 
added 20 new instabilities to the existing landslide inventory map. The study 
highlighted the impact of seasonal variations and the accelerated deformation 
following the Wenchuan earthquake on these earthflows and landslides.  

Alternatively, both SBAS and PSI techniques [24] were employed and their accuracy 
against were evaluated with various contextual geodetic data, including permanent 
GNSS records. The study found a high degree of similarity between the 
displacement velocity estimates from the PSI and SBAS approaches, with a 
standard deviation of 6 mm/year for vertical rate differences. This consistency 
confirms the reliability of both InSAR methods for monitoring ground 
displacement. The accuracy assessment revealed that the standard deviations in 
vertical displacement estimates were 9-10 mm/year when compared with GNSS 
benchmarks and 8 mm/year against leveling data. Importantly, relative errors were 
less than 20% for locations experiencing subsidence greater than -15 mm/year, 
demonstrating that the InSAR techniques are particularly effective for detecting 
significant vertical displacement. 

A recent study of the East Coast of the United States has highlighted subsidence 
hazards affecting communities and infrastructure, particularly in metropolitan 
areas like New York, Norfolk, and Baltimore. Vertical land motion rates were 
assessed using a combination of InSAR data and observations from GNSS stations 
[25]. The study found that as subsidence rates increase, the area affected by severe 
subsidence hazards decreases. Although a large portion of land is subject to 
subsidence, the regions experiencing the highest rates of subsidence are relatively 
limited. This suggests that while subsidence is widespread along the US East Coast, 
the most severe impacts are concentrated in fewer areas. This finding underscores 
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the need for a detailed understanding of subsidence rates at the county level and 
highlights the importance of defining appropriate thresholds for subsidence rate 
concerns. 
 

4.2.3 Integration of LiDAR and InSAR 
Several studies have investigated the utilization of Lidar and InSAR for evaluating 

slope collapse. Lidar data, known for its detailed topographic data, has been utilized 

to identify terrain features that affect slope instability, including scarps, cracks, and 

variations in slope gradient [13, 16]. Nevertheless, they also recognized the 

constraints associated with the complexity of data processing, the impact of 

vegetation, and the expenses involved [26]. The study highlights areas of knowledge 

gaps in the most effective methods for processing data, integrating data, 

transferring data, and assessing the accuracy and validity of data. In contrast, 

InSAR has the capability to identify small surface deformations that could 

potentially indicate slope movement. This makes it an invaluable tool for 

continuously monitoring the stability of slopes over a period [16, 27]. 

 

A large and growing body of literature has investigated several techniques to 

combine Lidar and InSAR data to improve the detection of possible areas where 

slopes may collapse. Methods such as analyzing Lidar data over many time periods, 

combined with measuring displacements using InSAR, have demonstrated 

encouraging outcomes in the mapping and surveillance of slope instability [28, 29]. 

Although research from [28] have demonstrated encouraging findings in 

integrating LiDAR and InSAR data, there is a need for a standardized approach to 

merge the data. This involves resolving discrepancies in spatial and temporal 

resolutions and creating algorithms that can automatically integrate and analyze 

the data from both remote sensing technologies. 

 

4.3. Methodology 
This research involved acquiring LIDAR data for counties in Maryland from the 
Maryland LIDAR data website. For our investigation, LIDAR maps from different 
years were used for comparison. The list of obtained LIDAR maps is presented in 
Table 4.1. Figure 4.1 shows the methodological flowchart for the LiDAR data Map.  
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Table 4.1: List of LiDAR Data Maps Obtained  
from Maryland LiDAR data 

S/N County DEMs Year 
1 Prince George 0.9m 2014 
  0.6m 2018 
2 Montgomery 1.2m 2013 
  0.6m 2018 
3 Calvert 2m 2011 
  0.3m 2017 
4 Caroline 2m 2003 
  1m 2013 
5 Carroll 1m 2006 
  0.7m 2015 
6 Cecil 1m 2005 
  1m 2020 
7 Charles 2m 2004 
  0.9m 2014 
8 Dorchester 2m 2003 
  0.9m 2013 
9 Garrett 3m 2005 
  1m 2015 
10 Harford 1.5m 2013 
  1m 2020 
11 Howard 2m 2011 
  0.6m 2018 
12 Kent 2m 2006 
  7m 2015 
13 Montgomery 1.2m 2013 
  0.6m 2018 
14 Prince George 0.9m 2014 
  0.32m 2020 
15 Somerset 1m 2012 
  1m 2020 
16 Talbot 2m 2004 
  0.7m 2015 
17 Wicomico 1m 2012 
  1m 2020 
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 Figure 4.1: LiDAR Data Analysis Flowchart 

 

 

4.3.1 LIDAR Acquisition and Processing 
 

Figure 4.2 displays Montgomery County, while the others are included in the 
appendix section. ArcGIS Pro was utilized for image analysis. The LIDAR maps 
were acquired over different years with varying Digital Elevation Models (DEMs). 
The 2013 and 2018 LIDAR maps were analyzed in ArcGIS Pro with DEMs of 1.2m 
and 0.6m, respectively. The 2013 map, with its high-resolution DEM, was primarily 
used for analysis. However, images from both years were compared using the raster 
calculator feature in ArcGIS Pro to identify elevation differences. ArcGIS Pro was 
also used to analyze the county's hill shade, slope maps, and landforms, along with 
the identified landslide location. 
 

Montgomery County 
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Figure 4.2: Lidar Map for Montgomery County 

 

 

4.3.2 Resolution of Lidar DEM data  
 

The digital elevation model (DEM) represents topographic relief and ground elevation. Different 

resolution DEMs have been compared, as shown in Figure 4.1. The 0.6m resolution DEM for 

Montgomery County in 2018 is depicted in Figure 4.3a, while the 1.2m resolution DEM for the same 

county in 2013 is shown in Figure 4.3b. Since high-resolution DEMs are more effective in 

identifying topographic features such as linear structures, the 1.2m resolution LIDAR data from the 

Maryland LIDAR map was used in this research. 

(a)              (b)      

Figure 4.3: Hillshade for Montgomery County for resolution of 0.6m and 1.2m 
respectively. 
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4.3.3 InSAR Acquisition and Processing 
In this study, we obtained InSAR images from the Alaska Satellite Facility (ASF) 
(https://search.asf.alaska.edu/#/), which specializes in collecting, processing, 
archiving, and distributing SAR data. The ASF also provides data recipes, tutorials, 
and OpenSARlab, offering easy avenues for data processing. We conducted a 
geographical search of counties on the website and obtained the interferograms of 
SAR images. The Miami InSAR time-series software in Python (MintPy), developed 
by [30], was utilized, applying a SBAS approach. MintPy was run on a Jupyter 
notebook to prepare a Hyp3 Stack (all interferograms) and perform the time-series 
analysis. We had to subset the stack to the area of interest, establish a high-
coherence reference point, analyze the time series, and reduce errors. 
 
The workflow involved inverting the interferogram stack to obtain the raw phase 
time-series, correcting for deterministic phase components to reduce noise, and 
estimating the average velocity by excluding noisy SAR acquisitions. In this study, 
the Sentinel-1 network used small spatial-temporal baselines (max 150 meters 
spatial, 24 days temporal), with buildings as reference points for calculating relative 
line-of-sight velocities. This technique allowed for the comparison of images 
collected from different seasons from 2016 to 2024 over regions including Allegany, 
Talbot, Montgomery, Baltimore Counties, and Baltimore City to quantify the 
vertical velocity and changes in the ground surface. More than 100 interferograms 
from the Sentinel-1 satellite were acquired, each with a 30-meter pixel resolution, 
covering all specified regions. Figure 4 summarizes the flow of the applied process 
to perform the InSAR technique. 

https://search.asf.alaska.edu/#/
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Figure 4.4: InSAR time series process. 

 

Figure 4.5 shows the calculated coherence for each studied county. MintPy 
evaluated the raw phase by calculating the temporal coherence, using a threshold 
of 0.7. To avoid outliers from decorrelation, it offers a masking option based on 
spatial coherence, with a threshold of 0.4 [21]. Tropospheric delay components 
were not considered in this study. Water bodies were masked out using a DEM-
based water mask. 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

  
(g) (h) 

Figure 4.5: (a) Computed temporal coherence for Allegany County. (b) Computed 
spatial coherence for Allegany County. (c) Computed temporal coherence for 

Talbot County. (d) Computed spatial coherence for Talbot County. (e) Computed 
temporal coherence for Montgomery County. (f) Computed spatial coherence for 
Montgomery County. (g) Computed temporal coherence for Baltimore County & 

City. (h) Computed spatial coherence for Baltimore County & City. 
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4.3.4 Landslide Inventory and Land Use Acquisition 
For this study, a record of landslides from the past 20 years was compiled (Figure 
4.6). These records are used as a baseline for comparing the results of the Lidar and 
InSAR assessments. Furthermore, an analysis of the highest vertical velocities from 
the InSAR process was carried out using ArcGIS and Google Earth tools. This 
analysis included identifying activities at each site to validate and complement the 
recorded velocities. 

 
Figure 4.6: Landslides Inventory in Maryland. 

 

Additionally, Land Use and Cover data from the Maryland Department of Planning 
was obtained to highlight development trends in the study areas. The 2010 update 
classified 13 types of land use, including various residential densities, commercial 
and industrial areas, and different land covers like agriculture and forest. These 
categorizations were used to evaluate the impact of land cover on the rate of ground 
deformation in some of the studied counties. Figure4.7 illustrates the process 
followed for land use and landslide inventory assessment, complemented by tools 
such as ArcGIS Pro and Google Earth Pro software. 
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Figure 4.7: Landslides Inventory and Land cover analysis process. 

 

4.4. Results 
4.4.1 Lidar Map: Montgomery County 

In Figure 4.8, the Lidar data map shows a DEM resolution of 1.2m for 2013 and 
0.6m for 2018. Figure 8a presents an elevation range from 18.0764 ft to 589.305 ft, 
while Figure 8b shows a range from 29.5505 ft to 244.463 ft. The maps indicate that 
green areas correspond to lower elevations, whereas red and yellow areas represent 
higher elevations, offering a clear depiction of the county's topography. Both maps 
emphasize diverse terrain, featuring distinct valleys and elevated regions. 

 
Figure 4.8: Images of Lidar Data Maps obtained. 
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Figure 4.9a illustrates the Hillshade map from the Lidar data, identifying landslide 
occurrences, while Figure 4.9b highlights the differences between the Lidar images 
from 2018 and 2013. The figures display landslide data and elevation changes in 
Montgomery County. The red dots indicate the geographical distribution of 
landslide locations within and around the county, providing a visual representation 
of the spatial distribution of landslides and elevation changes. The field survey 
reveals GPS coordinates at 39° 03.168' N, -76° 58.611' W. 
 

o Elevation: 400 ft 
o Slope Length: 63 ft 
o Slope Width: 41 ft 
o Slope Angle: 25° 

 

 
Figure 4.9: Hillshade Map, Landslide data and Elevation Changes. 

 

4.4.2 Slope Map 
This map shows the features of the terrain and the steepness of the slopes at a 
specific location. The image displays a high-resolution topographic depiction 
obtained from LiDAR data, providing intricate details on the landscape and terrain 
characteristics. Figure 4.10 highlights areas with varying degrees of slope, which are 
represented by distinct color gradations. The color scale suggests that the darker 
shades correspond to steeper slopes, while the lighter areas have gentler slopes. 
Additionally, the map identifies and outlines an area that is potentially susceptible 
to slope failure. This information is likely valuable for evaluating and overseeing the 
stability of slopes in the area. This information is highly significant for the purpose 
of infrastructure development, hazard mitigation, and risk management in regions 
that are susceptible to landslides or other geohazards connected to slopes. 
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Figure 4.10: Slope Map for an Identified Location. 

 
4.4.3 Geomorphon Landforms 

The landform for Montgomery County is shown in Figure 4.11 depicting the 
representation of landscape based on the difference in elevation. The 
geomorphological map classifies the land surface based on its shape and features. 
The map indicates that most of the area consists of spur and slopes, valleys are 
clearly visible, forming a network across the landscape. The regular pattern and 
straight lines suggest significant human impact on the landscape, possibly 
representing urban to suburban development. Overall, the figure shows the 
distribution of slopes which are prime locations for potential landslides. Also, the 
relationship between slopes and valleys is evident thus identifying areas where 
water might accumulate and destabilize slopes. Peaks and ridges were identified 
which could be areas of concern for rock falls or other types of mass movements.  
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Figure 4.11: Map of the Identified Landslide produced by geomorphons method. 
 

4.4.4 InSAR Analysis 
The resulting images represent the vertical velocity change obtained for the studied 
counties based on the Satellite Sentinel-1 SAR images processed. The negative 
values tending to blue colors represent land subsidence, while positive signs 
tending to red colors represent uplift. Additionally, the appendix section (Appendix 
A) includes displacement graphs for each analyzed county, showing changes over 
time relative to the respective start dates. 
 
Allegany County 

Figure 4.12 shows the resulting vertical velocities derived from the Sentinel-1 
satellite, based on 145 processed SAR interferograms from September 9, 2016, to 
October 21, 2024. From Figure 5 (a) and (b) the areas with coherence higher than 
the established thresholds are limited, therefore the results exhibit a significant 
area with no data (blank spaces). It can be observed that the western region exhibits 
subsidence, while the rest of the area shows a tendency to uplift. 
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Figure 4.12: Allegany County velocities derived from Sentinel-1 path 145 

ascending images (From 2016 to 2024) 
 

In this county, historical landslides occurred in areas with insufficient coherence, 
making it impossible to assess those sites. However, sites in the western area, where 
the highest subsidence was recorded, were analyzed and compared with Google 
Earth timeline imagery. This comparison revealed material exploitation sites, as 
shown in Figure 4.13. Additionally, the displacement and trend velocity at this site 
were obtained, demonstrating a vertical change of at least 65 cm over the last 8 
years, as shown in Figure 4.14.  
 

 
Figure 4.13: Velocity Assessment in Allegany County over highest recorded 

subsidence sites and Google Earth site recognizance. 
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Figure 4.14: Velocity and Displacement Assessment in Allegany County over 

highest recorded subsidence sites. 
 

Talbot County 

Figure 4.15 shows the resulting vertical velocities derived from the Sentinel-1 
satellite, based on 214 processed SAR interferograms from October 1, 2016, to 
December 24, 2023  

 

Figure 4.15: Talbot County velocities derived from Sentinel-1 from 2016 to 2024 and 

Assessment. 

 

From Figures 4.15 (c) and (d), Talbot County exhibits the highest coherence across 
most of the area, with results indicating a strong tendency toward subsidence and 
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only small areas showing uplift. The mean velocity for the county is approximately -5 
mm/year, with a range from -14 to 4 mm/year. The extreme values in the northern region, 
where marked subsidence occurs, can be attributed to significant agricultural activity and 
seasonal variations in the meander river level, as illustrated in Figure 15. Similarly, in the 
southwestern area, which shows a tendency toward uplift, the variations in the bordering 
river level are influencing the observed trends.  
 
Montgomery County 

Figure 4.16 shows the resulting vertical velocities derived from the Sentinel-1 
satellite, based on 101 processed SAR interferograms from November 11, 2016, to 
February 03, 2024. The northwest and eastern parts of the county display notable 
patterns of both subsidence and uplift. In contrast, the central and southern regions 
show more uniform changes, with velocities near 0. The maximum observed 
velocity is 33 mm/year, indicating uplift, while the minimum is -27 mm/year, 
indicating subsidence.  

 
Figure 4.16: Montgomery County velocities derived from Sentinel-1 path 101 

ascending images. 

 

Based on the available data of the land cover and use of the county, an assessment 
was performed to identify and avoid considering velocities potentially affected by 
existing vegetation.  Figure 4.17 shows the resulting map of velocity data, 
considering areas with vegetation such as forests and agriculture, and the locations 
of landslides. Figure 4.18 shows the Google Earth imagery of the selected sites with 
its estimated displacement obtained using the InSAR technique. This method was 
employed to evaluate known landslide locations and detect any additional 
significant movements. Since most landslide sites were situated in dense forest 
areas, only a few could be assessed.  
 
Figure 4.17 shows forested, and agricultural areas directly connected with 
significant uplift and subsidence velocities, while urban areas exhibit lower velocity 
magnitudes, ranging from 4.1 to -3.9 mm/year, with an average of -0.1 mm/year. 
Around 60% of the values indicate subsidence (yellow), while the remaining areas, 
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marked in purple and near green zones, indicate uplift. These findings are 
consistent with results from a previous InSAR study on subsidence along the US 
East Coast [24]. 

 
Figure 4.17: Land Cover and Use, Velocity Data, and Known Landslide Locations for 

Displacement and Velocity Assessment in Montgomery County. 

 

Figure 4.18 evaluates landslides at sites D to G, showing the estimated velocities 
and displacements from 2016 to 2024. Site D had a velocity trend of -1.7 mm/year 
with a vertical displacement of about 2 cm. Site E experienced a higher velocity of -
5.9 mm/year and a displacement of around 5 cm. Site F had a velocity of -1 mm/year 
and a displacement of approximately 1 cm. Conversely, Site G exhibited a positive 
velocity of 6.8 mm/year with a vertical displacement of about 6 cm. Google Earth 
Timeline observations revealed that sites F and G are significantly influenced by 
vegetation, which causes greater variability in displacement measurements and 
affects velocity accuracy. Sites D and E, with cleaner slopes, might still be impacted 
by the 30m-by-30m pixel size, potentially including vegetation areas in the velocity 
calculations. 
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Figure 4.18: Velocity and Displacement Assessment in Montgomery County over 
Selected Known Landslide Sites. 
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Figure 4.19 shows the analysis of selected sites with high velocities for uplift and 
subsidence and correspond to urban areas in the north and northwest region. At 
Site A, the change rate was approximately 10 mm/year, with a vertical increase of 
10 cm. The site evolved from unused land to material storage in 2020 and housing 
development by 2024. Site B exhibited a velocity of about -14 mm/year and a 
displacement of around 10 cm, suggesting significant erosion over time influenced 
by the nearby lake and creek. Site C displayed a velocity of 13 mm/year and a 10 cm 
displacement. The site, originally a dumpsite for a power plant, expanded over time 
and was closed by 2024, as shown by a stable velocity trend in recent years. 
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Figure 4.19: Velocity and Displacement Assessment in Montgomery County over 
selected high measured values; and comparison in google earth for different years. 
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Baltimore County and City 

Figure 4.20 shows the resulting vertical velocities derived from the Sentinel-1 
satellite, based on 101 processed SAR interferograms from November 11, 2016, to 
February 03, 2024. From the central to the north regions of Baltimore, patterns of 
both subsidence and uplift are highly noted. In contrast, the central and south 
regions show more uniform changes, with a tendency to subsidence. Additionally, 
the comparison and validation with GPS stations available from The Nevada 
Geodetic Laboratory GPS Network Map is shown in this figure. 

 
Figure 4.20: Baltimore County and city velocities derived from Sentinel-1 path 101 

ascending images (Winter season 2016–2024) and GPS stations in the area. 
 

Figure 4.21 demonstrated the direct connection of forested and agricultural areas 
with the zones of major uplift and subsidence velocities, while urban areas exhibit 
lower velocity magnitudes, with a mean value of -0.7 mm/year and a standard 
deviation of +/-2.2 mm/year. More than 60% of the urban areas indicate 
subsidence (yellow), while the remaining areas marked in purple indicate uplift. 
These findings are consistent with results from a previous InSAR study on 
subsidence along the US East Coast [16]. 
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Figure 4.21: Land Cover and Use, Velocity Data, and Known Landslide Locations 
for Displacement and Velocity Assessment in Baltimore County and City. 

 

Figure 4.22 and 4.23 shows the Google Earth imagery of the selected locations from 
the landslides inventory with its estimated displacement obtained using the InSAR 
technique. It evaluates the estimated velocities and displacements from 2016 to 
2024. Site 5 had a velocity trend of -11 mm/year with a vertical displacement of 
about 8 cm. Site 6 experienced a velocity of -8 mm/year and a displacement of 
around 5 cm. Site 7 had a velocity of -4.4 mm/year and a displacement of 
approximately 4 cm. Site 8 exhibited a velocity of -3 mm/year with a vertical 
displacement of about 1 cm.  Site 9 had a velocity trend of -1.7 mm/year with a 
vertical displacement of about 1 cm.  Site 10 had a velocity trend of -2.1 mm/year 
with a vertical displacement of about 2 cm.  Site 11 had a velocity trend of -8.8 
mm/year with a vertical displacement of about 6 cm.  
Despite the resulting displacement reflecting slow movement with negative vertical 
change, commonly known as subsidence, this can be used to assess slope changes 
at sites where landslides have been recorded. The displacement graphs often show 
scattered points, which may represent times of failure or repair. For instance, site 
10 experienced a failure in 2019, according to Google Earth imagery, and 
reinforcement was introduced in 2022, which is reflected in the displacement plot. 
Therefore, while scattered points can indicate large movements, the overall trend 
should still be considered as the subsidence velocity of the area. 
Additionally, Google Earth Timeline observations show that the sites are 
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significantly influenced by vegetation, which can cause variability in displacement 
measurements and affect velocity accuracy. In contrast, site 6, where the slope has 
been exploited and reshaped, shows higher displacement and velocity, effectively 
representing the more significant changes in that area. 
 

 

 

 

 

 

 
 

 
Figure 4.22: Velocity and Displacement Assessment in Baltimore County over Selected Known 

Landslide Sites 5, 6 and 7. 
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Figure 4.23: Velocity and Displacement Assessment in Baltimore County over Selected Known 

Landslide Sites 8 through 11. 
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Figure 4.24 and 4.25 shows the analysis of selected sites with high velocities for subsidence. 
At Site 1, the change rate was approximately -18 mm/year, with a vertical decrease of 14 
cm. Site 2 exhibited a velocity of about -18 mm/year and a displacement of around 15 cm. 
Site 3 displayed a velocity of -26 mm/year and an 18 cm displacement. Similarly, Site 4 
exhibited a velocity of about -26 mm/year and a displacement of around 25 cm. All these 
sites correspond to landfills of different materials that are in constant re-accommodation. 
This is represented by the scattered displacement graphs, but the overall negative trend 
may be reflected due to weight or subsidence in the area.  
 

 

  

 

  
 

Figure 4.24: Velocity and Displacement Assessment in Baltimore County over 
selected sites 1 and 2; and comparison in google earth for different years. 
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Figure 4.25: Velocity and Displacement Assessment in Baltimore County over 
selected sites 3 and 4; and comparison in google earth for different years 

4.5 Conclusions 
The study demonstrated the efficacy of using LiDAR and InSAR techniques to 
identify and analyze potential slope failures in Montgomery and Baltimore County. 
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The LiDAR data provided high resolution topographic maps, while InSAR data 
provided the monitoring of ground deformation over a period.  
The assessment of different counties through InSAR technique allowed us to 
recognize the benefits and limitations of this technique in the ground change study. 
First, the importance of access to the Satellite data and the accuracy of it, has major 
significance due to the impact over a time series analysis, which is directly related 
to the coherence with the SAR imagery. This tool facilitated site reconnaissance 
across various Counties and helped identify areas that have been used for the 
management, removal, or filling of significant amounts of material. Examples 
include the quarry sites in Allegany and multiple landfill sites in Baltimore. 
Additionally, it identified natural slopes undergoing erosion in Montgomery. These 
sites cover large areas, making them prominent in the analysis and overcoming the 
cell pixel size limitations of InSAR resolution. Although these sites may be 
operating at rates higher than the measured values, the tool was instrumental in 
locating them. Coupled with Google Earth tools, it provided a comprehensive 
understanding of the dynamics and activities occurring in these areas. This 
combination allows for a better assessment of changes and movements, 
highlighting the utility of integrating various tools for effective monitoring and 
analysis. 
A significant finding from this analysis was the direct relationship between land use 
and the higher measured velocities. This reflects the substantial influence of 
vegetation when using InSAR techniques. In areas like Montgomery and Baltimore, 
the satellite waves' penetration capacity was affected by forest density, often 
measuring the forest canopy height rather than the ground surface. This highlights 
the need to account for vegetation cover when interpreting InSAR data to ensure 
accurate assessment of ground deformation. Meanwhile, in urban areas, the 
analysis confirmed that a significant portion was undergoing subsidence. The 
estimated velocity range aligned with the results from a previous InSAR subsidence 
study in this region [24]. 
In reference to the assessment of the landslide inventory, it was observed that 
significant site displacement was registered at specific times, generating scatter 
plots. However, these specific measures can be influenced by various factors and 
may not solely represent landslide performance. In many cases, the estimated 
velocity values fall within the range of the site's subsidence, which may not reflect 
the actual velocity of slope movement. This indicates that the InSAR pixel 
resolution may not be sufficient to capture significant land deformation over the 
small dimensions of landslides. Consequently, while InSAR is a valuable tool, it has 
limitations in detecting and accurately assessing the dynamics of smaller-scale 
landslide events. 
The study’s results revealed that the use of the remote sensing techniques facilitated 
a more extensive comprehension of the topography, patterns of surface 
deformation, and potential mechanism of failure. This technique can aid the 
development and implementation of tailored mitigation plans to improve public 
safety and the resilience of infrastructure. 
 

4.6 Future Research 
Below are some investigative tasks: 
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The current study focused on one of the identified landslides in the Montgomery 
region. Future research will broaden the geographical scope to encompass a wide 
area or other regions that are known to have slope stability issues.  
Explore combining InSAR with LiDAR to enhance the detection and analysis of 
small-scale landslides and subsidence. Integrating LiDAR's high-resolution 
topographic data with InSAR’s wide-area displacement measurements could 
improve the accuracy and detail of ground deformation assessments. This 
combined approach would help address the limitations of InSAR in detecting small-
scale movements and the effects of vegetation. 
Future research will focus on the development of resilient algorithms that can 
automatically combine multi-temporal LiDAR data with other remote sensing 
techniques to conduct thorough slope stability assessments. Exploring the 
possibility of utilizing machine learning to detect and monitor slope stability could 
simplify the processing and analysis of data, thus making slope stability evaluations 
more effective and adaptable. 
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Chapter 5 

5 Precipitation – triggering factor 
for slope instability 

Atieh Hosseinizadeh, Fauziyah Isola, Zhuping Sheng, Yi Liu, Oludare Owolabi 

 
5.1 Background 

Landslides represent a significant geohazard that poses risks to human lives, 
infrastructure, and ecosystems. These mass movements of rock, soil, and debris can 
be triggered by various factors, including heavy rainfall events that saturate the soil 
and reduce its stability [31, 32]. The combination of steep slopes, weak geological 
formations, and intense precipitation events creates conditions conducive to 
landslide initiation. Understanding the mechanisms underlying landslide hazards 
is crucial for effective risk assessment, early warning systems, and land use 
planning to mitigate potential impacts on communities living in landslide-prone 
areas. 

Challenges posed by rainfall-induced slope failures are particularly pronounced in 
regions with abundant rainfall, and this issue is exacerbated during periods of 
intense precipitation attributed to climate change [33 - 37]. The significance of 
rainfall as a pivotal factor in landslide occurrence is emphasized in the literature 
[38, 39]. The intricate interplay between rainwater infiltration and runoff assumes 
a crucial role in determining slope stability, impacting both unsaturated and 
saturated zones [40, 41]. Rainfall infiltration has the potential to jeopardize slope 
stability by modifying suction in the unsaturated zone and elevating pore pressure 
in the saturated zone [42]. This dual influence on soil conditions markedly 
contributes to the vulnerability of slope failure [43 - 45]. 

In studies concerning rainfall-induced slope instability, the precise assessment of 
infiltrated water is often oversimplified. Traditionally, it has been common to either 
consider the entire rainfall volume as equivalent to infiltrated water or estimate a 
percentage of rainfall, disregarding the angle of the slope, as a proxy for infiltrated 
water. These assumptions introduce errors in calculations, particularly in regions 
with heavy rainfall, yielding less reliable results [42]. These simplifications contrast 
with considerations such as equating rainfall infiltration to rainfall intensity or 
factoring in the component of rainfall intensity perpendicular to the slope 
boundary. These assumptions are particularly problematic and leading to less 
reliable results in regions with heavy rainfall because the amount of infiltration is 
really smaller than rainfall [46]. To address this, a numerical simulation model is 
proposed in this study to concurrently consider surface and subsurface flow, 
acknowledging their complex interactions as intricate environmental systems.  

5.2 Literature Review 
5.2.1 Reviewed Papers on Hydrological Models  
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Belhadj et al. [47] utilized 16 months of hourly measurements of rainfall and flow 
rates, a six-parameter conceptual model was developed to simulate rainfall-induced 
infiltration in a small sewer system. Sensitivity analysis demonstrated the model's 
effectiveness under various calibration conditions but revealed high parameter 
interactions, posing a potential limitation for specific model applications. When 
applied to another sewer network, the model showed good agreement between 
observed and simulated flows. However, further validation on other sites is needed 
to confirm its suitability.  

Chu & Mariño [48] developed a new infiltration model, based on the Green–Ampt 
approach, for simulating infiltration into nonuniform/uniform soils with arbitrary 
initial moisture distributions during steady/unsteady rainfall events. The model 
accommodates ponding and non-ponding conditions and transitions between 
them. It was tested against different cases, showing good agreement with field 
measurements and existing models. The developed model addresses limitations in 
previous Green–Ampt-based models, offering a generalized algorithm for 
determining ponding conditions and simulating infiltration. The study focused on 
the vertical variability in soil hydraulic properties and complex changes in rainfall 
intensities. Evaporation/evapotranspiration and soil water redistribution were 
considered insignificant in this study but will be explored in future studies on 
infiltration into layered soils under complex rainfall patterns. 

Ebel [49] employed an infiltration model to analyze seven years of post-fire 
infiltration measurements and their temporal correlations with soil-hydraulic 
properties in the Colorado Front Range, USA. Utilizing point-scale Green-Ampt 
simulations across diverse rainfall events, the study assessed variations in 
infiltration and surface runoff generation thresholds over time since the fire. Both 
measured and simulated infiltration consistently demonstrated a progressive 
recovery trend with increasing time since the fire. This underscores a diminishing 
vulnerability to infiltration-excess runoff generation over time, with the most 
pronounced risk observed in the initial two-years post-fire. Importantly, the study 
highlights that the infiltration model effectively captures these dynamics, revealing 
how the threshold for infiltration-excess runoff shifts over time. By the third year 
following the wildfire, only extreme events lead to surface runoff, and by the fifth 
and seventh years, even extreme rainfall fails to generate surface runoff according 
to the model's simulations. 

Hawkins & Cundy [50] establish an envelope for the steady-state surface runoff 
response on a hillslope, considering the probability distribution and spatial 
arrangement of individual point infiltration capacities along with rainfall intensity. 
The analysis reveals that minimum overland flow occurs when point infiltration 
capacities are ordered with the highest at the slope bottom, while maximum 
overland flow happens when the highest point capacities are at the top of the slope. 
Equations for envelope curves are developed for both continuous distributions and 
discretely sampled data, with provided examples for each case. The study discusses 
the application of this analysis as a rainfall-runoff model. 

Jain et al. [51] explored a research study aiming to assess the inherent 
representation of physical processes in a watershed within a trained Artificial 
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Neural Network (ANN) rainfall-runoff model. The investigation involves analyzing 
statistical measures of the strength of the relationship between the disintegrated 
hidden neuron responses of the ANN model and its input variables. Additionally, 
deterministic components of a conceptual rainfall-runoff model are considered. 
The case study focuses on the Kentucky River watershed. The findings suggest that 
the distributed structure of the ANN effectively captures certain physical behaviors 
of the rainfall-runoff process. The hidden neurons in the ANN model approximate 
various components of the hydrologic system, including infiltration, base flow, 
delayed and quick surface flow, etc. 

Mardhel et al. [52] Determined the spatial distribution of infiltration and runoff 
that is achieved through the IDPR (Network Development and Persistence Index). 
This index applies a specific metric to assess the disparities between the theoretical 
drainage system, generated by automated analysis of a digital model, and the actual 
field representation marked by branching rivers. The metric measures the 
difference between a simplified model of water pathways, assuming homogeneous 
and isotropic terrain, and the intricate network observed in nature, influenced by 
the properties of the land surface it traverses. 

Qi et al. [53] compared four surface runoff and infiltration partition methods—Daily 
Curve Number (DCN-RSWAT), Hourly Curve Number (HCN-RSWAT), Green-
Ampt (GA-RSWAT), and Effective Infiltration Capacity (EIC-RSWAT)— within a 
Richards-equation-based SWAT model (RSWAT). These versions, along with a 
Daily Curve Number based original SWAT (DCN-SWAT), were applied to simulate 
daily stream flow and baseflow from 2001 to 2015 in two watersheds. Global 
sensitivity analysis and the Sequential Uncertainty Fitting algorithm were 
employed to identify sensitive parameters and analyze uncertainty. The results 
emphasize the sensitivity of watershed modeling to differences in surface runoff 
and infiltration partition methods. DCN-RSWAT outperformed other versions and 
the standard SWAT model, exhibiting reduced flow rate prediction uncertainty and 
improved simulation of daily baseflow in both test watersheds. The study aims to 
inform better practices in selecting these methods for SWAT and other watershed 
models, contributing to sustainable water resources assessment and management. 

5.2.2 Reviewed Papers on Investigation Slope Instability and 
Landslide    

Cho and Lee [54] explained that landslides triggered by rainfall usually occur when 
surface soils become saturated, leading to a loss of matric suction near the surface. 
They discussed a technique by Pradel and Raad for predicting such slope failures. 
For a rainfall-triggered landslide to happen, the rainfall intensity must exceed the 
infiltration capacity, and the duration of rainfall must exceed a certain minimum 
period. The authors indicated that by understanding this, along with the hydraulic 
properties of the soil, it becomes possible to create a rainfall intensity curve that 
identifies a rainfall event capable of causing landslides. 

Chleborad et al. [55] used the empirical rainfall thresholds to predict landslides in 
Seattle. A formula combining rainfall over 3 days and 15 days was developed from 
historical data. This formula captures over 90% of historical landslide events. 
However, additional criteria are needed for confident forecasting. Another 
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threshold based on rainfall intensity and duration predicts a higher probability of 
landslides but fewer occurrences. Both thresholds must be used together for 
effective landslide forecasting in Seattle. 

Godt et al. [56] presented an empirical method to predict shallow landslides by 
analyzing 25 years of rainfall data and landslide occurrences. Our approach 
combines a water balance to gauge moisture conditions and a rainfall intensity-
duration threshold to identify potential landslide periods. While successful for 
widespread events, the accuracy is lower for isolated landslides. 

Guzzett et al. [57] collected data on 2,626 rainfall events that caused shallow 
landslides and debris flows from around the world. By analyzing the relationship 
between rainfall intensity and duration, they found that as rainfall lasts longer, less 
intense rain can trigger slope failures. They identified the minimum rainfall needed 
to start shallow landslides and debris flows. They used statistical methods to create 
a threshold curve based on the rainfall data. 

Aydilek and Ramanathan [58] created a soil management system (SMS) for 
Maryland by combining GIS data and map overlays. They used these data maps to 
find potentially unstable highway slopes through spatial and statistical analysis. 
Their approach involved a semi-quantitative index overlay method to evaluate slope 
stability. They also used a qualitative index overlay to understand past instability 
events and identify slopes with similar conditions that could be at risk of failure. 

Pennington et al. [59] examined the impact of prior rainfall on landslides in the UK. 
A notable rise in landslides during 2012-2013 due to heavy rainfall emphasized the 
role of hydrogeological factors. To plan and respond effectively, accessible 
indicators of potential landslides are crucial. The study explores whether past 
effective rainfall can predict landslide likelihood. Long-term antecedent 
precipitation is important for all landslides, while small ones follow heavy rainfall 
quickly. Deeper, rotational landslides take longer due to complex hydrogeological 
responses. Analysis of data and weather records aids in predicting landslide 
probabilities. This research contributes to tools for anticipating regional landslides 
in the UK. 

Ramanathan et al. [60] introduced a framework for studying slope instability in 
Maryland. Using a GIS database, 48 slope failures were examined to find links 
between physical characteristics and instability patterns. Six factors were analyzed 
for their impact on soil slope stability near highways: event precipitation, geological 
formation, land cover, slope history, ground slope, and elevation. Combining GIS 
data for these factors reveals noteworthy trends and significant correlations. 

Lee et al. [61] aimed to establish the criteria for a landslide early warning system 
(LEWS) by deriving optimal thresholds for the cumulative event rainfall–duration 
(ED) and identifying the characteristics of the rainfall variables associated with a 
high probability of landslide occurrence via a Bayesian model. The study uses 
rainfall and landslide data for Chuncheon, Republic of Korea. 

Bezak & Mikoš [62] evaluated changes in the frequency and intensity of rainfall 
events above selected empirical rainfall thresholds at the pan-European level. The 
study focuses on areas classified as at least moderately susceptible to landslides and 
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evaluates changes for the 1961–2018 period using regional rainfall reanalysis data. 

Abraham et al. [63] attempts to improve the performance of conventional 
meteorological thresholds by considering the effect of soil moisture, using a 
probabilistic approach. The study focuses on Idukki district in southern India, 
which is highly susceptible to landslides. 

5.2.3 Reviewed Papers on Slope Instability by Considering the Role 
of Infiltration  

Numerous studies have delved into the risks of slope instability by considering the 
role of infiltration. Chiu et al. [64] developed a custom model that integrates the 
shallow water equation with Richards' equation to evaluate landslide potential 
using an infinite slope stability analysis. Their simulation, based on actual 
catchment topography, demonstrated variations in runoff and safety factors during 
storm events. Dolojan et al. [65] combined the Green-Ampt infiltration equation 
with an infinite slope stability model to study shallow slope failures induced by 
rainfall, taking into account rainfall intensity, soil characteristics, and topography. 
They used the modified Green-Ampt equation to estimate infiltration capacity and 
depth, determining the safety factor through a GIS-based time-series visualization 
of spatiotemporal safety factor variations. Chansorn et al. [66] used TOPMODEL to 
evaluate landslide occurrences in Thailand’s Huai Nam Phung Subbasin by 
examining temporal changes in groundwater levels and calculating slope stability 
safety factors. Their study found that landslide frequency increased in 2017 due to 
higher water volumes, affecting both steep and gentle slopes. Cui et al. [67] 
investigated the spatiotemporal variation of wetting front depth during rainfall 
events using the recursive first-order reliability method (FORM) in their PRL-STIM 
model, which accurately predicted rainfall-induced landslides in a representative 
area in China. He et al. [66] conducted a detailed simulation of runoff, infiltration, 
and slope instabilities in both wide and narrow areas of Hokkaido, Japan, using a 
model that combines surface flow, subsurface flow, and soil mechanics. This study 
emphasized the dynamic interaction between runoff and infiltration under heavy 
rainfall, highlighting the successful modeling of runoff generation and the effects of 
artificial structures, such as asphalt pavement, on runoff dynamics, as well as the 
impact of clogged ditches on slope failure. 

While many studies have explored rainfall-induced landslides by estimating 
infiltration using equations or basic hydrological models, few have employed a 
comprehensive model that accounts for the entire hydrological cycle to achieve 
more accurate infiltration simulations. In this research, we used the Soil and Water 
Assessment Tool (SWAT) to simulate infiltration and runoff from rainfall 
throughout the Anacostia watershed in Maryland, US, considering the full 
hydrological cycle. We then developed a GIS-based model to map the Factor of 
Safety (FS) and evaluate landslide risk, integrating the infiltration data derived 
from SWAT. This methodology offers a more comprehensive and precise 
assessment of landslide risks linked to rainfall events. 

 5.3 Materials and Methods 
5.3.1 Study Area  
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The study area is the Anacostia River watershed, located in Maryland near 
Washington, DC. This watershed feeds into the tidal portion of the Anacostia River, 
eventually joining the Potomac River segment of the Chesapeake Bay [68] (Figure 
5.1). The Anacostia River watershed encompasses 13 subwatersheds, extending 
across the state of Maryland and Washington, DC, USA. Covering a total drainage 
area of 471 km2 (in Maryland), approximately 60% of the basin is classified as 
urban or suburban [69]. Within the tidal Anacostia River, water residence times 
fluctuate between 35 to 100 days, a variation influenced by the significant tidal 
volume to inflow ratio [70].  

 

Figure 5.1: Location of the study area, Anacostia River watershed in Maryland. 

 

The selection of this area for study is motivated by the historical prevalence of 
landslides in Maryland, particularly within the watershed. This decision is informed 
by the map created using landslide inventory location provided by MDOT SHA 
(Maryland Department of Transportation, State Highway Administration), 
highlighting the significance of the chosen watershed in understanding and 
addressing landslide occurrences (Figure 5.2).       
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Figure 5.2: The historical landslides location in Maryland provided by SHA.  

 

5.3.2 Data Preparation  

5.3.2.1 Hydrological Model Data 

The implementation of the SWAT+ model in our study involves a comprehensive 
data collection process, emphasizing detailed information on climate, soils, and 
land use specific to the chosen site. Flow rate data from USGS gauge stations in the 
Anacostia region is essential for model calibration. To establish a precise soil map, 
we rely on the Maryland Soil Survey Geographic Database (SSURGO). 
Topographical features are delineated using 1/3 arc-second Light Detection and 
Ranging (LiDAR)-based Digital Elevation Models for Maryland. Daily weather 
inputs for SWAT, encompassing precipitation, temperature, solar radiation, 
relative humidity, and wind speed, are derived from the NASA Power Larc Project 
for Takoma Park Station. This meticulous data integration ensures the accuracy and 
reliability of our SWAT model for simulating runoff and infiltration dynamics in the 
Anacostia watershed.  

We obtained the land use map for Maryland from the Maryland Department of 
Planning (MDP). The MDP data, a GIS land use and land cover product, was 
initially created through aerial photographic interpretation, with subsequent 
updates using LANDSAT satellite imagery. Regular updates aim to enhance 
landscape characterization, with a significant improvement in 2010 involving the 
use of enhanced 2007 aerial imagery from the National Agriculture Imagery 
Program (NAIP) and the 2008 MDProperty View product. 

The 2010 dataset's quality was notably enhanced, incorporating higher resolution 
imagery and additional parcel data. The introduction of new land use categories 
(Very Low Density Residential and Transportation) posed challenges in direct 
statistical comparisons across different timeframes. To address this, MDP 
integrated improvements into the 2002 land use dataset using GIS analysis tools, 
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NAIP imagery, and MDProperty View data. This process included adding new 
categories, rectifying classification inconsistencies, and refining the mapping of 
agricultural and forest lands. The resulting GIS datasets for 2002 are available upon 
request but are not intended to replace the existing 2002 GIS files. After 
downloading shape file map of land use based on the map classification definition 
we added one column to this shape file to introduce the SWAT Code for land use 
(Table 5.1). Then we converted the shape file to the raster map to import to our 
SWAT model (Figure 5.3). 

  

Table 5.1 SWAT code for land use map 

LU - Code SWAT Code Description 

11 URLD Low-density residential 

12 URMD Medium-density residential 

13 URHD High-density residential 

14 UCOM Commercial 

15 UIDU Industrial 

16 UINS Institutional 

17 OAK Extractive 

18 FESC Open urban land 

21 AGRL Cropland 

22 PAST Pasture 

25 AGRR Row Crops 

41 FRSD Deciduous forest 

42 FRSE Evergreen forest 

43 FRST Mixed Forest 

50 WATR Water 

60 WETL Wetlands 

73 SWRN Bare ground 

80 UTRN Transportation 
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Figure 5.3: Landuse map of Anacostia. 

5.3.2.2 Slope Stability and Landslide Risk Data 

The key parameters essential for investigating slope instability include cohesion 
and the effective internal angle of friction, which are obtained from the soil map 
provided by SSURGO. Additionally, the slope angle, necessary for the analysis, can 
be derived from DEM maps using ArcPro (Figure 5.4).  
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Figure 5.4: The slope map of Anacostia. 

 
Another critical parameter is SG, representing the bulk specific gravity of the soil, 
calculated as the ratio of the unit weight of soil to the unit weight of water. SG 
estimation can also be based on soil type and the soil map. The soil type was missed 
for some parts of the soil map and we found the soil type of these parts by 
considering the percentage of clay, silt and sand and using USGS soil type 
calculator. To ensure comprehensive analysis, we compiled soil property data from 
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various sources, including references such as [71], to create Table 2, which details 
soil properties for different soil types. 
 
 

Table 5.2: Typical values of soil parameters for different soils according to USCS 

Soil type SG 
C 

(KN/m2) 
Phi (°) 

Field 
capacity 

Porosity Sgsat 

Channery loam 2.66 0 30 0.28 0.48 2.86 

Channery silt loam 2.66 0 27 0.29 0.51 2.88 

Clay loam 2.69 10 18 0.32 0.46 2.83 

Fine sandy loam 2.64 0 33 0.15 0.46 2.95 

well-graded gravel, fine to 
coarse gravel 

2 0 40 0.08 0.36 2.28 

Gravelly loam 2 0 32 0.08 0.37 2.29 

Gravelly sandy loam 2 0 36 0.07 0.35 2.28 

Gravelly silt loam 2 0 30 0.09 0.38 2.29 

Loam 2.66 0 28 0.27 0.47 2.86 

Loamy sand 2.65 0 31 0.09 0.44 3 

Moderately decomposed plant 
material 

2.2 20 17 0.32 0.47 2.35 

Sand 2.65 0 37 0.17 0.43 2.91 

Sandy loam 2.65 0 32 0.14 0.45 2.96 

Silt loam 2.67 0 25 0.28 0.5 2.89 

Silty clay loam 2.69 10 18 0.33 0.48 2.84 

Slightly decomposed plant 
material 

2.2 20 17 0.32 0.47 2.35 

Silt loam highway 2.67 0 30 0.28 0.5 2.89 

 
5.3.3 Modeling with SWAT 

SWAT is a tool designed to forecast how land management choices impact water 
quality, sediment, and agricultural chemical levels in diverse and complex 
watersheds over long periods. [72, 73]. This widely adopted model reflects long time 
of continuous development [74]. SWAT operates on the different physical 
principles of water and sediment flow, crop development, and nutrient cycling that 
can be used for long-term studies. 

Its flexibility is underscored by its ability to address various water resource 
problems, a testament to the model's comprehensive nature, robust support, and 
the open-access status of its source code [75]. In comparison to other leading 
hydrologic and water quality models, SWAT has solidified its position as a preferred 
tool in the field [73]. In SWAT studies, the water balance is crucial. The model 
simulates two main phases: the land phase controls inputs to the main channel, and 
the water phase manages the movement through the watershed's channel network 
[76]. This equation is used in SWAT to simulate hydrological cycle: 

𝑆𝑊𝑡 =  𝑆𝑊0 +  ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑡
𝑖=1         (5.1) 
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Where 𝑆𝑊𝑡 is the final soil water content (mm), 𝑆𝑊0 is the initial soil water content 
(mm), t is the time (day), 𝑅𝑑𝑎𝑦 is the precipitation (mm), 𝑄𝑠𝑢𝑟𝑓 is the surface runoff 

(mm), 𝐸𝑎 is the evapotranspiration (mm), 𝑊𝑠𝑒𝑒𝑝 is the amount of water entering the 

vadose zone from the soil profile (mm), 𝑄𝑔𝑤 and is the amount of return flow (mm). 

Estimating some components of this equation is explained in the following.   

5.3.3.1 Surface Runoff 

There are two methods to estimate surface runoff in SWAT: the SCS curve number 
method [77] and the Green-Ampt infiltration method [78]. The choice between the 
two methods hinges on the data time-steps.  In this study, we chose the SCS method 
instead of the Green-Ampt method because the Green-Ampt method needs more 
time due to its requirement for sub-daily precipitation data [76, 53]. In the other 
hand, the SCS curve number (CN) method is a popular and versatile approach for 
computing runoff volume from rainfall and known for its simplicity and 
applicability [79]. It considers key watershed characteristics and has been 
successfully applied in diverse environments, from small agricultural watersheds to 
rural, forest, and urban settings [80]. The SCS-CN equation is [77]: 

𝑄𝑠𝑢𝑟𝑓 =  
(𝑅−0.2𝑆)2

(𝑅+0.8𝑆)
                        (5.2) 

𝑆 = 25.4 ( 
1000

𝐶𝑁
− 10)                   (5.3) 

where 𝑄𝑠𝑢𝑟𝑓 is the amount of runoff, R is the amount of rainfall; and s is a retention 

parameter that depends on soils, land use, management, slope, and soil water 
content and is related to the CN by the equation (3). 

5.3.3.2 Evapotranspiration 

In this study we used Penman-Monteith method to estimate potential 
evapotranspiration. This method has been widely employed to analyze 
experimental results [81]. It tackles surface energy balance and the movement of 
heat and water vapor all at once and takes some shortcuts in the math to make a 
clear equation (Eq. 5.4). This method requires solar radiation, air temperature, 
relative humidity, and wind speed [82].  

𝜆𝐸 =  
Δ.(𝑅𝑛−𝐺)+ 𝜌∗𝑐𝑝∗[𝑒𝑧

0−𝑒𝑧]/𝑟𝑎

Δ+𝛾∗(1+
𝑟𝑐
𝑟𝑎

)
      (5.4) 

Where 𝜆𝐸 is the evaporative latent heat flux (MJ m-2 d-1), Δ is the slope of the 
saturation vapor pressure-temperature curve (kPa/C°), 𝑅𝑛 is the net radiation (MJ 
m-2 d-1), G is the heat flux density to the ground (MJ m-2 d-1), 𝜌 is the air density 
(kg/m3), 𝑐𝑝 is the specific heat at constant pressure (MJ/kgC°), 𝑒𝑧

0 is the saturation 

vapor pressure of air at height z (kPa), 𝑒𝑧 is the water vapor pressure of air at height 
z (kPa), 𝛾 is the psychrometric constant (kPa/C°), 𝑟𝑐 is the plant canopy resistance 
(s/m), 𝑟𝑎 and is the diffusion resistance of the air layer (s/m).   

5.3.3.3 Calibration and Model Performance Evaluation of SWAT  
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Calibration is traditionally manual, requiring adjustments to model input 
parameters for simulated values to align with measured data; however, for complex 
hydrologic models, the time-consuming nature of manual calibration has prompted 
a preference for automated calibration methods [83]. Calibrating SWAT involves 
numerous parameters, adding complexity; to streamline the process, we selectively 
focus on key parameters identified in prior research [53, 83, 84] for a more targeted 
sensitivity analysis. In this research, we utilized SWATplus Toolbox to auto-
calibration model and the daily stream flow data from a gauge station on the 
Anacostia River called North West branch of Anacostia, located at Latitude 
38°57'09.2" and Longitude 76°57'54.5" (NAD83) for the period between 2015 and 
2022 as our observation data to calibrate the SWAT model.  

There are several methods for model evaluation that Moriasi et al. [85] 
recommended. Some of them that work well in different situations, are commonly 
used and accepted in published work, and have proven strengths in evaluating 
models. In this research we used three most recommended statistical model 
evaluation methods, Nash-Sutcliffe efficiency (NSE), RMSE-Observations 
Standard Deviation Ratio (RSR) and Pbias Percent Bias (PBIAS). 

The Nash-Sutcliffe efficiency (NSE) is a key statistic that tells us how much 
the difference between predicted and observed data compares to the variance in the 
measured data [85].  

𝑁𝑆 = 1 −  
∑(𝑄𝑜𝑏𝑠−𝑄𝑠)2

∑(𝑄𝑜𝑏𝑠−�̅�𝑜𝑏𝑠)2        (5.5) 

where �̅�𝑜𝑏𝑠 is the mean of observed discharges, and 𝑄𝑠 is simulated discharge and 
𝑄𝑜𝑏𝑠 is observed discharge. 

The RMSE-Observations Standard Deviation Ratio (RSR), is a model 
evaluation metric introduced by Singh et al. [86]. It standardizes RMSE by 
considering the variability in the observed data. A lower RSR generally indicates 
better model performance, highlighting a smaller model error relative to the 
variability in the measured data. 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

�̅�
=

√∑(𝑄𝑜𝑏𝑠−𝑄𝑠)2

√∑(𝑄𝑜𝑏𝑠−�̅�𝑜𝑏𝑠)2
            (5.6) 

Pbias Percent Bias (PBIAS), is a metric that assesses the average tendency of 
simulated data to be larger or smaller than the observed data. This concept was 
introduced by Gupta et al. [87] in 1999. An optimal PBIAS value is 0.0, which 
indicates an accurate model simulation. Positive PBIAS values suggest that the 
model underestimates, while negative values indicate overestimation. The PBIAS is 
calculated using Equation (5.7). 

𝑃𝐵𝑖𝑎𝑠 =  
(𝑄𝑜𝑏𝑠 − 𝑄𝑠)∗100

𝑄𝑜𝑏𝑠
               (5.7) 

 

5.3.4 Slope Stability Physical Model 

Applying the theory of infinite slope stability allows the identification of 
circumstances in which a soil layer with a thickness denoted as Z may experience 
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sliding over a plane parallel to the surface, characterized by a slope angle of θ 
concerning the horizon. The criteria for sliding conditions are ascertainable through 
the application of Coulomb’s law of friction. If seepage is presumed to be parallel to 
the plane of failure, the factor of safety (FS) concerning slope failure along a given 
plane can be computed utilizing the equation (5.8). 

𝐹𝑆 =
𝐶+[

(𝛾𝑠𝑎𝑡−𝛾𝑤)ℎ

𝑐𝑜𝑠2𝜃
+ 𝛾(𝑍−

ℎ

𝑐𝑜𝑠2𝜃
)]𝑐𝑜𝑠2𝜃.𝑡𝑎𝑛𝜑

[
(𝛾𝑠𝑎𝑡)ℎ

𝑐𝑜𝑠2𝜃
+ 𝛾(𝑍−

ℎ

𝑐𝑜𝑠2𝜃
)] 𝑠𝑖𝑛𝜃.𝑐𝑜𝑠𝜃

          (5.8) 

Where C is the apparent cohesion, 𝛾𝑠𝑎𝑡 is the specific weight of saturated soil, 𝛾𝑤 is 

the specific weight of water, 
ℎ

𝑐𝑜𝑠2𝜃
 is the depth of seepage and h is the water pressure 

associated with the seepage depth, 𝛾 is the unit weight of soil under normal 
conditions, 𝜃 is the slope angle, and 𝜑 is the effective internal angle of friction. 

A factor of safety below 1 indicates slope failure. Specifically, if the numerator of 
Equation (5.8) is less than its denominator, the soil layer with a thickness of Z will 
experience slipping over the plane of failure. By expressing Equation (5.8) as an 
inequality that signifies a condition where the factor of safety is less than 1, it can 
be reorganized to establish the minimum depth of seepage in the soil layer essential 
to trigger slope failure. Consequently, one can ascertain the minimum seepage 
depth (Hcr) required for inducing slope failure: 

𝐻𝑐𝑟 =

𝐶

𝛾𝑤
−𝑆𝐺.𝑍.𝑐𝑜𝑠2𝜃(𝑡𝑎𝑛𝜃−𝑡𝑎𝑛𝜑)

𝑐𝑜𝑠2𝜃[(𝑆𝐺𝑠𝑎𝑡−𝑆𝐺)(𝑡𝑎𝑛𝜃−𝑡𝑎𝑛𝜑)+𝑡𝑎𝑛𝜑]
    (5.9) 

Where Hcr is the critical seepage depth for the soil layer; SG is the bulk specific 
gravity of the soil, which is the ratio of the unit weight of soil to the unit weight of 
water; and SGsat is the specific gravity of saturated soil.  

Finally, with an initial moisture content at field capacity, 𝜗𝐹𝐶, and porosity (𝜂), the 
minimum amount of infiltrating water (F) that will cause failure becomes: 

𝐹 = 𝐻𝑐𝑟𝑐𝑜𝑠2𝜃(𝜂 − 𝜗𝐹𝐶)        (5.10) 

To determine Z, one effective method is to use the Topographic Wetness Index 
(TWI), which reflects moisture levels influenced by topography and is derived from 
topographic attributes [88]. TWI is calculated using Digital Elevation Models 
(DEM), as described in Equation (5.7) [86]. 

𝑇𝑊𝐼 =  𝑙𝑛
𝛼

tan 𝛽
                                     (5.11) 

where 𝛼 represents the flow accumulation and 𝛽 is the slope angle in radians. Using 
a DEM and ArcGIS tools, we can generate a flow direction map, and subsequently, 
a TWI map (Fig. 5). Numerous studies have confirmed a linear relationship between 
soil thickness and TWI [89, 90, 91]. This study leverages this relationship to create 
soil thickness maps for the Anacostia watershed. Soil thickness data was collected 
from 9 locations using the Geosetta database. The observed soil thicknesses and 
TWI were used to generate a linear equation: 

𝑇𝑊𝐼 =  𝑎 +  𝑏(𝑍)    (5.12) 
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Based on Figure 6, the equation is 𝑍 =  
𝑇𝑊𝐼−1.804

0.3258
 . Using this equation, we generated 

a soil thickness map for the area. 

 

Figure 5.5: The maps of flow direction and TWI of Anacostia calculated by ArcGIS. 
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Figure 5.6: The linear relationship between TWI and observed slope thicknesses 
(Z). 

5.4 Results 
5.4.1 Hydrological Model  

5.4.1.1 Sensitivity Analysis  

Certain parameters like GW_DELAY and REVAPMN, recommended in prior studies [53], 

had minimal impact on simulated streamflow and were excluded from calibration. 

Sensitivity analysis identified SURLAG and CN2 as the most influential, with Epco being 

the least sensitive, as shown in Table 5.3. 

 

Table 5.3: The results of sensitivity analysis of SWAT model 

Parameter name Description Order sensitivity 

SURLAG Surface runoff lag coefficient 1.95 

AWC Available water capacity of the soil layer 0.02 

CN2 Curve number for moisture condition II -0.002 

Alpha Baseflow alpha factor -0.0065 

Esco Soil evaporation compensation factor -0.008 

Epco Plant uptake compensation factor -0.0005 

REVAPMN Threshold water in shallow aquifer 0 

5.4.1.2 Model Calibration 

Based on sensitivity analysis we chose the most important parameters to calibrate 
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model. Table 5.4 lists the parameters selected for model calibration for the period 
from 2015 to 2020. 

Table 5.4: The value of calibrated SWAT parameters 

Parameter 
name 

Description Initial range 
Final value 

after 
calibration 

CN2 Curve number for moisture condition II (-0.2) - 0.2 0.02 

AWC Available water capacity of the soil layer 0.01 – 1 0.85 

Esco Soil evaporation compensation factor 0.1 – 1 0.137 

Alpha Baseflow alpha factor 0.01 – 1 0.191 

SURLAG Surface runoff lag coefficient 0.05 – 24 6.146 

 

Figures 5.7 and 5.8 illustrate the simulated versus observed streamflow for our gauge station 

located on channel 8 on the main outlet of the SWAT model over various years between 

2015 and 2020 for calibration period and year 2021-2022 for validation period. The years 

2015 and 2016 were utilized as a warm-up period for the SWAT model. The results 

demonstrate a close alignment between simulated and observed flow rates. 

 

Figure 5.7: Simulated and observed stream flow at gauging station North West 
branch of Anacostia after calibration. 

 

 

0

5

10

15

20

25

30

35

40

45

50

55

01/01/2017 01/01/2018 01/01/2019 01/01/2020 31/12/2020

D
is

ch
a

rg
e 

(m
3

/s
)

Time (day)

Simulated Flow

Observed Flow



- 77 - 
 

 

Figure 5.8: Simulated flow versus observed flow at gauging station North West 
branch of Anacostia for calibration (left graph) and validation (right graph). 

 

For model evaluation, we calculated a NSE of 0.85 and Pbias of 12%, indicating very 
good and good performance according to Table 5.5 [92]. Additionally, our 
calibrated model has an RMSE of 1.43 m³/s and a standard deviation of observed 
flow rate data of 3.44 m³/s, resulting in an RSR of 0.41, which indicates very good 
model performance [83]. 

Table 5.5: General performance ratings for NSE and RSR for a daily time step 

Pbias NSE RSR Model Performance 

0-10 0.75 - 1 0 – 0.5 Very good 

10-15 0.65 – 0.75 0.5 – 0.6 Good 

15-20 0.5 – 0.65 0.6 – 0.7 Fair 

>20 ≤ 0.5 ≥ 0.7 Inadequate 

For the validation period (2021 and 2022), the NSE and RSR were estimated at 0.68 
and 0.52, respectively, signifying good model performance. Figure 9 visually 
compares observed precipitation data with the simulated streamflow rates. The 
alignment of peak flow rates with increasing precipitation levels highlights the 
model's capacity to accurately capture the dynamics of streamflow in response to 
varying precipitation. 
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Figure 5.9: Simulated flow rate and observed precipitation at station of North 
West branch of Anacostia River. 

5.4.1.3 Simulated Results 

Figure 5.10 illustrates the model's proficiency in quantifying both surface runoff 
and infiltration resulting from rainfall. This capability allows the model to 
accurately calculate and distinguish the volumes of surface runoff and infiltration, 
ensuring a precise assessment of hydrological processes. The model's commendable 
performance in these simulations confirms the reliability of the derived results, 
making it a robust tool for hydrological analysis and prediction. 

Figure 5.11 presents a map of the average soil moisture content due to rainfall in the 
Anacostia watershed for the year 2018. This map demonstrates the ability to 
spatially simulate infiltration for each rainfall event. By understanding the 
infiltration levels across different areas of the watershed, this information can be 
utilized to create a landslide risk map, helping to assess the potential for landslides 
in each specific part of the study area. 
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Figure 5.10. The amount of infiltration (a) and surface flow rate (b) at station of 
North West branch of Anacostia River. 
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Figure 5.11: The map of the amount of average soil water content in Anacostia 
watershed in 2018 simulated by SWAT model. 

 

5.4.2 Landslide Risk Model  

5.4.2.1 Sensitivity Analysis  

Following initial modeling and testing, sensitivity analysis was conducted, resulting 
in Table 5.6. Each parameter was increased by 20%, and the corresponding change 
in critical seepage depth for the soil layer was calculated. Table 5.2 highlights the 
significance of SG, or bulk specific gravity of the soil, as the most influential 
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parameter in the model. A 20% increase in SG corresponds to a 25% increase in the 
critical seepage depth. 

Table 5.6: Sensitivity analysis results 

Variable 
Change in mean of Hcr 

(%) 
Slope angle (θ) -4.4% 

Internal angle of friction (Φ) 3.0% 
Cohesion ( c) 1.4% 

Bulk specific gravity (SG)  25.3% 

5.4.2.2 Simulated Results  

Utilizing the collected data and values, we generated raster maps using ArcGIS, 
incorporating the "raster calculator" tool and equations (5.9) and (5.10). This 
process for the first scenario resulted in the creation of a map depicting the 
minimum amount of infiltrating water (F) in centimeter necessary to induce failure 
for slope thickness of 1 meter, as illustrated in Figure 5.12. 



- 82 - 
 

 

Figure 5.12: The map of minimum amount of infiltrating water (F) that will cause 
failure becomes with assuming slope thickness of 1 meter. 

 

According to Figure 5.12, the red areas on the map indicate regions with a lower 
threshold for infiltration, indicating a higher risk of landslide occurrence. 
Conversely, the black dots represent historical landslide locations, with many 
occurring in the red and orange regions, signifying elevated landslide risk. This 
suggests that the initial landslide modeling, incorporating physical processes, is 
effective.  

The LiDAR data, acquired from USGS has been overlaid with the output map 
depicting landslide risk that displayed in Figure 5.13. However, it's important to 
note that the LiDAR data is available only for the southern part of the study area, 
specifically Prince's George County. Despite this limitation, observations reveal that 
certain areas adjacent to historical landslide sites persist within high-risk zones as 
indicated by the landslide model.   
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Figure 5.13: The map of landslide risk with assuming slope thickness of 1 meter 
overlaying with LiDAR data. 

 

We prepared a map for site visits based on historical landslide locations and the 
results of a GIS-based slope instability model to collect samples and measure slope 
dimensions. Figure 5.14 displays detailed zoom-in views of each site. Notably, some 
of these sites remain within the red areas, indicating a high risk of slope failure. 
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Figure 5.14: The map of site visiting location determine based on historical 
landslides and the results of GIS-based slope stability model. 

 

In the second scenario, we utilized the slope thickness map derived from the TWI 
method instead of employing a constant soil thickness value to calculate the Fmin 
map. Figure 5.15 illustrates the landslide risk map generated using this slope 
thickness map. This approach allows for a more accurate and detailed assessment 
of landslide risk by incorporating variable soil thicknesses across the study area. In 
this map, we observe that the red areas, indicating higher landslide risk, are 
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relatively fewer and are primarily located near roads. 

 

Figure 5.15: The map of minimum amount of infiltrating water (F) that will cause 
failure with considering slope thickness map derived from the TWI method. 

  

In this map, we calculated only the amount of infiltration required to trigger slope 
failure. To create a comprehensive landslide risk map, we need to integrate these 
results with the outputs from the hydrological model. Additionally, we should 
account for cumulative infiltration from multiple rainfall events, rather than 
considering a single event. 
 

5.5 Conclusion and Future Works 
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In conclusion, this study underscores the critical need for accurately assessing 
rainfall-induced landslides. The complex interplay between infiltration and runoff, 
especially in regions experiencing intense precipitation events exacerbated by 
climate change, necessitates precise modeling for effective risk assessment and 
mitigation. Traditional methods often oversimplify infiltration estimation, leading 
to inaccuracies in landslide risk prediction. To address this, we employed the SWAT 
model to simulate the entire hydrological cycle, focusing on the Anacostia River 
watershed in Maryland. By integrating SWAT outputs with a GIS-based slope 
stability model, we achieved a more comprehensive evaluation of landslide risks 
associated with rainfall events. 

Our findings highlight the significance of detailed hydrological modeling in 
understanding the dynamics of slope stability. The SWAT model's ability to 
simulate both surface and subsurface flow, combined with precise land use, soil, 
and topographical data, allowed for a robust analysis of infiltration and runoff. The 
subsequent mapping of the Factor of Safety (FS) provided a nuanced understanding 
of landslide susceptibility across the watershed. The calibration and validation of 
the SWAT model, using streamflow data from the USGS gauge station, 
demonstrated high model performance, reinforcing the reliability of our approach. 
The integration of detailed soil parameters and slope stability analysis further 
enhanced the model's predictive capability. 

In general, this study advances the methodology for assessing landslide risks by 
incorporating comprehensive hydrological simulations. The results emphasize the 
importance of accurate infiltration modeling in predicting rainfall-induced slope 
failures. Future research should continue to refine these models and explore their 
application in other regions to enhance early warning systems and inform land use 
planning, ultimately contributing to safer and more resilient communities. 

In future work, we plan to further develop our hydrological and landslide models. 
First, we will calibrate the hydrological model using data from three flow rate gage 
stations. Using the calibrated SWAT model, we will determine the cumulative 
infiltration for different durations, including 3-day, 7-day, 15-day, and monthly 
intervals. Additionally, we will calculate the depth of groundwater (h) to 
incorporate into the Factor of Safety (Fs) equation. For the landslide model, we will 
utilize the simulated groundwater depth from the SWAT model to calculate the 
Factor of Safety (Fs) map, thereby enhancing the accuracy of landslide risk 
assessments. 
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Chapter 6  

6. Physical Model Development 
– Literature Review  

Samuel Fadipe, Sunil Lamsal, Yi Liu, Zhuping Sheng, Oludare Owolabi 

 
6.1 Introduction 
6.1.1 Background 

Landslides have disrupted highways and roads across Maryland, presenting 
considerable risks to infrastructure and natural resources, impacting 
transportation safety and posing risks to property and lives. To address these 
challenges, a comprehensive understanding of slope failure mechanisms is critical 
for developing effective mitigation measures to prevent and minimize landslide 
damage.  
 
Our research employs an innovative approach that integrates geomechanical model 
simulations with field investigations. We use the advanced modeling tools, TRIGRS 
(Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model) 
and PLAXIS (officially called PLAXIS Geotechnical Analysis Software), to enhance 
our understanding of landslide dynamics.  
 
In landslide-prone areas, field investigations involve extensive land slope 
measurements, identification of slope types and landsliding signs as well as causes 
of slope, soil sampling, accessibility for monitoring and further investigations, and 
slope engineering status, among others. Geotechnical laboratory testing, geological 
mapping, soil sampling, and geological profiling are conducted in the office. These 
methods provide essential practical and empirical data on environmental and 
climate triggers and the geographic distribution of historical events. This data is 
used to create detailed geomechanical models with TRIGRS and PLAXIS, which 
simulate landslide mechanisms across various geological and environmental 
contexts. Our study identifies critical factors influencing landslide susceptibility, 
such as geological structure and the physical and mechanical properties of soil. By 
validating these models against observed events and performing sensitivity 
analyses, we advance hazard assessment frameworks in landslide-prone regions, 
improve forecasting capabilities, and guide targeted mitigation strategies.  
Future research should focus on incorporating real-time environmental data and 
further enhancing the complexity of these models to improve hazard prediction and 
management. 
 

6.1.2 Purpose of Study 
The purpose of this study is to identify and characterize landslide-prone areas in 
Maryland through field investigations. It aims to analyze the data collected from 
these geotechnical investigations and use geomechanical models, specifically 
TRIGRS and PLAXIS, to simulate landslide behavior under various conditions. 
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Based on the results of field observations and model simulations, the study seeks to 
develop and recommend effective mitigation measures. 
 

6.2 Objectives 
The primary objectives of this study are: 

1. To conduct field investigations to identify landslide-prone areas in 

Maryland. 

2. To collect and analyze geotechnical data from these sites. 

3. To perform geotechnical laboratory testing of collected samples and obtain 

laboratory results. 

4. To simulate landslide behavior using TRIGRS and PLAXIS models under 

various conditions with field and laboratory data. 

5. To propose effective mitigation measures based on the simulation results 

and field data. 

 

6.3 Literature Review 
6.3.1 Overview 

Relevant literature was reviewed to fully understand the features of the 
geomechanical models and their applications: 
The TRIGRS model developed by Baum et al. [93], has been widely used for 
predicting rainfall-induced landslides. TRIGRS integrates transient rainfall 
infiltration with slope stability analysis, using a grid-based approach to simulate 
how rainfall affects soil moisture and slope stability over time. Valuable insights 
into the spatiotemporal distribution of landslide risk were provided by this model. 
The report demonstrates that applying TRIGRS to reliable geotechnical slope 
models significantly enhances landslide susceptibility analysis. By integrating 
detailed soil properties with transient rainfall simulations, this approach provides 
a more accurate and comprehensive assessment of landslide risk. The integration 
of TRIGRS with geotechnical models represents a valuable advancement in 
landslide prediction, offering improved accuracy and insights into the temporal 
dynamics of slope stability. 
 
Iverson [94] investigated the mechanisms by which rainfall infiltration triggers 
landslides, focusing on the physical processes that lead to slope instability. The 
study emphasized the role of pore water pressure in reducing soil shear strength 
and highlighted the importance of understanding the hydrological and mechanical 
interactions within slope materials. Iverson used mathematical modeling to 
demonstrate how different rainfall patterns and soil properties affected the timing 
and location of landslide initiation. The research provided critical insights into 
predicting landslide occurrences by linking rainfall infiltration with slope failure 
mechanisms, offering valuable guidance for improving landslide hazard assessment 
and mitigation strategies.  
 
Jibson [95] conducted a comprehensive analysis of landslide hazards in La 
Conchita, California. This region has faced and is expected to continue to face a 
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diverse array of landslide hazards. The study investigated a reoccurring landslide in 
2005 and compared it with a previous occurrence in the same location in 1995. It 
presented the geotechnical and hydrological factors contributing to slope instability 
in the region. It included an examination of historical landslide events, geological 
conditions, and the role of rainfall in triggering landslides. The report underscores 
the importance of thorough hazard assessments and effective mitigation strategies 
to address and minimize landslide risks in susceptible areas. 
 
Godt et al. [96] applied the TRIGRS model to assess landslide susceptibility in the 
San Francisco Bay Area. The study aimed to evaluate the effectiveness of TRIGRS 
in predicting rainfall-induced landslides by incorporating local geotechnical and 
hydrological data. The authors calibrated the model using historical landslide data 
and rainfall records, demonstrating its ability to simulate pore pressure changes 
and slope stability under different rainfall scenarios. The results indicated that 
TRIGRS could reliably identify areas at high risk of landslides, providing valuable 
information for hazard mitigation and land-use planning in the region. 
 
Several hybrids of TRIGRS with other models have been developed over the years 
for more accurate predictions of landslides susceptibility. Ciurleo et al. [97] 
demonstrated that applying TRIGRS to reliable geotechnical slope models 
significantly enhances landslide susceptibility analysis. The study showed that this 
integrated approach improves the accuracy of predictions, provides detailed risk 
mapping, and offers valuable temporal insights into slope stability. These results 
underline the effectiveness of combining advanced modeling techniques with high-
quality geotechnical data to achieve more accurate and actionable landslide risk 
assessments. 
 
Zhang et al. [98] demonstrate that soil mechanical and hydraulic parameters have 
a significant impact on the definition of rainfall intensity and duration thresholds 
using the TRIGRS model. Their results showed that variations in soil cohesion, 
friction angle, hydraulic conductivity, and soil-water retention can substantially 
alter the thresholds for landslide triggers. Accurate soil parameterization is 
essential for reliable landslide risk assessment and effective risk management. The 
study highlighted the need for detailed soil data to enhance the predictive 
capabilities of landslide models and improve overall risk management strategies. 
 
A valuable evaluation of TRIGRS’s predictive skill for hurricane-triggered 
landslides was conducted by Liao et al. [99] in a case study in Mason County, North 
Carolina. The study highlights the model’s strengths and limitations in forecasting 
landslides associated with intense hurricane rainfall. TRIGRS, coded in Fortran, 
accounts for hydrology, topography, and soil physics to assess slope stability. In the 
Blue Ridge Mountains of Macon County, North Carolina, an area that experienced 
widespread landslides during the 2004 hurricane season, the evaluation was 
conducted particularly due to Hurricanes Ivan and Frances. The study indicated 
that MaTRIGRS exhibited acceptable spatiotemporal predictive skill for landslide 
occurrences within a 120-meter radius and for the duration of the hurricane event. 
It showed potential as a landslide warning system in areas with accurate rainfall 
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forecasts and detailed field data. However, the validation could be enhanced with 
additional information on landslide failure times, extent, and runout length. 
 
The simulation and prediction of rainfall-induced shallow landslides and 
subsequent debris flows was highly improved by a hybrid of TRIGRS and DEBRIS-
2D models [100]. The integrated approach offered enhanced accuracy in modeling 
both the initiation of landslides and the dynamics of debris flows. The study 
highlighted the importance of using comprehensive modeling frameworks to better 
understand and manage the risks associated with landslides and debris flows, 
particularly in areas prone to heavy rainfall and complex terrain. The combined 
TRIGRS and DEBRIS-2D model provided valuable insights into the behavior and 
impact of these natural hazards, supporting more effective risk management and 
mitigation efforts. 
 
Yang et al. [101] demonstrated that coupling the physics-based TRIGRS model with 
the Random Forest algorithm significantly improved landslide susceptibility 
assessment. The hybrid approach offered enhanced predictive accuracy and a more 
comprehensive understanding of the factors influencing landslide risk. By 
integrating detailed physical modeling with advanced machine learning techniques, 
the study provided a powerful tool for more effective landslide risk management 
and mitigation efforts. 
 
Abbas [102] examined the use of numerical methods, particularly PLAXIS software, 
for analyzing slope stability. The study utilized finite element analysis with PLAXIS 
to simulate various slope conditions, investigating the impact of soil properties, 
slope geometry, and external loads on stability. Abbas demonstrated the 
effectiveness of PLAXIS in predicting potential failure mechanisms and compared 
these numerical methods with traditional analytical approaches. The findings 
revealed that PLAXIS offered more precise and versatile solutions for complex slope 
stability problems, highlighting its significance in geotechnical engineering. 
 

Sungkar et al. [103] performed an in-depth analysis of slope stability using both 
the Bishop and finite element methods. Their study deployed the PLAXIS software 
for the finite element analysis, revealing that although the Bishop method 
provides a simpler approach to slope stability assessment, the finite element 
method delivers a more precise and detailed evaluation, particularly in complex 
geological conditions. The research underscores the necessity of selecting the most 
suitable method and software according to the specific requirements of the slope 
stability analysis. 
 

 

6.3.2 Highway Slope Types in Maryland 
Highway slopes in Maryland, like in many other regions, can be classified into 
several types based on their geometry, stability, and the methods used for their 
construction and maintenance. These slope types are crucial for ensuring the safety 
and longevity of highways, especially in areas prone to geological hazards like 
landslides. The primary types of highway slopes in Maryland include: 
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1. Cut Slopes 
Cut slopes are created by excavating into natural terrain to provide a stable roadway 
platform, common in hilly and mountainous regions. The stability of cut slopes 
depends on the slope angle, geological assessment, and drainage control. The angle 
must be carefully determined to minimize landslide risks, a thorough geological 
survey is necessary to evaluate rock quality and potential fractures, and effective 
drainage systems must be installed to prevent water accumulation and reduce pore 
water pressure. Cut slopes in Maryland, particularly in the Appalachian Mountains 
and Piedmont Plateau, face challenges due to diverse geological formations, as 
highlighted by Brezinski et al. [104] 
 
2. Fill Slopes 
Fill slopes are constructed by placing and compacting soil or rock material to raise 
the ground level for the roadbed, typically used in low-lying or uneven terrain. The 
quality of the fill material is crucial, as it should be well-compacted and free of 
organic matter to prevent future settlement or instability. The slope should be 
designed with an appropriate angle and may require stabilization techniques such 
as retaining walls or geotextiles. Additionally, erosion control measures like 
vegetation, riprap, or erosion control blankets are essential to protect the slope 
surface. In Maryland, fill slopes are common in coastal plain areas and river valleys, 
where geotextiles and vegetation have proven effective in enhancing stability and 
erosion resistance. 
 
3. Natural Slopes 
Natural slopes are existing landforms that are incorporated into highway design 
with minimal alteration. These slopes require careful assessment and monitoring 
to ensure they remain stable and do not pose a risk to the roadway. Geotechnical 
surveys are necessary to understand soil and rock properties and identify potential 
instability. Implementing monitoring systems, such as inclinometers or 
piezometers, is crucial to detect signs of movement or instability. Maintaining 
vegetation cover helps enhance slope stability by reducing surface erosion and 
providing root reinforcement.  
 
4. Engineered Slopes 
Engineered slopes are specifically designed and constructed to address stability 
challenges, often involving advanced construction techniques and materials. 
Utilizing modern engineering solutions like soil nailing, shotcrete, or rock bolting 
is essential to improve slope stability. Regular inspections and maintenance are 
crucial to address emerging stability issues and ensure the slope's continued 
performance. Additionally, implementing adaptive measures such as slope drains, 
retaining structures, or flexible facing systems is necessary to manage changes in 
slope conditions. O'Mally et al. [105] reported the application of rammed aggregate 
pier reinforcements to stabilize the embankment slope on the west face of the 
southbound Baltimore - Washington Parkway along Route 197, which enhanced 
slope stability and safety. 
 
Highway slopes in Maryland are diverse and require careful consideration of 
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geological, hydrological, and engineering factors to ensure their stability and safety. 
Understanding the different types of slopes and the best practices for their design 
and maintenance is essential for the effective management of highway 
infrastructure in the state. By incorporating appropriate engineering solutions and 
maintaining rigorous monitoring programs, Maryland can continue to improve the 
resilience and reliability of its transportation network. 
 

6.3.3 TRIGRS 
TRIGRS is a physical and numerical model that simulates the effects of transient 
rainfall infiltration on slope stability. The model is a FORTRAN program designed 
to compute transient pore-pressure changes and the resultant changes in the factor 
of safety due to rainfall infiltration. It calculates changes in pore water pressure due 
to rainfall and evaluates slope stability based on these changes. It utilizes the Finite 
Difference Method (FDM) and operates as a grid-based model, where it divides the 
study area into a grid of cells and calculates the factors affecting slope stability for 
each cell based on rainfall intensity, soil properties, and other input parameters. 
TRIGRS integrates both hydrological and geotechnical processes to predict how 
rainfall-induced changes in soil moisture affect the stability of slopes. This model is 
essential for predicting the timing and distribution of shallow, rainfall-induced 
landslides. 
The model is governed by hydrological (Richards) and slope stability equations.  
Richards' Equation is a major partial differential equation used to describe the 
movement of water through unsaturated soils. Appendix B1 and B2 shows guide to 
Performing a TRIGRS Model Run with Topographic DEM from Baltimore, 
Maryland and a typical TRIGRS initialization file, respectively. 
 

6.3.4 PLAXIS 
PLAXIS, developed by Bentley Systems and officially called "PLAXIS Geotechnical 
Analysis Software," is an advanced tool for geotechnical engineering and structural 
analysis. It employs the Finite Element Method (FEM) to divide the study area into 
finite elements, enabling detailed modeling of complex soil and structure 
interactions. PLAXIS offers a range of soil models and integrates structural 
elements to analyze deformations, stresses, and stability under various loading 
conditions. The software features advanced capabilities, including nonlinear 
material behavior, dynamic load simulations, and construction sequence modeling. 
It allows for simulation of static and dynamic loading conditions to provide insights 
into slope deformation and failure mechanisms. PLAXIS is widely utilized in 
geotechnical engineering for designing and analyzing highway slopes. 
 

6.4 Study Area 
The study area encompasses several landslide-prone regions in Maryland, 
including the Appalachian Plateau, Blue Ridge Mountains, and Piedmont Plateau 
which are characterized by steep slopes, diverse geological formations, and varying 
soil types, contributing to their susceptibility to landslides.  
 

6.5 Methodology 
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6.5.1 Field Investigations 
Field investigations play a key role in assessing the physical and geological 
conditions of slopes. Samples collected during these investigations are analyzed to 
determine their physical and mechanical properties, which are then used as inputs. 
An extensive field survey was essential for our geotechnical investigation, providing 
direct insights into the conditions at various highway landslide locations. This 
practical approach allowed us to observe the environmental and geological factors 
contributing to instability at these sites. Our team conducted site visits at thirteen 
distinct landslide locations along different highways, each presenting unique 
features and challenges. 

Among these sites, some had been stabilized, serving as key examples of successful 
mitigation efforts. These stabilized sites offered a baseline for evaluating the success 
of previous treatments and for assessing long-term stability. Additionally, they 
allowed us to identify any residual or emerging risks. Notably, Site 9 exhibited 
ongoing drainage issues despite recent interventions, with road embankment 
degradation already apparent, resulting in visible embankment degradation and 
highlighting the need for urgent remedial action.  

However, not all sites were accessible due to various constraints such as site 
conditions, location, and safety concerns. Sites 4, 5, 6, and 7 were inaccessible due 
to safety hazards requiring traffic management, while Sites 3 and 8 were obstructed 
by dense vegetation, preventing the transport of sampling and surveying 
equipment. Despite these challenges, we successfully investigated Site 2, where we 
identified signs of recent landslides, including exposed tree roots and soil deposits. 
This active site underscored the urgency for prompt action and provided critical 
insights into dynamic landslide processes, emphasizing the need for immediate and 
effective geotechnical solutions. 

The field survey was also crucial for sample collection and evaluation. By gathering 
soil and rock samples from various locations, we will be able to perform laboratory 
tests to determine geotechnical properties and variables influencing landslide 
susceptibility. Laboratory analysis of these samples will provide a deeper 
understanding of material composition and generate the soil parameters such as 
shear strength, cohesion, moisture content, and other factors affecting slope 
stability. This comprehensive data is vital for developing accurate models and 
simulations for future landslide risk assessments. Measurements of physical 
features like slope height, slope angle, slope width and slope length will enhance the 
creation of realistic models, facilitating the implementation of appropriate 
mitigation techniques. 

In summary, the field survey was pivotal to our geotechnical research, with the aim 
of delivering essential empirical data and firsthand observations that theoretical 
studies alone cannot provide. By examining both stabilized and active landslide 
sites, we have enhanced our understanding of landslide dynamics and refined our 
mitigation strategies, ultimately contributing to the development of safer and more 
resilient infrastructure. 
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6.5.1.1 Site Selection 
Sites were selected based on historical landslide records, slope steepness, soil 
type, and land use. Priority was given to areas with critical infrastructure, such as 
roads, residential zones, and utilities. More sites are anticipated to be visited.  

6.5.1.2 Geological Mapping 
Detailed geological mapping was conducted to identify rock types, soil layers, 
faults, and joints. GPS and total station surveying techniques will be useful to 
accurately map slope geometry and landslide features. These include elevations, 
slope angles, slope lengths and slope widths. Other features include the 
determination of slope strikes and dip angles.  

6.5.1.3 Soil and Rock Sampling 
Soil and rock samples were collected from various depths using hand and auger 
methods, boreholes and test pits. In-situ tests, such as Standard Penetration Tests 
(SPT) and Cone Penetration Tests (CPT), pocket penetrometer, will help to measure 
the soil material properties in equipment accessible areas.  
 

6.5.2 Laboratory Testing 
Laboratory tests for soil and rock in slope stability analysis will include grain size 
distribution, Atterberg limits (liquid limit and plastic limit), specific gravity, Proctor 
compaction test, shear strength tests (direct shear, triaxial compression, and 
unconfined compression), permeability test, consolidation test, density and unit 
weight tests, moisture content determination, and soil suction test. After the site 
visits and samples collection are completed, laboratory tests will be carried out at 
the Geotechnical Laboratory located in the Center for the Built Environment & 
Infrastructure Studies Building at Morgan State University in Baltimore. These 
tests will provide critical information on the physical and mechanical properties of 
soil and rock, essential for evaluating slope stability.  

6.5.2.1 Data Analyses 

Soil and rock samples will be analyzed in the Geotechnical Engineering Laboratory, 
Morgan State University, Baltimore, to determine properties such as cohesion, 
internal friction angle, density, and hydraulic conductivity. Field data will be 
correlated with historical landslide events and precipitation records. 
 

6.5.3 Geomechanical Modeling 

6.5.3.1 TRIGRS Modeling 

TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability 
Model) is a numerical model used to simulate landslide susceptibility. The TRIGRS 
model will be used to simulate transient rainfall infiltration and its impact on slope 
stability. Input parameters will include soil hydraulic properties, rainfall intensity 
and duration, and initial moisture content. Maps of pore pressure distribution and 
factor of safety (FS) will be generated over time. 
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The following equations are used in performing the TRIGRS analyses. 

1. Infiltration Models for Wet Initial Conditions 

(6.1A) 

where ierfc (Ψ) is the complementary error function. 

        (6.1B) 

Ψ is the ground-water pressure head. 
t is time.  
Z = z cos δ, where Z is the vertical coordinate direction (positive downward) and 
depth below the ground surface, z is the slope-normal coordinate direction (also 
positive downward), and δ is the slope angle 
d is the steady-state depth of the water table measured in the vertical direction 

β = cos2
 δ - IZLT / Ks; 

K S is the saturated hydraulic conductivity in the Z direction. 

I ZLT is the steady (initial) surface flux. 

InZ is the surface flux of a given intensity for the nth time interval. 
D1 = DO / cos2 δ , where DO is the saturated hydraulic diffusivity (DO = Ks/ S0 , where K S is 
the saturated hydraulic conductivity and Ss is the specific storage); 

N is the total number of time intervals; and 

H (t − tn ) is the Heaviside step function and t n is the time at the nth time interval in 
the rainfall infiltration sequence. 
 
2. Slope stability equation: 

        (6.2) 

 

Where c ′ is soil cohesion for effective stress, φ′ is the soil friction angle for effective 
stress, γw is unit weight of groundwater, and γs is soil unit weight. 
3. Governing Equations for Unsaturated Initial Conditions  
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Richards Equations 

(6.3) 

                 

 
where θ is the soil moisture content, K(Ψ) is the hydraulic conductivity as a 
function of moisture content, h is the pressure head, and z is the vertical 
coordinate. 
 

To perform a TRIGRS model, the following phases will be undertaken: 

1. First, data collection will be conducted, involving the gathering of 
topographic data as a digital elevation model (DEM), soil properties (such as 
permeability, cohesion, and friction angle), rainfall data (including intensity 
and duration), and geological data (like rock type and fault lines). 

2. Next, the model setup will proceed by defining the study area and grid size, 
assigning soil and geological properties to each grid cell, and setting up the 
rainfall scenario in terms of intensity, duration, and timing. 

3. During the model run, the TRIGRS model will be simulating the infiltration 
and stability of the soil, while also calculating the factor of safety (FoS) for 
each grid cell. 

4. In the post-processing phase, the FoS values will be analyzed to identify areas 
of high landslide susceptibility, and the results will be visualized using maps 
and 3D visualizations. 

The TRIGRS modeling process is described in Figure 1. After the software has been 
downloaded from the USGS website and installed on the computer, a more detailed 
step-by-step guide to running the TRIGRS model is as shown in the flow chat in 
Appendix 10.1.  

When performing a TRIGRS model, the following important considerations are 
necessary: 

a) Ensuring that the input data is accurate and has sufficient resolution to 
capture the complexities of the study area will be crucial for data quality and 
resolution. 

b) Model calibration and validation will be carried out using historical landslide 
data and independent data to ensure reliable results. 
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c) Sensitivity analysis will be performed to understand the impact of different 
parameters on the model output. 

d) Finally, uncertainty analysis will be conducted to quantify the uncertainty in 
the model output and understand the reliability of the results. 

 

Figure 6.1: The TRIGRS modeling Process 

6.5.3.2 PLAXIS Modeling 

PLAXIS was utilized for detailed finite element analysis of selected slopes. Both 2D 
and 3D models were created, incorporating slope geometry, soil stratigraphy, and 
loading conditions. Simulations were conducted to analyze slope stability under 
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static and dynamic conditions, and deformation patterns and failure mechanisms 
were evaluated. 
PLAXIS is an advanced geotechnical modeling program extensively used in 
engineering to analyze slope stability and other soil-structure interaction issues. 
Utilizing finite element techniques (FEM), the software models the response of soil 
and rock under various scenarios, enabling engineers and researchers to evaluate 
slope stability and devise suitable solutions for risk reduction.  
PLAXIS, slope stability problems are typically analyzed using finite element 
methods (FEM) rather than traditional limit equilibrium methods (LEM). The 
primary equations used by PLAXIS to solve slope stability problems include 
equilibrium equations, constitutive equations, and compatibility equations. A 
detailed examination of these equations is provided below: 
1. Equilibrium Equations 
The equilibrium of forces in a continuum mechanics context is described by the 
following partial differential equations: 

𝛻 ⋅ 𝜎 + 𝑏 = 0                                    (6.4) 

where: 
∇⋅σ is the divergence of the stress tensor  
b is the body force vector (e.g., gravity) 
 
2. Constitutive Equations 
These equations define the relationship between stresses and strains, which 
depends on the material model used. For a linear elastic material, the constitutive 
relationship is given by Hooke's law: 

𝜎 =  𝐷: 𝜖                                           (6.5) 

where: 
σ is the stress tensor 
D is the constitutive matrix (depends on the material properties) 
ϵ is the strain tensor 
 
3. Compatibility Equations 
These equations ensure that the strain field is compatible with the displacement 
field: 

           (6.6) 

where: 
ϵ is the strain tensor 
u is the displacement vector 
∇u is the gradient of the displacement vector 
 

4. Boundary Conditions 
Boundary conditions are essential for solving partial differential equations. They 
can be expressed as: 
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where: 
∂Ωu is the boundary with prescribed displacements 𝑢o 
∂Ωt is the boundary with prescribed tractions  
𝑛 is the normal vector to the boundary 
 

5. Safety Factor Calculation 
To evaluate slope stability, PLAXIS uses the concept of the factor of safety (FoS), 
which can be determined through a strength reduction method. In this approach, 
the shear strength parameters (cohesion 𝑐 and internal friction angle 𝜙) are reduced 
until failure occurs. The equations are: 

(6.7) 

where: 
𝑐’ and 𝜙’ are the reduced shear strength parameters 
c and 𝜙 are the original shear strength parameters 
FoS is the factor of safety 
The factor of safety is the value at which the slope reaches a limit state where failure 
mechanisms are developed.  
Virtual modeling enhanced comprehension of the slope's behavior and enabled the 
efficient development of preventative measures, underscoring the indispensable 
contribution of PLAXIS in geotechnical engineering. By incorporating real-world 
data such as soil properties, slope geometry, and groundwater conditions, we 
created a geotechnical model in PLAXIS. This digital simulation allowed us to 
manipulate various factors and observe their impact on slope stability. The 
software's ability to generate multiple slip surfaces, representing potential failure 
planes within the slope, enabled us to calculate the factor of safety which is a 
numerical indicator of a slope's resistance to landslides. A factor of safety below 1 
indicated an unstable slope, prompting us to explore mitigation measures. In 
summary, PLAXIS addresses slope stability problems by utilizing a combination of 
equilibrium equations, constitutive equations, and compatibility equations within 
the framework of the finite element method. The safety factor for slope stability is 
typically calculated using a strength reduction technique, which involves 
systematically reducing the shear strength parameters until failure is observed. 
 

6.6 Summary 
This study will highlight the importance of proactive landslide management 
strategies by combining advanced modeling techniques with field observations and 
continuous monitoring. The use of TRIGRS and PLAXIS will provide valuable 
insights into landslide mechanisms and offer practical solutions for mitigating 
landslide risks in the State of Maryland. TRIGRS is a powerful tool for examining 
how transient rainfall infiltration affects slope stability, providing comprehensive 
insights into the timing and distribution of rainfall-induced landslides. While it 
does have limitations related to sensitivity to initial conditions and assumptions of 
homogeneity, its integration with GIS and capability to manage complex storm 
sequences make it an asset for geotechnical and hydrological research. 
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6.7 Future Work 
Field Investigations:  
This includes more visitations to the landslide locations, taking measurements and 
collecting soil and rock samples for laboratory work. 
Laboratory Testing: 
Samples collected will be tested in the laboratory to determine the engineering 
properties of the landslides’ materials. 
Modeling:  
Perform TRIGRS and PLAXIS models to simulate various slope conditions, 
determine the factor of safety and predict landslides susceptibility. 
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Chapter 7 

 

7. Assessment of Economic 
Impacts – Preliminary 
Analysis 

Nazah Nova Nur, Benjamin Walrath, Zhuping Sheng, Oludare Owolabi, Yi Liu 

 
7.1 Background    

Landslides have had a significant economic impact on individuals, their residences 
and items of value, manufacturing plants, and vital connections including roads, 
trains, and communications networks in different states of the US. Due to the strain 
of growing populations, urban development is pushing into vulnerable slope areas, 
resulting in significant and seemingly increasing economic losses from slope 
failures. Large amounts of rock and soil are disrupted by human activity when 
structures, highways, water reservoirs and dams, drainage channels, and networks 
of communication are constructed. As a result, industrial activity has contributed 
significantly to the rise in damage caused by slope failures. Landslides are a crucial 
component of many big disasters, the extent of which is often missed by the news 
media. They cause far more economic and casualty losses than is typically 
acknowledged. For instance, because an earthquake caused the landslide, the 1970 
Huascaran tragedy in Peru, which claimed the lives of almost 20,000 people, can 
sometimes be considered as an earthquake disaster in literature that evaluate 
disasters; this is regardless of the fact that, a massive, fast-moving debris landslide 
was the immediate source of the actual devastation, loss, and fatalities.  
 
Natural disasters can devastate a region abruptly and horribly. They can slowly but 
inevitably drain its resources both psychologically and economically. Damages from 
natural disasters like tornadoes and earthquakes are unexpected and alarming as 
they can occur without any advance notice. Decisions on how much money should 
go into disaster mitigation rather than facility repairs and emergency assistance 
after an incident are made easier by policymakers at all levels of government when 
they are aware of the monetary implications and severity of natural disasters. Given 
the scarcity of resources for studying natural disasters, research priorities ought to 
take into account the advantages and disadvantages of various courses of action.   
Winter & Broomhead [106] summarized the economic impacts of landslide events 
into three major categories, and these are direct economic impacts, direct 
consequential economic impacts, and indirect consequential economic impacts. 
The direct economic impacts are related to the direct costs associated with 
reconstruction, emergency response expenses, and the replacement or restoration 
of any lost or damaged infrastructure in its widest sense. The data related to the 
direct cost is easier to obtain compared to the data related to the indirect costs. The 
direct consequential economic impacts are further related to interruption of utilities 
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and infrastructure. As an example, the price of both fatal and nonfatal injuries, as 
well as the expense of closing a route. Finally, the indirect economic impact is the 
additional effects of direct investment decisions and the money movement between 
an institution and its stakeholders are known as indirect economic impacts. They 
can be financial or non-financial, and it's crucial to evaluate them in accordance 
with regional and local economies. As an example, if a landslide event affects any 
rural area where a major part of the economy is dependent on the transportation 
network the related damages can be related more to due to the disruption of the 
highway network rather than the landslide event itself. These expenses are an 
essential aspect of the total economic effect that these kinds of disasters have on 
society. These expenses further play an important role while allocating funds to 
conduct the activities related to landslide mitigation. Thus, the data related to the 
indirect costs are difficult to obtain as they are broadly distributed in terms of both 
region and society.  
 
This chapter analyzes the economic impacts of landslides, particularly in the state 
of Maryland with a case example slope. Focusing on both direct and indirect costs, 
the methodology of this study discounts future costs to the present value and 
utilizes a cost-benefit analysis of landslide mitigation. This study also uses the 
indirect costs to estimate the cost-benefit ratio. The indirect costs include relocation 
of buildings and roadways, measures to prevent or mitigate additional landslide 
damage, decrease in agricultural or industrial production, decrease in market value 
of affected properties, tax loss due to decrease in appraised value, and measures to 
protect health and safety of the public. Costs to the public and private sectors of the 
economy due to landslide damage are much larger than anticipated. In order to 
conduct cost-benefit analysis, data is collected from the United States Geological 
Survey, Maryland Department of Agriculture, Maryland Department of Commerce, 
and Maryland Department of Transportation. We expect to find the social benefits 
which include reduced property damage and infrastructure losses, lower emergency 
response and recovery costs, insurance and financial benefits are greater than the 
total cost. Thus, making the project more beneficial to the community with a cost-
benefit ratio of more than one which correlates to a positive net present value. 
 

7.2 Related Literature  
Previous studies related to the different types of costs of landslide damage are 
mainly based on various case studies. Winter et al. [107] highlighted the economic 
impacts of landslides and floods in Scotland in August 2004. The case study focuses 
on the series of debris flow with monthly average rainfall affecting transportation 
networks and rural communities. Due to climate change flood events can also 
increase frequently and can cause same threat towards the economy [108-111]. The 
previous studies of Schuster [112], Highland [113], Schuster & Highland [114] are 
particularly instructive and useful in choosing the methodology for these case 
studies. Both Klose et al. [115] and Highland [116] deal with direct economic 
impacts and direct consequential economic impacts. According to Highland [120] 
economic activities can vary in areas due to the different access routes on both sides 
of landslide incidents. Porter et al. [117] estimated economic impacts of the prairie 
landslides in Western Canada with total impacts exceeds $281 to $450 million 



- 103 - 
 

annually. According to the authors the findings are significant as they can aid in 
standardization and provincial estimates of the risk of landslides. It can further help 
the decision makers to comprehend the danger and risk of landslide events affecting 
both government and industry. Thus, they can allocate the budgets accordingly to 
conduct the activities related to the landslide mitigation. According to the natural 
resources of Canada the total estimation of direct and indirect costs in Canada due 
to landslides vary between $200 to $400 million.  
 
Schuster and Highland [118] highlighted the socioeconomic and environmental 
impacts of landslides in the Western Hemisphere. Based on U.S. Geological Survey 
the study focuses on the economic losses of landslides in Western Hemisphere due 
to increased construction in areas vulnerable to landslides. The ongoing high rate 
of deforestation brought on by timber harvesting, smoldering and industrialization 
is linked to population growth and raises the risk of landslides on the world's slopes. 
The landslides that resulted from the 1964 Alaska earthquake, the 1980 rainfall-
induced landslides in southern California, the 1982 landslides in the San Francisco 
Bay area, the 1983–1984 El Nino-triggered landslides in the State of Utah, and the 
1998 El Nine-related landslides in California have all caused the most devastating 
economic damage in the United States in recent decades. According to Krohn & 
Slosson [119]  the annual cost of landslide in US is about 400 million in 1971 without 
including the indirect costs related to the public property, agricultural and 
industrial production, transportation and other facilities related to communication. 
Jahns [120] analyzed the expenses of damages from several natural disasters over 
a 50-year span, from 1925 to 1975. Unadjusted for inflation, the total losses from 
earthquakes, hurricanes, tornadoes, and floods during that time approached $20 
billion. In contrast, during the same time, there was at least $75 billion worth of 
movement of the ground of two different types: subsidence and landslides. 

 
7.3 Methodology 

 
While talking about the economic impacts of Landslides we have considered both 
direct and indirect costs for a single event. To evaluate the indirect costs, we have 
implemented Cost-Benefit analysis. An organized process for assessing the 
financial, social, and environmental consequences of an initiative, regulations, or 
decisions is called cost-benefit analysis, or CBA. To ascertain if and by how much 
the benefits outweigh the costs, it entails comparing the overall predicted costs of a 
course of action or decision to the total expected benefits. The process further helps 
in developing well-informed judgments that optimize overall benefits to the 
community. First, we assign monetary values to each identified cost and benefit. 
Then we calculate the benefit-cost ratio and finally calculate the net present value 
by subtracting the total present value of cost from the total present value of benefit. 
All the results are estimated and are in the preliminary stage. The equations of the 
described methodology are as following: 
  

 BCR= PV (Benefits)/PV (Costs)     (7.1) 
 Net Present Value= PV of benefits- PV of Costs.   (7.2) 
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7.4 Data Sources    
To evaluate the direct costs, the data are collected from a survey which recorded the 
cost of repairs to state highways caused by landslides for the five-year period 
between 1986 and 1990 [121]. The results are further adjusted for inflation. 
Previous studies have been taken into consideration to show the landslide 
correction costs in US highway systems, transportation infrastructure in the United 
States and different types of risk reduction infrastructure. To evaluate the indirect 
costs, the data is collected from the United States Geological Survey 
(https://www.usgs.gov/programs/landslide-hazards), Maryland Department of 
Agriculture (https://mda.maryland.gov/), Maryland Department of Commerce 
(https://commerce.maryland.gov/), and Maryland Department of Transportation. 
Since the project specializes on a single event to conduct Cost-Benefit analysis we 
have listed all the costs and benefits associated with the project. We have further 
quantified all these costs and benefits in monetary terms accordingly.  
  

7. 5 Results of Case Examples 
7.5.1 Direct Cost    
 

Table 7.1 takes data from a survey which recorded the cost of repairs to state 
highways caused by landslides for the five-year period between 1986 and 1990, in 
two categories: contracts awarded and maintenance [121].  Importantly, that study 
only evaluated state roads; Interstate highways were not included.  “[That 
represents] only 20.7% of the 3,876,500 miles of roadway under public …  
jurisdiction in the U.S. [121].”  Adjusting either figure for the total number of 
highway miles at the time is a simple rate problem, however. 

∴
$ 𝐶𝑜𝑠𝑡 (𝐶𝑜𝑛𝑡𝑟. 𝑜𝑟 𝑀𝑎𝑛𝑖𝑡. )

𝐷𝑒𝑝. 𝑉𝑎𝑟. (𝑆𝑡𝑢𝑑𝑦 𝑚𝑖. )
=

$ 𝐴𝑑𝑗. 𝐶𝑜𝑠𝑡

𝐼𝑛𝑑. 𝑉𝑎𝑟. (𝑇𝑜𝑡𝑎𝑙 𝑚𝑖. )
 

                                                                                                                                          (7.3) 
To account for growth in the public highway sector from 1990 to 2023, the 
difference quotient of total highway miles is first obtained using data from another 
study [122].  It is important to note that—while the article was published in 2020—
the data point used for this step is the sum of Rural and Urban highway miles in 
2008, the most recent year listed.  

∴
𝐻𝑖𝑔ℎ𝑤𝑎𝑦 𝑚𝑖𝑙𝑒𝑠 (2008) − 𝐻𝑖𝑔ℎ𝑤𝑎𝑦 𝑚𝑖𝑙𝑒𝑠 (1990)

18
= 𝐺𝑟𝑜𝑤𝑡ℎ (𝑚𝑖. )/𝑦𝑒𝑎𝑟 

           (7.4)  
Costs are next adjusted for growth—by equating ratios—as before. 

∴
$  𝐼𝑛𝑖𝑡. 𝐶𝑜𝑠𝑡

𝐷𝑒𝑝. 𝑉𝑎𝑟. (1990 𝑚𝑖. )
=

$ 𝐴𝑑𝑗. 𝐶𝑜𝑠𝑡

𝐼𝑛𝑑. 𝑉𝑎𝑟. (2023 𝑚𝑖. )
 

           (7.5) 
Finally, results are adjusted—year-by-year—for inflation.  The calculations were 
performed in Excel™, using the published inflation rate for each year of the interval 
(123).  Extrapolated to their present [2023] value, the study metrics equate to 
roughly $1.3 billion. 

 

 

https://www.usgs.gov/programs/landslide-hazards
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Table 7.1: Assessment of direct costs 

 Jurisdiction  

Title Published State  Public  Category Cost Totals 

Landslide 
Correction Costs 
on U.S. State 
Highway Systems 

1992 (1990 
data) 

803,000 
mi. 

(20.7% of 
total) 

3,876,500 
mi. 

(total) 
Contracts 

$68.5 
million $159.9 

million  
$𝐶𝑜𝑠𝑡 (𝐶𝑜𝑛𝑡𝑟. 𝑜𝑟 𝑀𝑎𝑖𝑛𝑡. )

𝐷𝑒𝑝. 𝑉𝑎𝑟. (𝑆𝑡𝑢𝑑𝑦 𝑚𝑖𝑙𝑒𝑠)
=  

$𝐴𝑑𝑗. 𝐶𝑜𝑠𝑡

𝐼𝑛𝑑. 𝑉𝑎𝑟. (𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑙𝑒𝑠)
 

Maintenan
ce 

$37.4 
million 

Transportation 
Infrastructure in 
the United States 

2020 (2008 
data) 

Rural Urban    4,042,778 
−3,876,500 

                              166,278  2,977,222 
mi. 

1,065,556 
mi. 

 Total: 4,042,778 mi. Difference: 166,278 mi. 

𝐻𝑖𝑔ℎ𝑤𝑎𝑦 𝑚𝑖𝑙𝑒𝑠 (2008) − 𝐻𝑖𝑔ℎ𝑤𝑎𝑦 𝑚𝑖𝑙𝑒𝑠 (1990) 

18 𝑦𝑟𝑠.
= 𝐺𝑟𝑜𝑤𝑡ℎ (𝑚𝑖. )/𝑦𝑒𝑎𝑟 

+ 
~9,2372

/3 mi./yr. 

Growth (1990 – 2023) 304,858 
mi. 

(Estimated) Highways as of 2023  ~4,181,3
58 mi. 

U.S. Inflation 
Rate by Year: 
1929 to 2024 

2024 (2023 
data) 

$ 𝐼𝑛𝑖𝑡. 𝐶𝑜𝑠𝑡

𝐷𝑒𝑝. 𝑉𝑎𝑟. (1990 𝑚𝑖. )
=  

$ 𝐴𝑑𝑗. 𝐶𝑜𝑠𝑡

𝐼𝑛𝑑. 𝑉𝑎𝑟. (2023 𝑚𝑖. )
 

 

Initial 

Contracts ~$771.8 million 

Maintenan
ce 

~$421.4 million 

 

𝐴 = 𝑃𝑒𝑟𝑡 Inflated 

Contracts ~$830.6 million 

Maintenan
ce 

~$453.5 million 

 ~$1.3 
billion 

 
The Walkinshaw’s article lamented a lack of adequate preliminary evaluation by 
geotechnical engineers during construction and realignment of the interstate 
highway system [124].  With even scarcer resources, state highway departments 
face costly interventions in the aftermath of catastrophic failures because 
maintenance personnel failed to address small problems early—or correctly identify 
their root cause.  “Roads broken by slow landslide movement often have layers of 
road patching several feet thick,” by one account [124]. 
Following an abnormally prolific rainfall event that affected San Diego County, 
California, in 1978, engineering geologists Slosson and Krohn surveyed debris flow 
damage to homes in the Los Angeles area as part of a building code review [125]. 
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Extrapolated nationally, their data put private property damage at roughly $400 
million annually [125].  Assuming their methodology was sound, the inflation-
adjusted value of private losses would be nearly $2.1 billion today.  Taken together, 
these figures give a conservative approximation of the direct economic cost of 
landslides in the U.S.: $3.4 billion. Even if the annual cost of repairing landslide 
damage to the national highway system could be precisely quantified, that 
information would be of little value in a cost-benefit analysis.  A more useful input 
would be the unit cost of various mitigation strategies.  Adjusting for inflation, Table 
7.2 shows this for three types of abatement infrastructure, in descending cost order 
[115].  Table 7.3 likewise gives the unit cost for several methods from another 
study—this one focused on large landslides [126] 
 

Table 7.2: Costs for different mitigation approaches 

Method Area/Length Cost Year Inl. Adj. † Unit Cost 

Soil-nailing (12 m. depth) 4,300 m.2 $2.16 M. 2001 $3.67 M.  $853 / m.2 

Soil-Nailing (6 m. depth) 8,300 m.2 $2.48 M. 2006 $3.68 M.  $443 / m.2 

Infill Buttress (6 m. depth) 20 m. $180 k. 2003 $293 k.  $14,632 / m. 

Infill Buttress (6 m. depth) 75 m. $640 k. 2007 $911 k.  $12,146 / m. 

Infill Buttress (6 m. depth) 550 m. $4.06 M. 2007 $5.78 M.  $10,507 / m. 

Catch-Fence, L.E. (<100 kJ.) 470 m. $260 k. 2005 $395 k.  $841 / m. 

   † Inflation adjusted, year-by-year, using the formula: A=Pert [123] 

 

Table 7.3: Summaries of construction costs for three measures 

Mitigation 
Method 

Construction Costs 
(2002) 

Engineering 
Costs 

(2002) 

Total Cost 
(2002) 

Inflation 
Adjusted 

Cost (2023) † 

Horizontal 
Drains 

30 Drains @ $15 to 
$20/ft. = $225k. to 

$300k. 
$100k. 

$325k. to 
$400k. 

~$539k. to 
~$663k. 

60 Drains @ $15 to 
$20/ft. = $450k. to 

$600k. 
$200k. 

$650k. to 
$800k. 

~$1.1M. to 
~$1.3M. 

Key Trench 

20 ft. wide Key @ $5 to 
$15/yd. = $1.5M. 

$200k. $1.7M. ~2.8M. 

40 ft. wide Key @ $5 to 
$15/yd. = $2M. 

$600k. $2.6M. ~4.3M. 

Shear Piles 
(w/ Tie-Backs) 

120 2 ft. dia. Piles on 5 
ft. centers @ $215/ft. = 

$2M. 
$500k. $2.5M. ~$4.1M. 

75 4 ft. dia. Piles on 8 
ft. centers @ $490/ft. 

= $2.8M. 
$900k. $3.7M. ~6.1M. 

† Inflation adjusted, year-by-year, using the formula: A=Pert [123] 
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Table 7.4 summarizes three case studies explored in detail in the Hammond 

article [126]. 

Table 7.4: Costs estimate for three different measures 

Site Scale Mitigation Method Cost 
Infl. 
Adj. 
Cost 

Result 

Ditch Camp 
Slide 

(Sandy, 
OR.) 

1,200 ft. 
W. х 

900 ft. L. х 
~40 ft. D. 

29,000 ft. of Horizontal 
Drains Installed 

$400k. 
(1997) 

$745k. 
(2023) 

Satisfactory 
Stability 

Scenic Loop 
Highway 

Slide 
(Pacific 

City, OR.) 

850 ft. W. 
х 

500 ft. L. х 
~45 ft. D. 

9,000 ft. Horizontal 
Drains Installed 

45,000 yds3 Shear-Key 
Placed 

750 ft. of Trench Drains 
Excavated 

1,000 ft. of Highway 
Rerouted 

$1.5M. 
(1999) 

$2.7M. 
(2023) 

Good 
Stability 

Goat Lick 
Slide 

(Glacier 
National 

Park, MT.) 

220 ft. W. 
х 

420 ft. L. х 
~40 ft. D. 

1,670 Linear ft. of 4 ft. 
Dia. Shear-Piles, with 53 

Tie-Backs Installed 
Cantilever Bridge 

[Re]built 

$1.5M. 
(1993) 

$3.1M. 
(2023) 

Good 
Stability 

† Inflation adjusted, year-by-year, using the formula: A=Pert [123] 
 
Remediation methods—and therefore costs—for [large] landslides vary depending 
upon site considerations as determined from a geotechnical engineering 
assessment [126].  In ascending order of cost—one, or ideally, a combination of 
approaches—increasing drainage, earthworks, and the placement of structural 
elements may be used to improve slope stability [126]. There are viable alternatives, 
though, such as planting native species to help retain the soil, relocating roadways, 
or excavating drainage basins to absorb debris flows [115].  These are considered 
best practices wherever improvements to existing highways or construction of new 
one’s permit.  Determining their unit cost, however, is only possible on a case-by-
case basis. 
 
A review of the literature identified a knowledge gap in definitive data on the direct 
[and indirect] economic impacts of landslides.  Existing work that attempts to 
quantify the costs is frequently self-referencing.  Studies cited here were curve-
fitting to a single estimate published 44 years earlier [127].   Approximations must, 
therefore, be viewed with appropriate skepticism, as our methodology relies on the 
same, outdated data [128].  Another problem is ambiguity in attributing cause to 
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event, as the deadly debris flow in Montecito, California, demonstrates.  The 
relationship between slope stability and excessive precipitation is well understood.  
However, the disaster occurred months after the Thomas wildfire had burned 
through the impacted area [129].  So, was the root cause a wildfire or excessive 
rainfall?  …Lack of proper forest management, or arcing from a wind-whipped 
power line? 
 
Furthermore, highway administrators' classification of expenses in one state may 
differ from how similar spending is recorded in another, making it difficult to 
identify even the proximate cost of landslides.  Where private property is involved, 
losses may be covered by insurance policies, making them partially or wholly 
invisible in public budgets. It is fair to say the traveling public vastly 
underappreciates the impact of landslides, including the expense of infrastructure, 
and the cost to maintain it.  There is a prescient need for comprehensive, up-to-date 
research into their true cost to our transportation network.     
 

7.5.2 Indirect Costs  
Table 7.5 starts with the main cost of the project which is the landslide mitigation 
measures and their costs. As we estimated our cost for a single event in Maryland 
the estimated costs for landslide mitigation includes total cost for the retaining 
structure, total cost of reinforcement, and finally the overall cost to prevent and 
mitigate landslide damage. The scales, numbers of elements, and the costs are 
adjusted accordingly. Thus, our total cost for the retaining structure is 55,000, total 
cost of drainage control $720,400, and the total cost of reinforcement is 3.5 M. After 
adding 20% of the engineering design our final cost is 3.94 M as an example.  
 
Table 7.6 includes the decrease in agricultural and industrial production in 
Maryland due to a single landslide. According to the table we assume that there is 
no estimated loss for crop damage as no farmland has been affected due to the 
landslide. Next, we estimated the impact of the landslide on the industrial 
production. We assume overall one site has been affected by the single slope and 
the repair cost is 2 million for that industry site. Again, the production halt and 
delays for that site is 1 million. Thus, the combined total impact is 3 million. Since 
these are the estimation of decrease in agricultural and industrial production due 
to landslide events and after taking the mitigation measures to prevent further 
damage, we are assuming to avoid these costs. Thus, the community can benefit 
from regaining the loss in agriculture and industrial production. 
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Table 7.5: Landslide Mitigation Measures and their Costs   

Landslide Mitigation 

Measures and Their 

Costs  

 
Scales  Numbers of 

elements   

Costs Notes  

      

Regrading slopes  $27,500  1 acre= 43560 

sq ft 

2 $55,000  
 

Retaining Walls  $200,000  per ft, 9 ft L, 

4.5 ft D, 2.75 ft 

W 

0 $0  
 

Vegetative Stabilization  $60,000  per ft, 22.5 ft 

W 

0 $0  
 

Soil nail (6 m deep) $443  per sq. m 0 $0  
 

Soil nail (12 m Deep) $853  per sq. m 0 $0  
 

      

Total Retaining 

Structure  

$288,796  
  

$55,000  
 

      

Surface Drainage System $50  per ft 40 $2,000  
 

Subsurface Drainage 

System  

$60  per ft 50 $3,000 For a 

single 

event, 1 

slope       

Total cost of Drainage 

Control  

$110  
  

$5,000  
 

      

Rockfall Barriers  $200  per linear foot 2 $400  
 

Fences  $900  per m  800 $720,000  
 

      

Total Cost of Rockfall 

Protection  

$1,100  
  

$720,400  
 

Road Reinforcement  $2,500,000  per mm, T40 

(40mm) 

1 $2,500,000  
 

      

Total Cost of 

Reinforcement  

$2,500,000  
    

      

Total Estimated Cost to 

Prevent and Mitigate 

Additional Landslide 

Damage 

$2,788,710  
  

$3,280,400  
 

Cost of Eng Design 

(20%) 

   
$656,080.0  

 

      

Overall 
   

$3,936,480  
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Table 7.6 Decrease in Agricultural and Industrial Production 

Categories  Parameters  Notes  

Average crop value  $1,500  
 

Farmland affected by landslide 0 
 

   

Estimated Loss for Crop Damage $0  
 

   

Cost of soil remediation and infrastructure repair $500  per acre 

Additional Cost  $0  
 

   

Total Agricultural Impact  $0  
 

   

Industrial Sites  1 Assume 

Average Repair cost  $2,000,000  per site  
   

Total Cost $2,000,000  
 

   

Production Hults and delays $1,000,000  Per site 

Additional Costs  $1,000,000  
 

   

Total Industrial Impact  $3,000,000  
 

Combined total Impact  $3,000,000  
 

 

Next is Table 7.7 which is the decreased market value of the affected properties due 
to a single landslide event in Maryland. According to Maryland Department of 
Assessments and Taxations the average property value in Maryland is 350,000 and 
by assuming the number of properties over one slope which is 10, we get the 
estimated total property value for that landslide event is 3.5 million. According to 
previous studies the reduction of property values due to landslides varies between 
10%-20% and thus, the estimated decrease in the property values due to landslides 
is $525,000. After taking the landslide mitigation measures to avoid further 
damage, we can also avoid this cost and thus the value of the properties will be 
regained which can be considered as a major contribution towards the economy.  
 

 

 

 

Table 7.7: Decreased Market Value of the Affected Properties 
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Categories  Parameters  Notes (For a 

single event, 1 

slope) 
   

Average property value in Maryland  $350,000  
 

Number of properties over one slope  10 Assumed 
   

Total property value in landslide prone areas  $3,500,000  
 

   

Reduction of property values due to landslide  10%-20% Academic studies  
   

Estimated Reduction in Value $525,000  
 

 

Table 7.8 is the tax loss due to the decrease in appraised value for the landslide event 
in the State of Maryland. Our Table 7.8 aligns with Table 7.7 as we have multiplied 
the decrease in property value with average property tax rate in Maryland. 
According to Maryland Department of Commerce the average property tax rate in 
Maryland is 1.1% and according to Table 7.7 the decrease in property value is 
$525,000. Thus, the total tax loss for the single event is $5,775. After undertaking 
the landslide mitigation measures, we expect to avoid the damages at least 70% and 
thus the total tax loss can be regained which also add value to the community.   
 

Table 7.8: Tax Loss Due to Decrease in Appraised Value 

Categories  Parameters  
  

Average property tax rate in Maryland  1% 

Decrease in Property value  $525,000  
  

Total Tax loss  $5,775  

 

Our next table is Additional Benefits, which includes the other benefits we will get 
due to the implementation of the mitigation measures of landslide damages. Our 
Table 7.9 consists of savings in emergency response and recovery costs, enhanced 
public safety and health, preservation of environmental and natural resources, and 
improved community resilience and livelihood. According to the table below the 
overall additional benefit we get is $885,000.  
 

Table 7.9: Additional Benefits   
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Categories  
 

Notes-For a 

Single 

Event 

Average annual emergency response costs $150,000  
 

Expected reduction in emergency response costs 0.6 
 

Emergency Response Savings  $90,000  
 

Average annual recovery costs  $400,000  
 

Expected reduction in recovery costs  0.6 
 

Recovery Costs Savings  $240,000  
 

Enhanced Public Safety and Health 
  

Value of reduced injuries and fatalities  $125,000  
 

Healthcare cost savings  $50,000  
 

Overall public safety and health benefits  $175,000  
 

   

Preservation of Environmental and Natural 

Resources  

  

Value of preserved ecosystem and biodiversity $80,000  
 

Improved Community Resilience and 

Livelihoods 

  

Economic stability benefits $200,000  
 

Quality of life improvements $100,000  
 

Community Resilience and Livelihood Benefits $300,000  
 

   

Overall Additional Benefits  $885,000  
 

 
Our next and final table is the cost-benefit analysis. Thus, our Table 7.10 aligns with 
the previous results. According to Table 7.5 total estimated cost to prevent and 
mitigate additional landslide damage is the only projected cost in our cost-benefit 
analysis which is about 3.94 million for an assumed case. Our estimated total 
benefits after implementing the mitigation measures includes regained market 
value of the affected properties, regained agricultural and industrial productions, 
regained tax loss, and additional benefits. Thus, our estimated total benefits after 
implementing mitigation measures to avoid landslide damages 4.42 million.   
 

 

Table 7.10: Cost-Benefit Analysis 

Categories  Parameters  
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Total estimated cost to prevent and mitigate additional landslide 

damage 

$3,936,480 

Estimated Total Benefits after mitigation measures  
 

Regained market Value of the Affected Properties  $525,000  

Regained Agricultural and Industrial Production  $3,000,000  

Regained Loss of Tax  $5,775  

Additional Benefits  $885,000  

Overall benefit $4,415,775  

Cost-Benefit Ratio 1.12 

Net present Value (PV of benefit- PV of Costs) $479,295  

 

Thus, by dividing Overall Benefits by estimated total costs we got the Benefit-Cost 
Ratio of 1.12 with a net present value of $479,295. Since BCR is more than one and 
NPV is positive the project is considered as viable.  Please note that in some cases 
some of the benefits may not be counted in monetary values. Therefore, BCR may 
not fully reflect the benefits of preventive measures for geohazards reduction.     
  

7.6 Conclusions 
This chapter analyzes the economic impacts of landslides in Maryland with an 
assumed case slope area. To evaluate the direct costs the data are collected from a 
survey which recorded the cost of repairs to state highways caused by landslides for 
the five-year period between 1986 and 1990. The results are further adjusted for 
inflation. Previous studies have been taken into consideration to show the landslide 
correction costs in US highway systems, transportation infrastructure in the United 
States and different types of risk reduction infrastructure. To evaluate indirect costs 
first, we assign monetary values to each identified cost and benefit. Then we 
calculate the benefit-cost ratio and finally calculate the net present value by 
subtracting the total present value of cost from the total present value of benefit. All 
the results are estimated and are in the preliminary stage. We found the benefit cost 
ratio more than one which correlates to positive net present value and thus making 
the project more beneficial to the community. One of the major limitations of our 
research is the results of the indirect costs are the initial evaluation of the collected 
data. Thus, we need additional data collection to conduct further analysis on the 
economic impacts of landslides. We can further run a regression model to see if the 
effects are significant on the mitigation process of landslide.  
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8. Summaries 
 

8.1 Conclusions 
This report summarizes work completed for the phase 1 of the project. They 
include:  

• Preliminary site investigation and sample collection at selected sites based 
on historical landslides inventory.  

• Characterization of landslides using LiDAR and InSAR data for the 
selected counties, proving their applicability in identifying and detecting 
potential landslides.   

• Demonstration of integration of watershed hydrological model with slope 
stability model, focusing on impacts of precipitation on the slope stability 
using Anacostia watershed. 

• Preliminary review of physical models, TRIGRS and PLEXIS. 

• Preliminary assessment of economic impacts of landslides and benefits of 
preventive measures based on direct costs and indirect costs.    

They are parts of the multi-phase project, aiming development of landslides risk 
assessment and early warning smart system. The Phase 1 work provides a strong 
foundation for next phase.  
 

8.2 Future Work 
The phase 2 will expand site investigation with additional survey and soil 
sampling. Laboratory tests will be carried out. LiDAR and InSAR images 
processing and interpretation will be further enhanced by integrating with other 
photo imaging approaches and site image acquisition. Physical models will be 
developed based on site investigation and laboratory test results. Multiple 
scenarios will be simulated to gain a better understanding controlling and 
triggering factors, which will be feed into the machine learning model to assess 
risk assessment of slope failure. Sensors and other monitoring technologies will be 
evaluated in cooperation with CMU and other partners within UTC Safety 21 
program and beyond.    
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Appendix for Chapter 3 

 

A3.2.1 Basic Soil Properties Testing 

A3.2.1.1 Particle Size Analysis  

The Particle Size Analysis test gives us a good idea about the constituents of soil. It 
tells us how much clay, silt, sand and gravel are present in our soil sample. This 
information is crucial to understanding drainage, permeability, and strength of soil 
for evaluating soil slope stability.  

The conventional and most often used technique for determining particle size is still 
sieve analysis. The sample is agitated for five to ten minutes through a stack of 
sieves with progressively larger aperture sizes, dispersing the particles according to 
size (Figure A3.1). The method tends to measure particle width, as particles pass 
through the smallest possible aperture based on their orientation. The process 
continues until the mass on each sieve remains constant. Each sieve is then weighed 
to calculate the volume of each fraction by weight, resulting in a mass-related 
distribution. The obtained result is then used to determine the type of soil sample 
according to the different soil classification systems.  

 

Figure A3.1: Stacked Sieves used for particle test.  

A3.2.1.2 Atterberg Limits 



- 116 - 
 

Atterberg limits are a primary measure of critical water contents on fine-grained 
soils. This is an inexpensive and well-documented way of determining the 
engineering properties of soil. We used the Casagrande method to determine the 
liquid limit of soil (Figure A3.2).  

 

Figure A3.2 Liquid limit testing device: Casagrande method (source: https://tinyurl.com/yuercn5k) 

The Casagrande technique is a method used to establish the liquid limit of fine-
gained soil, which is the point of moisture content where clay soils change from a 
plastic to a liquid state. The process includes blending soil sample with water to 
form a paste, transferring the paste into a cup, and carving a groove in the middle 
of the paste. The cup is dropped multiple times in a typical manner until the groove 
seals shut, and the liquid limit is determined by the number of drops needed to close 
the groove at a specific distance. 

To find the Plastic Limit, a small ball of wet soil is shaped and rolled by hand into a 
1/8 in thread multiple times. This test can also be conducted using a plastic limit 
roller device. The Plastic Limit is the moisture level at which the thread breaks 
before it can be fully rolled out. The shrinkage limit is a specific property of soil, 
particularly fine-grained soils like clay. It is defined as the maximum water content 
at which a reduction in water content does not cause a decrease in the volume of the 
soil. In other words, at the shrinkage limit, the soil is fully saturated, and any further 

https://tinyurl.com/yuercn5k
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loss of moisture will not result in further shrinkage (Figure A3.3). 

 

Figure A3.3: Atterberg Limit Consistency States of Soils (source: 

https://tinyurl.com/2777bc49).  

 

A3.2.2 Mechanical Properties Testing  

A3.2.2.1 Direct shear 

Direct shear test is a simple and cost-effective way to measure the shear strength of 
soil, which is important for geotechnical engineers to design foundations, slopes, 
retaining walls, and pavements. The test is done by placing a soil sample in a shear 
box and applying a normal stress (vertical load) to it (Figure 3.4). Then, a horizontal 
force is applied to the top half of the shear box until the soil fails. The shear strength 
is determined. 

 

Figure A3.4: Representative image showing direct shear test of specimen (source: Gilson 

Company Inc.).  

 

Proper sample preparation is crucial for accurate direct shear tests. Specimens 
should be prepared in a humid environment to maintain moisture, starting with a 
sample large enough for at least three identical specimens. Undisturbed samples 
should be carefully cut from a more significant initial sample on a non-absorbent 

https://tinyurl.com/2777bc49
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surface using a sharp-edged cutter matching the shear box dimensions. 
Compressing or disturbing the prepared sample should be avoided. Errors often 
occur during trimming or transferring the sample. After cutting, the specimen 
should be placed in the shear box by pressing it out of the cutter smoothly, using 
waxed paper to prevent sticking. The shear box is ready for testing once the top filter 
and porous stone are added (Figure A3.5 and A3.6). 

 

Figure A3.5: Sample cutter and extruders (source: Gilson Company Inc.). 

 
Figure A3.6: Shear Box and porous stone (source: Gilson Company Inc.). 

A3.2.2.2 Triaxial Shear Test 

Triaxial testing is a form of shear testing conducted on solid materials while they 
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are subjected to confining pressures from all directions. Confining pressures are 
created in a fluid chamber to mimic the pressures exerted by nearby soil materials 
(Figure A3.7). It can then provide a more accurate representation of how materials 
behave in their current in-situ location. This testing principle is relevant for soil, 
rocks, powders, and construction materials. 

Specialized sample preparation equipment is used to shape and trim soil samples 
to size. The samples may be undisturbed and extruded from thin-walled tube 
(Shelby tube) samplers, or they can be remolded or compacted in the laboratory. 
Using a test cell kit and other tools and accessories, a latex membrane to regulate 
fluid movement, porous stones at either end, a cover, and a pedestal for installation 
in the test cell are fitted. 

 
Figure A3.7: Equipment needed for Triaxial test (source: Gilson Company Inc.). 

 

The assembled test cell with the prepared specimen and water is mounted in the 
load frame, and air and water lines are connected to the triaxial control panel. 
Measurement instruments are installed and zeroed. Triaxial tests consist of three 
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phases: saturation, consolidation, and shear, each with unique steps per test 
method. Saturation fills all soil voids with water using deaired water and back 
pressure, enhancing saturation by compressing air into the solution. During 
consolidation, confining pressures are applied; in the UU (Unconsolidated 
Undrained Test) test, drainage is not allowed, and saturation prevents 
consolidation, whereas in CU (Consolidated Undrained Test) and CD (Consolidated 
Drained Test) tests, drainage and volume change occur until equilibrium. Shear 
involves axially loading the specimen; UU tests have a quick loading rate to induce 
failure within 15 minutes, while CU and CD tests require calculated, slower strain 
rates, extending test times to days or weeks (source: 
https://www.globalgilson.com/blog/triaxial-shear-test-of-soil). 

 
A3.2.3 Hydraulic Properties Testing 

A3.2.3.1 Permeability Test 

This test measures the water flow rate through soil, which is crucial for designing 
drainage systems and assessing groundwater movement. Common methods 
include constant head and falling head permeability tests. Soil permeability tests 
are conducted either under conditions of constant head or conditions of falling 
head. The Constant Head Test is a setup where the top of the water column 
maintains the same height above the sample during the entire test. The test is 
appropriate for soils with high permeability such as sands, gravels, and certain clay 
soils. The Falling Head Test involves the sample's head decreasing as water 
infiltrates, causing a gradual decrease in pressure during the test. Head falling 
techniques are typically restricted to soils with fine particles.  

The ASTM D5084 standard outlines various techniques for assessing the hydraulic 
conductivity of soils using Flexible-Wall Permeability Cells (see Figure A3.8). This 
standard provides different options for conducting constant and falling head tests, 
such as tests for flow rate consistency and tests for constant volume under 
controlled pressures. The test sample can be created using either intact borehole 
samples (Shelby tubes) or by compacting soils in a mold to a specific density. The 
specimen is enclosed in a latex membrane and inserted into a pressurized test cell 
filled with fluid. Valves and burettes on a logic panel control confining pressures on 
the sample and permanent (usually water) in three dimensions. Sample 
deformation and volume change are continuously monitored during the procedure. 

 

https://www.globalgilson.com/blog/triaxial-shear-test-of-soil
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Figure A3.8: Flexible-Wall Permeability Cells for soil permeability test. 
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Appendix A  

 

A: InSAR and LiDAR maps 
 

A1. Cumulative Displacement Plots 
 
Allegany County 
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Talbot County 
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Montgomery County 
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Baltimore County 
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A2. LIDAR MAPS 
Prince George County 

       
Worcester County 
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Wicomico County 
 

 
 
 

 
 
 
 
 
Somerset County 
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Talbot County 
 

                    

     
 
 
 
Harford County 
 

                

        
 
 
 
 
Howard County 
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Garrett County 
 

                                   

 
 
 
 
Caroline County 
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Dorchester County 
 

   

    
 
 
 
Charles County 
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Calvert County 

                                  

      
 
 
 
Cecil County 
 

                

                
 
  



- 139 - 
 

Carroll County 
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Appendix B 

B: Physical Models 
 

B.1 Guide to Performing a TRIGRS Model Run with Topographic 
DEM from Baltimore, Maryland 

To perform a TRIGRS model run with a topographic DEM from Baltimore, 
Maryland, follow these steps to gather and prepare the data, set up the model, and 
run the analysis. 
1. Obtain DEM Data 

a)  Download DEM Data: 
b) Obtain DEM data for Baltimore, Maryland from sources like the USGS 

National Map or other online GIS data repositories. Example sources 

include: USGS Earth Explorer, NASA Earthdata, Maryland iMap 

c) Select Area of Interest: Choose a specific area in Baltimore that is of 

interest for analysis. Download the DEM for that area. 

d) Convert DEM Format: 

e) Ensure the DEM file is in a compatible format for TRIGRS, such as 

GeoTIFF or ASCII Grid. Use GIS software like QGIS or ArcGIS to convert 

the DEM if it is in another format. 

2. Prepare the DEM File 
Clip and Reproject (if necessary): 

a) Use GIS software to clip the DEM to your area of interest and reproject it to 

a coordinate system compatible with TRIGRS (e.g., UTM). 

b) Format Conversion: Convert the DEM to the required format for TRIGRS if 

needed. TRIGRS often accepts ASCII Grid format, so you might need to 

convert your GeoTIFF to ASCII Grid. 

3.  Set Up TRIGRS Model 
Example Setup: 
Soil Properties (for demonstration): 
Layer 1: 
Cohesion (c): 15 kPa 
Friction Angle (ϕ): 25° 
Permeability (k): 5 × 10⁻⁶ m/s 
Thickness: 2m 
Layer 2: 
Cohesion (c): 5 kPa 
Friction Angle (ϕ): 30° 
Permeability (k): 1 × 10⁻⁶ m/s 
Thickness: 3m 
Initial Moisture Content: 15% for both layers 
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Groundwater Data: 
Initial Groundwater Table Depth: 5m below the surface 
Groundwater Recharge Rate: 1 × 10⁻⁶ m/s (steady state) 
Rainfall Data: 48-hour Event: 48mm of rain distributed 1mm per hour: 
4. Run the TRIGRS Model 

a) Load DEM: 

b) Open TRIGRS and load the DEM file prepared. Ensure the DEM is 

correctly aligned with the model grid. 

c) Input Soil Parameters:  

i. Enter the soil properties for each layer in the TRIGRS setup. 
ii. Set Groundwater Parameters: 
iii.Input initial groundwater table depth and recharge rate. 
iv. Input Rainfall Data: 
v. Load the rainfall data into TRIGRS, specifying the temporal distribution. 
vi. Configure Model Settings: 

5. Define the model domain, boundary conditions, and simulation 
settings. 
Run Simulation: 
Start the simulation and monitor the process. Ensure it is complete without 
errors. 
6. Analyze Results 
Output Files: 
Review output files for factors of safety, slip surface locations, and moisture 
distribution. 
Visualization: 
Use GIS software to visualize the results: 
FS Map: Identify unstable zones (FS < 1.0). 
Moisture Content Map: Show how moisture levels vary across the slope. 
Groundwater Table Map: Display the groundwater table position. 
 
Example Execution with Hypothetical Data 
Assuming the DEM for Baltimore is ready and in ASCII Grid format, the following 
steps outline the execution process: 
a) Open TRIGRS Software: 
b) Load the DEM file into TRIGRS. 
c) Configure Soil Layers: 
d) Enter the properties for Layer 1 and Layer 2 as described. 
e) Set Groundwater Parameters: 

Input groundwater table depth and recharge rate. 
Input Rainfall Data: 
Specify the 48-hour rainfall event. 

f) Run Model: 
g) Execute the simulation. 
h) Review Outputs: 

Open results and visualize with GIS tools. 
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B2 TRIGRS Initialization File 
# TRIGRS Initialization File 
# Digital Elevation Model (DEM) file 
elevation_file      elevation.asc 
# Soil properties file 
soil_properties_file soil_properties.txt 
# Rainfall data file 
rainfall_file       rainfall.txt 
# Output directory 
output_directory    ./output/ 
# Time step for the simulation (in hours) 
time_step           1.0 
# Total duration of the simulation (in hours) 
simulation_duration 72.0 
# Initial water table depth (in meters) 
initial_wtd         2.0 
# Initial pore-water pressure file (optional, can be set to NONE) 
initial_pwp_file    NONE 
# Saturated hydraulic conductivity (in meters per second) 
hydraulic_conductivity 1e-6 
# Soil density (in kg/m³) 
soil_density        2000 
# Soil cohesion (in Pascals) 
soil_cohesion       10000 
# Soil internal friction angle (in degrees) 
soil_phi            30 
# Maximum depth of the soil (in meters) 
max_depth           10.0 
# Maximum number of iterations for convergence 
max_iterations      1000 
# Convergence tolerance 
convergence_tolerance 1e-6 
# Flag to indicate if the model should account for evapotranspiration (YES/NO) 
include_evapotranspiration NO 
# Evapotranspiration rate (in mm/day, used if include_evapotranspiration is 
YES) 
evapotranspiration_rate 5.0 
# Initial soil suction (in Pascals) 
initial_soil_suction 1000 
# Lateral boundary condition type (NOFLOW/FREE/DIRICHLET) 
lateral_boundary_condition NOFLOW 
# Flag to indicate if the model should use a dynamic water table (YES/NO) 
use_dynamic_water_table YES 
# Path to the Fortran executable file 
executable_path     ./trigrs 
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Appendix C  

C: Research Products for this 
Project 

 
C.1 Conference Publications  

1. Hosseinizadeh, A., Z. Sheng, S. Qian, Y. Liu, Separating infiltration and 

runoff from precipitation over Anacostia River watershed, Maryland, Proc. Of 

World Environmental and Water Resources Conference, ASCE, Milwaukee, 

WI, May 19-22, 2024. 

2. Hosseinizadeh, A., Sheng, Z., Qian, S., Liu, Y. Slope instability forecasting 

system based on precipitation data. In 21st Annual Technical Forum on 

Geohazards, April 8-10, 2024 (oral presentation).   

3. Hosseinizadeh, A, Qian,S., Gui,B. Liu, Y., Li, J. Sheng, Z., Owolabi, O.,  

Olude, A., Fadipe, S., & Lamsal, S. Improve Highway Safety by reducing the 

Risks of Landslides, University Transportation Center –Safety 21 National 

Safety Summit, April 4, 2024, DC (poster presentation).   

4. Hosseinizadeh, A., Fadipe, S., Qian, S. Gui, B., Liu, Y., Li, J., Sheng, Z. 

Incorporating precipitation data into geotechnical asset management – initial 

work, University Transportation Center –Safety 21 Deployment Partners 

Consortium Symposium, November 16, 2023, Pittsburgh, PA (poster 

presentation).   

 
C.2 Datasets  
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Table C.2.1 Source data for the SWAT model  

File Name Detail Format Source and Link Size 

Ana_DEM_R 

Topography map of 
Anacostia watershed 

cliped from DEM map 
of Maryland 

.TIF USGS website 

532 
KB 

Ana_Soil 
Soil type of Anacostia 
watershed cliped from 

Maryland soil map 
.TIF 

Maryland 
SSURGO 

2.13 
MB 

MD-Landuse 
The map of landuse 
and Land cover of 

Maryland 
.Shp 

Maryland 
Department of 

Planning (MDP) 

140 
MB 

Northwest BR 
2000-2023 

Daily flow rate data of 
a gauge station (2000-

2023) 
.Txt USGS website 276 KB 

NASA Power larc 
cliamte data 

Daily weather data 
(precipitation, 

temprature, solar 
radiation, humidity, 

wind speed) 

.xlsx 
NASA POWER 

website 

846 
KB 

Merge_landslides 

Including landslide 
inventories collected 

from SHA, USGS 
website, and NASA 

website 

.Shp 

merged data 
from SHA 

information, 
USGS, and NASA 

1.26 
MB 

  
C.2.2 List of LiDAR data 

Datasets for LiDAR 

Sources: Maryland LiDAR data 

https://imap.maryland.gov/pages/lidar-download 

https://doitdataservices.maryland.gov/s/N9xGBYPKq4QSZNq  

 
 
 
 
 
 
 
 
 
 

 
 
 
 

https://apps.nationalmap.gov/downloader/#/
https://data.imap.maryland.gov/datasets/maryland::maryland-ssurgo-soils-ssurgo-soils/about
https://data.imap.maryland.gov/datasets/maryland::maryland-ssurgo-soils-ssurgo-soils/about
https://dev-maryland.opendata.arcgis.com/apps/maryland::maryland-land-use-land-cover-mdp/explore
https://dev-maryland.opendata.arcgis.com/apps/maryland::maryland-land-use-land-cover-mdp/explore
https://dev-maryland.opendata.arcgis.com/apps/maryland::maryland-land-use-land-cover-mdp/explore
https://waterdata.usgs.gov/md/nwis/current/?type=flow&group_key=county_cd
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://imap.maryland.gov/pages/lidar-download
https://doitdataservices.maryland.gov/s/N9xGBYPKq4QSZNq


- 145 - 
 

Table C2.2  List of LiDAR data  

S/N County DEMs Year 

1 Prince George 0.9m 2014 

    0.6m 2018 

2 Montgomery 1.2m 2013 

    0.6m 2018 

3 Calvert 2m 2011 

    0.3m 2017 

4 Caroline 2m 2003 

    1m 2013 

5 Carroll 1m 2006 

    0.7m 2015 

6 Cecil 1m 2005 

    1m 2020 

7 Charles 2m 2004 

    0.9m 2014 

8 Dorchester 2m 2003 

    0.9m 2013 

9 Garrett 3m 2005 

    1m 2015 

10 Harford 1.5m 2013 

    1m 2020 

11 Howard 2m 2011 

    0.6m 2018 

12 Kent 2m 2006 

    7m 2015 

13 Montgomery 1.2m 2013 

    0.6m 2018 

14 Prince George 0.9m 2014 

    0.32m 2020 

15 Somerset 1m 2012 

    1m 2020 

16 Talbot 2m 2004 

    0.7m 2015 

17 Wicomico 1m 2012 

    1m 2020 
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Table C2.3: Merged landslides   

File Name Detail Format Link 

Merge_landslides 

Including 
landslide 

inventories 
collected from 

SHA, USGS 
website, and 

NASA website 

.Shp 

merged data 
from SHA 

information, 
USGS, and NASA 

 

 
C.2.3 List of InSAR data 

Title of Dataset: InSAR Analysis Data 
 
Date of data collection: Data was obtained and stored online at the Alaska Satellite 
Facility from 2024-06-28 to 2024-07-16. 
 
Geographic location of data collection: Maryland, United States 
 
To retrieve data, follow these steps: 
 
1. Create a free Earthdata Login account at https://urs.earthdata.nasa.gov/home. 
2. Go to Vertex (https://search.asf.alaska.edu) and log in using your Earthdata 
Login username and password. 
3. Define the search type as "Geographic Search". 
4. Define the dataset as "Sentinel-1". 
 
<Repeat steps 2 to 4 for each county.> 
 
5. Define the "Area of Interest" by either creating a polygon or a zip file delimiting 
Allegany, Talbot, Montgomery, and Baltimore Counties. 
6. From the resulting search list, select a reference scene. <Refer to the list below 
for the date range and baseline tolerances applied for each county.> 
7. Once selected, perform the Small Baseline Subset (SBAS) acquisition by clicking 
the "SBAS Tool" button. This will launch the search. 
8. Refine the SBAS Results by clicking the "SBAS Criteria" button to set a date 
range and adjust baseline tolerances. <Refer to the list below for the date range 
and baselines applied for each county.> 
9. Set the Overlap Threshold to 50%. 
10. Once the search results are updated, <ensure the resulting list matches the list 
below for each county>. Add all pairs to the On-Demand Queue by clicking the On 
Demand icon at the top of the list and selecting "InSAR GAMMA" and "Add 3 SLC 
pairs". 
11. Click the large "On Demand" icon and select "On Demand Queue" from the list 
of options. 
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12. Set InSAR Options by clicking "Set MintPy Options" and applying the "Water 
Mask". 
13. Once you’re ready to submit the jobs for processing, click the "Submit Jobs" 
button. 
14. Add a Project Name. 
15. Once the project is completed, it will be recognized when importing into 
MintPy Software to perform the Time Series Analysis. 
 
DATA & FILE OVERVIEW 
 
Allegany County 
 
>Reference Scene: 
S1A_IW_SLC__1SDV_20180802T231527_20180802T231554_023074_028154
_B7AF 
>Date range: January 2016 to April 2024 
>Baseline tolerances:24 days, 200 meters. 
>List of Pairs:  375 
 

Talbot County 

>Reference Scene: 

S1A_IW_SLC__1SDV_20231118T225909_20231118T225936_051278_062

FC2_6604 

>Date range: January 2016 to April 2024 

>Baseline tolerances:24 days, 200 meters. 

>List of Pairs: 426 

 

Montgomery and Baltimore Counties 

>Reference Scene: 

S1A_IW_SLC__1SDV_20190217T230704_20190217T230731_025976_02

E4D4_4AA2 

>Date range: From 2016 to 2024, Season: 01 October to 28 February 

>Baseline tolerances:30 days, 150 meters. 

>List of Pairs: 158 

 

 
C.3  Workshop 

1. 2024 Summer Workshop: Improve Highway Safety by Reducing the Risks 

of Landslides with Smart Warning Systems, June 21, 2024    
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