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The problem 
 
Human attention is a finite resource. When interrupted while performing a task, this 
resource is split between two interactive tasks. People have to decide whether the benefits 
from the interruptive interaction will be enough to offset the loss of attention from the 
ongoing task.  
 
The issue of dealing with self-interruptions and external interruptions is particularly critical 
in driving situations. In general, interruptions result in a time lag before users resume their 
primary task, increase mental workload, and thus decrease primary task performance. 
Therefore, being able to identify when a driver is interruptible is critical for building 
systems that can mediate these interruptions. 
 
Related note – Studies in Interruption domain offer important insights for designing human-
centered interruptions; however, they have mostly explored static, on-screen tasks 
mediated with conventional computers or mobile devices (e.g., the impact of call 
notifications for smartphone users). Little research has been conducted to replicate existing 
findings or approaches for delivering interruptions in situations in which users cannot fully 
divert their attention from the primary task (e.g., driving cars) and in which interruption 
timings can critically impact the user experience. 
 
Approach 
 
In order to identify situations in which drivers enter either low or high cognitive load states 
during naturalistic dring (i.e., opportune moments for driver interruption – e.g., more 
interruptible states vs. less interruptible states), we have examined a broad range of sensor 
data streams to understand real-time driver/driving states (e.g., motion capture, peripheral 
interaction monitoring, psycho-physiological responses, etc.), and presented a model-
based driver/driving assessment by using machine learning technology. 
 
Methodology  
 
We conducted a human-subject experiment in the field. 
 
We recruited 25 drivers (age M=32.0, SD=14.3, age range: 19 – 69, gender: 14 female and 
11 male) as our study participants. We plugged an on-board diagnostics (OBD) device in 
their cars, and they were asked to wear five body-worn sensor devices: four accelerometer 
sensors for capturing body motion and one chest belt sensor for tracking physiological 
responses. We installed two smartphones in each car - one on the front windshield and the 
other on the head-rest of the passenger seat. 
 
Study performed two sessions of naturalistic field driving. In the 1st driving session, drivers 
used any route that they prefer to get to a destination. In the 2nd session, they used a GPS 
system, and followed a fixed route. By doing so, we tried to have drivers exposed to similar 
configuration of roads and similar demands of interruptive interaction, with the GPS system. 
See Figure 1. 
 
We installed the devices in driver’s cars and helped them wear a physiological sensor, 



time-synched devices and collected baseline data, and had drivers complete a pre-
questionnaire, perforem the driving task, and complete a post-task questionnaire and 
interview. 
	  
	  

	  
(a) Any	  preferred	  or	  familiar	  route	  to	  a	  shopping	  mall.	  

	  

	  
(b)	  A	  fixed	  route	  suggested	  by	  GPS	  to	  get	  a	  sports	  stadium.	  

	  
Figure	  1.	  Routes	  in	  the	  two	  driving	  sessions	  with	  sensors. 

 
Data gathered  
 
In total, we had 100 basic features and 52 derived features (OBD: 72, YEI: 40, BH: 40) and 
5 manually annotated features related to traffic from videos (one car driving state and four 
traffic states around the vehicle – front, right, left, and oncoming. After time syncing the 
sensors, all sensor data were aggregated, and their means (µ) and standard deviations (σ) 
were calculated for every 1-second segment as statistical features.  
 
Details are as follows: 
 
An OBD device provided information about the status of the vehicle (sampled at 1Hz) 
including longitude, latitude, altitude, car speed, engine RPM, throttle position, and fuel 
flow rate. The data were transmitted via Bluetooth to the smartphone responsible for 



recording traffic video. From the OBD data we derived road curvedness by tracking 
variations of longitude and latitude coordinates, centrifugal forces by combining car speed 
and curvedness information, types and gradient of road slope by using the 1st derivative of 
altitude data.  
 
Four YEI 3-Space devices were used, placed on each of the drivers’ wrists, on the front of 
the head, and top of the foot. The devices collected information about the drivers’ motions 
using a tri-axial gyroscope, a tri-axial accelerometer, and compass sensors, all at 4-5 Hz. 
The sensor data was transmitted via Bluetooth to the other smartphone. From the YEI data, 
we derived motion information on how much each monitored body part moved from the 
baseline position.  
 
In addition, drivers wore a BioHarness (BH) chest belt that collected drivers’ physiological 
data including electrocardiogram, heart rate, respiration rate, body orientation and activity 
at 20Hz sampling rate. From the BH data, we quantified levels and duration of breathing-in, 
breathing-out, and holding-breath states.  
 
Analyses performed 
 
We included the data from our 15 drivers in our final analysis, after filtering out errorneous 
or missing sensor data. Then, we examined how driver and driving states differ across the 
following five driving state classes:  

• STEERING_ONLY - moments when both hands were on the wheel. 

• ONE_HAND_DRIVE_ WITH_NO_PI - moments when one of the driver’s hands was off 
the steering wheel but that hand was not performing any specific activity. 

• DRIVING_I  - activities that are quite central to the primary driving task (e.g., 
changing grip positions, operating levers for blinkers or wipers, switches for opening 
side windows). 

• PI - activities that are not directly central to the primary task (e.g., eating food, 
manipulating the air conditioner or car radio, talking on the phone). 

• NO_HAND_DRIVE - moments when both hands were off the steering wheel and not 
performing any peripheral activity. 

Statistical analysis. For analyzing the continuous measures (e.g., car speed), we conducted 
a univariate ANOVA by using a general linear model and then used either Tukey HSD or 
Games-Howell as post-hoc tests after checking the homogeneity of variances (i.e., Levene 
Statistic), where ηp2 was examined as effect size. For ordinal measures (e.g., human-
annotated data or fixed level data), we conducted the Kruskal Wallis Test followed by 
Mann-Whitney U test as post-hoc, where r was examined as effect size. In the analysis of 
Likert-scale rating data, Friedman tests and a Wilcoxon Signed Rank post-hoc test were 
conducted. 

Machine-learning analsyis.  For a binary classification problem (i.e., driver interruptibility, 
INTERRUPTIBILE vs. LESS_INTERRUPTIBILE), we used a random forest classifier, 
which runs efficiently on large databases such as our sensor data. We also handled 
unbalanced classes using stratified 10-fold cross validation where each fold contains 



approximately the same percentage of samples from each target class as the complete set, 
and then applied different sample weights based on the ratio of samples that belong to 
each class. We automated this procedure for each driver and for each fold. 
 
Findings  
 
• Statistical implications from the 22 of driver activities that had a total duration of at least 

90 seconds summed across multiple instances (See Table 1). For examples: 

o For most of the driving time, drivers used both their hands (48.0%) or one hand 
(22.8%) for controlling the vehicle without any peripheral interaction 

o Although drivers did not actually execute any peripheral activity, one handed 
driving is a distinct state from using both hands for steering. Similarly, there was no 
discernible distinction in durations between one handed and no-handed driving. 

o Driver activities that corresponded to the driving task (e.g., turning on blinkers) 
were completed in 2.4 seconds on average, while peripheral interactions lasted for 
10.6 seconds. 

Table	  1.	  Frequecy	  and	  duration	  of	  22	  top-‐ranked	  driver	  activities.	  

 Occurrence Duration (sec) Duration 
(sec / occurrence) 

Driver activities / subject / 10-min drive / subject / 10-min drive M (SD) 
ONE_HAND_DRIVE 57.1 6.9 15.4 117.0 17.0 (26) 

GEAR_SHIFT 37.1 4.5 2.7 19.0 4.2 (6.7) 
TOUCHING_SELF (e.g., face) 24.5 3.0 7.6 28.5 9.7 (21.5) 

REST_OFF_WHEEL 20.6 2.5 14.7 37.2 15.0 (14.1) 
L_BLINKER 15.7 1.9 3.9 8.6 4.6 (16.8) 
R_BLINKER 14 1.7 4.4 9.4 5.6 (22) 
CAR_RADIO 9.2 1.1 5.9 9.5 8.6 (16.7) 

R_GRIP_CHANGE 8 1.0 2.9 6.3 6.6 (12.5) 
HEAD_ TURNING_WAY_LEFT 7.3 0.9 4.2 4.8 5.5 (12.1) 

CELLPHONE 6.7 0.8 13.5 17.6 21.7 (26.9) 
L_GRIP_CHANGE 6.7 0.8 1.8 2.0 2.5 (3.1) 

HEAD_TURNING_WAY_RIGHT 5.7 0.7 2.6 1.9 2.8 (2.7) 
GPS_PORTABLE 4.5 0.5 14.3 6.5 12.1 (13.5) 

AC_CONTROL_SWITCHES 3.1 0.4 1.8 1.0 2.5 (1.5) 
BOTH_HANDS_OFF_DRIVE 2.3 0.3 2.2 3.0 11.0 (11) 

FOOD_OR_DRINK 2.6 0.3 11.6 5.9 18.8 (16.6) 
OTHERS_MISCELLANEOUS  

(e.g., shouting outside) 2.7 0.3 6.5 3.3 9.9 (10.7) 

OTHERS_MUSIC 2.7 0.3 1.4 5.2 16.2 (15.3) 
SMOKING 1.9 0.2 1.2 4.3 18.3 (41.8) 

WIPER_WASHER 1.7 0.2 2.9 1.6 7.5 (12.5) 
AC_AIR_VENTS 1.1 0.1 3.5 1.5 11.7 (19.2) 

OTHERS_DANCE 0.1 0.0 0.7 0.2 11.0 (8.5) 
Total 235.3 28.3 5.7 13.4 10.4 (19.7) 

 

• Sensor-based implications related to driver interruptibility. For examples: 

o Drivers significantly regulated car speed while performing peripheral activities or 
taking both hands off the steering wheel.  

o Drivers tend to drive at more consistent speeds during PI (47.8%) or 
NO_HAND_DRIVE (73.7%) states than in the ONE_HAND_DRIVE_WITH_NO_PI 
state (24.6%). These findings implied that driving status for the PI or 



NO_HAND_DRIVE states are most similar. See Figure 2. 

o Driver physiological states for the PI and NO_HAND_DRIVE states are most similar 
to the resting states. We confirmed that from our analysis of physiological states, 
driving states and road conditions, drivers are more interruptible than in the 
remaining states. 

o Interruptibility while one-handed driving without any peripheral interactions is still 
unclear since driver physiological states are similar to the two interruptible states 
and the baseline (i.e., no driving), but the driving states and road conditions 
differed significantly. 

o Regarding driver interruptibility, we found that the five interaction states can be 
combined as follows:   

• PI = NO_HAND_DRIVE (= REST without driving) → INTERRUPTIBLE 

• DRIVING_I = STEERING_ONLY → LESS_INTERRUPTIBLE 

• ONE_HAND_DRIVE_WITH_NO_PI (as not clearly interruptible) → 
LESS_INTERRUPTIBLE 

	  

	  
Figure	  2.	  Driving	  states	  and	  road	  conditions,	  revealed	  in	  sensor	  data	  streams. 

• Sensors can discriminate driver interruptibility, even in naturalistic driving situations, 
every second, at 94.9% accuracy (See Figure 3). The Lowest was almost 90%, among the 
individual models; however, we also found individual difference in hit rates and false 
discovery rates. 

 



	  
Figure	  3.	  The	  classification	  performance	  of	  individual	  models. 

 
Conclusions 
 
Results achieved - In this UTC project, we successfully developed the technology of near 
real-time detection of driver interruptibility based on a range of sensor data streams. We 
used instances of drivers engaged in peripheral interactions as moments of ground truth for 
their split attention while managing interruptions. As a result, we demonstrated that sensor 
data could build a machine learning classifier to determine driver interruptibility every 
second with almost 95% accuracy. We also successfully identified sensor features that best 
explained the states where drivers performed peripheral interactions, which contributed to 
the high performance of our system. 

Based on our findings, we continue the project by appling this technology to improve the 
intelligence of in-car cyber-physical systems that mediate when drivers use technology to 
self-interrupt and when drivers are interrupted externally by technology. We are refining 
our key technology to create sensor-based models that retain information about the real-
time mechanisms whereby drivers’ perceived value of the presented information interacts 
with the nature of the information	  and the attributes of the sensor-detected interruptible 
moments. As the delivery, we plan to develop a workload manager that mediates 
interruptions in cars, thereby increasing driver appreciation of the quality of presented 
information 

 
Recommendations - next steps developed as a result of the project 
 
• Collect additional data to confirm that the results generalize across a wider driving 

population and work to build models and apply features that more consistently perform 
across drivers and for the nuances of specific drivers.  

• Investigate how to mediate interruptions to drivers, with the obatined accurate classifier 
and easy-to-deploy system. Specifically, push interruptions at different timings to assess 
the real-world impact of being able to detect interruptible moments while driving, as 
another field study. Design these interruptions to differ in terms of their temporal 
urgency, relevance to the driving tasks, and overall importance.  

• Develop generalized guidelines for designing intelligent interruption systems for drivers. 
Use the improved models and understanding to identify the attributes of opportune 



moments detected (e.g., expected duration, expected level of driver engagement).   

• Apply the key technology to identify breakpoint moments for prompting drivers to 
safely participate in experience sampling while driving, which will support others 
doing driving-related research in naturalistic driving situations. 

 

Note: This report summarizes the descriptions in one of the UTC project outcomes - Kim, 
S., Chun, J., and Dey, A. K. (2015). Sensors Know When to Interrupt You In the Car: 
Detecting Driver Interruptibility Through Monitoring of Peripheral Interactions. Proc. 
SIGCHI Conf. Human Factors in Computing Systems (CHI '15). ACM, Seoul, Korea, Apr 
2015. 

 
 


