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ABSTRACT

Mobile crowd sensing (MCS) enables many smart city applications (e.g., transportation monitoring/management,
environmental monitoring, etc.). Recently, MCS systems built on non-dedicated vehicular platforms like taxis
have become popular due to their large-scale coverage and low-cost deployment and maintenance. However,
the goal of MCS may be inconsistent with the goal of vehicles. For example, MCS expects to get large and
balanced sensing coverage over the city, while the taxis gather in busy areas to search for new ride requests. This
inconsistency between the goals of MCS and vehicles results in a low sensing coverage and decreases the quality
of the collected information.

To address this inconsistency and optimize the sensing coverage, this paper presents an incentivizing system
to optimize the sensing coverage of the sampled data. Key challenges to resolving this inconsistency include
limited budget constraining the ability to incentivize more vehicles and complicate vehicle and trajectory selec-
tion problem making it difficult to obtain the incentivizing strategy. To address these challenges, we design a
customized incentive by combining monetary incentives and potential ride request at the destination to reduce
the cost of incentivizing vehicles and utilize the budget efficiently. Meanwhile, we formulate the problem of incen-
tivizing trajectory planning as a non-linear multiple-choice knapsack problem and propose a heuristic algorithm
to approximate the optimal incentivizing strategy. The experiments based on the real-world data show that our
system achieves up to 26.99% improvement in the sensing coverage compared to benchmark methods.
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1. INTRODUCTION

Vehicular mobile crowdsensing systems utilize sensors mounted on non-dedicated individual mobile vehicle agents
(e.g. taxis, drones) to collect city-scale spatio-temporal information for smart city applications, including in-
frastructure,1,2 environment,3–6 and social applications.7 Compared to conventional mobile sensing systems,
vehicular mobile crowd sensing systems have the advantage of lower operation and maintenance cost and lower
energy consumption. The rapid growth of smart city applications has brought diverse demand of various types
of city-wide spatio-temporal data, such as air quality and traffic conditions, which also raise higher requirements
on the quality of data collected by the vehicular mobile crowdsensing system.

One of the main goals of the crowdsensing system is to provide high-quality sensing data for further data
analysis. The high-quality sensing data refers to the data with sufficient sensing coverage and high resolution
and precision. High sensing coverage means that the collected sensing data distributes in a uniform/balanced
manner across the time and spatial domain. Therefore, the crowdsensing system needs to optimize the sensing
coverage balance level such that sufficient spatio-temporal information is contained in the collected sensing data.

However, there may exist inconsistencies between the goals of the crowdsensing system and the non-dedicated
vehicles, which result in low sensing coverage. The vehicles, e.g., taxis, are non-dedicated sensing platforms. Their
main goal is to find more ride requests to make profits instead of sensing data. Therefore, the vehicles may not
distribute themselves as uniformly as what the crowdsensing system prefers. This inconsistency between the
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goals of vehicle and crowdsensing system may result in a lack of data collected in some areas of the city. In this
way, the vehicular crowdsensing system systems cannot provide sufficient spatio-temporal information for further
data analysis, which will significantly impact the performance of data-driven city monitoring and management.
To address the inconsistency, people use either monetary or non-monetary rewards to incentivize vehicles to new
trajectories8–11 that yield better sensing coverage. But when there is a huge number of vehicles, the budget
needs to be carefully allocated to improve coverage as much as possible. In addition, to achieve a good quality
of sensing coverage with a limited budget, most previous works select a subset of vehicles to collect long-term
sensory data in their current locations,12–14 or select dispatching destinations for vehicles.13,15 These methods
mainly focus on the static distribution of sensors at a fixed time point but ignore the influences of the vehicles’
dynamic mobility on the quality of sensing coverage.

To address the above inconsistency, our main goal is to efficiently incentivize vehicles to effectively utilize the
limited budget to optimize the sensing coverage. Key challenges to achieving this objective include: 1) limited
budget to incentivize more vehicles and 2) selection of vehicles and trajectories is a highly complex problem
with multiple constraints. To overcome these challenges, our work has 2 main contributions: 1) we design a
new incentive, which combines increasing potential ride requests along with the incentivized trajectories as non-
monetary rewards for vehicles, to efficiently reduce the monetary cost of incentivizing, and 2) we formulate the
vehicle and trajectory selection into an optimization problem combining the predictions of vehicle mobility and
ride requests to optimize the incentivizing strategy.

2. SYSTEM OVERVIEW

A typical vehicular crowd sensing system has 2 key components: vehicle agents and a crowdsourcer. Vehicle
agents refer to the non-dedicated vehicle platforms, e.g., taxis platform, which are mounted with various sensors
and collect data along with their trajectories. Crowdsourcer is the system which collects data from vehicle agents.
The collected spatio-temporal city-scale data may be further used for air quality monitor, traffic monitoring and
other smart city applications. The crowdsourcer often has a number of budget for the data collection. Based
on the budget and vehicle agents’ status (e.g., location, occupancy status), the crowdsourcer incentivizes vehicle
agents to different trajectories and organizes the data collected by vehicle agents along with their trajectories.

The incentivizing process includes 3 key modules: 1) vehicle mobility prediction, 2) customized incentive
based on ride request prediction, and 3) multi-incentive optimization algorithm. Given a target sensing area,
we divide the map of a city into a × b grids and the sensing time period into T time points, where T is the
incentivizing period. The grid locations are denoted as (i, j), where 1 ≤ i ≤ a, 1 ≤ j ≤ b, and the time point is
1 ≤ t ≤ T . Assume we have C vehicle agents in total, and that each vehicle agent c ∈ C is pre-mounted with
required sensors and assumed to run inside the a× b area. As Figure 1 shows, we firstly collect the location and
occupancy status of each vehicle agent. Given the location information, we then predict the mobility probability
of agent c appearing in location (i, j) at the time point t. Based on current timestamp, the ride request prediction
model predicts the probability that vehicle c can obtain a ride requestin location (i, j) at the time point t, which
is used to calculate its incentive later.

With the vehicle mobility probability and ride request probability in spatio-temporal domain, our multi-
incentive algorithm is proposed to combines multiple types of incentives and obtain an optimal vehicle incen-
tivizing strategy, including which non-occupied vehicle agents to select, which trajectories to assign to the selected
vehicles, and customized incentive to pay to the selected vehicles.

The obtained incentivizing strategy is then delivered to each vehicle agent. The selected vehicle agents choose
to accept the incentivizing strategy or not. If accepted, the selected vehicle agents have to run along with the
assigned trajectory during the incentivizing period. If they refuse to accept, the vehicle agents run as usual.
While vehicle agents are running inside the target area, the pre-mounted sensors automatically collect and upload
the data to the crowdsourcer. Finally, the crowdsourcer organizes and delivers the collected data for further data
analysis and start a new round of task.



Figure 1. The overview of vehicle incentivizing system

3. OPTIMIZATION PROBLEM FORMULATION

In this section, we formulate the problem of incentivizing strategy planning to optimize the sensing coverage
into an optimization problem and introduce a heuristic algorithm to solve the problem. We first model the
sensing coverage using entropy of the spatio-temporal sensing data distribution. Then we design a new incentive
customized to each vehicle’s mobility and ride request probability, such that the monetary cost of incentivizing
vehicle agents is reduced. Finally, we formulate the problem into a multiple-choice knapsack problem.

We first introduce a new problem formulation with a fine-grained objective function defining the quality
of data coverage in a more precise way. Given i, j, t referring to longitude, latitude, and time point, with the
collected sensing data distribution P and target uniform distribution, the quality of sensing distribution is defined
as the entropy of the collected sensing data distribution:

H(P ) = −
∑
i,j,t

P (i, j, t) logP (i, j, t).

Therefore, optimizing the sensing distribution is equivalent to maximizing the entropy H(P ). From the perspec-
tive of information theory, H(P ) measures the change of information when one revises beliefs from the prior
uniform distribution to the posterior probability distribution P .16

To efficiently utilize the budget, we design a new customized incentive B(c) that utilizes the increasing of
ride request probability that vehicle c obtains by following our assigned trajectory Dc instead of refusing our
assignment:

B(c) = max(rmax − ru ·Request(DT
c ), rmin) (1)

where rmin and rmax are the minimum and maximum monetary incentive to actuate one taxi respectively. The
Request(DT

c ) represents the predicted ride request distribution at the location of the trajectory Dc at the ending
time T of the incentivizing period. ru is the unit monetary incentive for one ride request. Moreover, even with
a high possibility to get new ride request, each taxi still needs a minimum monetary incentive to be motivated,
which is rmin.

With the new defined objective function and incentive, we can formulate the problem. Given the target area
with longitude of a, latitude of b, and incentivizing period T , Ic is a binary indicator of whether the vehicle c
is incentivized, and kc specifies the trajectory assigned to vehicle c, our system aims at optimizing the sensing
coverage within budget and physical constraints as follows:

min
I1,··· ,IC
k1,··· ,kC

−H(P ) (2)

subject to

C∑
c=1

B(c) · Ic ≤ R (3)

Dc(i, j, t) · Ic ∈ {0, 1} . (4)

Dc = Dkc
c where kc ∈ {0, 1, · · · ,Kc} (5)



Note that B(c) is determined by Ic and kc. kc = 0 is the probabilistic trajectory when c cruises without
incentivizing or passengers, and kc > 0 represents a deterministic incentivized trajectory. The Inequality 3
represents the budget constraint. The constraints 4 and 5 represent the set of vehicle potential trajectories,
which has has a finite size due to the vehicle mobility’s physical continuity.

Figure 2. Formulated the optimization problem into multiple-choice knapsack problem.

After simplification, the problem can be represented as a non-linear multiple choice knapsack problem.17–19

As Figure 2 shows, in the formal definition of multiple choice knapsack problem, there are m classes Nl, · · · , Nm

of items to be packed into a knapsack of capacity c. Each item j ∈ Ni has a profit and a size Wij , and the
problem is to choose exactly one item from each class such that the objective is minimized/maximized without
exceeding the capacity. In our problem, as Figure 2 shows, m classes of items represent C cars. Each item j ∈ Ni

represents a potential trajectory, which refers to 1) potential incentivizing trajectories or 2) run as usual. When
an unoccupied vehicle agent is not actuated and runs randomly, it keeps sensing data, so “run as usual” is also
one of the items for each vehicle agent in the knapsack formulation. To clarify, when one free vehicle agent is not
actuated, it is not that there is no trajectory actuated for that vehicle agent or class. In contrast, the actuated
trajectory is a “run as usual” trajectory. The capacity refers to the total budget. The minimized objective
total profit represents the entropy. The knapsack problem in our scenario is to choose exactly one trajectory or
random run for each unoccupied car, such that the budget does not exceed the total budget and the entropy is
minimized.

To solve the formulated problem, we propose a heuristic algorithm combining vehicle mobility prediction
and ride request prediction to approximate the optimal vehicle incentivizing strategy in polynomial time. The
proposed algorithm is based on the idea of Complementary Constructive Procedure (CCP).20 We first initialize
a feasible solution S within the constraints until the budget is satisfied. Then we keep updating the solution to
optimize the sensing coverage. With the initialized feasible solution, we firstly decompose the objective function
in grid level by finding the time and location pair with a maximum number of vehicles passing through. Then
we decompose the time-location pair with respect to each passing vehicle’s trajectory. For vehicles belonging to
the passing vehicle set, we calculate the contribution of incentivizing each passing vehicle to a new candidate
trajectory on optimizing the objective function. Then we select the new candidate trajectory with the maximum
contribution to optimize the objective function. Finally, the solution is updated based on the selected vehicles
and trajectories. With multiple iterations, the solution keeps updating until the estimate of sensing coverage
quality converges.

4. EXPERIMENTS AND RESULTS

To evaluate our algorithm, we use real-world taxi trajectories, including trips of 20, 067 taxis in one month
in the city of Beijing, China. The evaluation area occupies a size of 15km by 15km and is discretized into a



10 × 10 map grid, in which each grid has the size of 1 × 1. To show the sensing performance improvement due
to our algorithm, we used three other incentivizing methods as benchmark methods: No Actuation (NA) which
does not incentivize any vehicle agents and just lets all agents run as usual, Random Actuation (RND), which
randomly selects vehicle agents and respective trajectories within the given budget using all monetary incentive,
and Random Actuation with Ride Request Prediction (RND RQ), which uses our customized incentive combining
non-monetary reward to randomly select vehicle agents and respective trajectories within the given budget.

(a) (b)

Figure 3. (a) The sensing coverage improvement percentage of our algorithm, RND and RND RQ with respect to NA at
different times of the day; (b) The sride request matching rate of our algorithm, RND and RND RQ with respect to NA
at different times of the day

We first compare the sensing coverage improvement percentage of our algorithm, RND, and RND RQ with
respect to NA at different times of the day. As Figure 3(a) shows, our algorithm always outperforms the
benchmark methods and achieves up to 26.99% improvement compared to benchmark methods. We can also
find at around 12:00pm, the sensing coverage improvement is the least. This may be because most taxis tend to
gather in the central business area, which makes it difficult to incentivize taxis to the sparse area. In addition,
our system shows consistent improvement (25% - 27%) at different times of the day. This proves the robustness
of our system on improving sensing coverage quality. Our system considered the stochastic mobility of all
vehicle agents during planning, which makes it more robust to the unexpected trajectory changes of vehicle
agents. Meanwhile, we also find that the performance of all methods is related to the initial vehicle distribution
without any incentivizing. in our experiment, there are around 200 taxis occupied among 500 total taxis during
incentivizing. These occupied taxis are not able to be incentivized, which means that the improvement is
significantly limited by these occupied taxis, especially when they gather in the center area. Meanwhile, if the
traffic condition and weather condition influence the sensing distribution under no incentivizing, our incentivizing
performance will also be impacted in a similar way.

Figure 3(b) shows how ride request matching rate changes at different times of the day. The results show
that our algorithm always achieves the highest ride request matching rate compared to the benchmark methods.
This is because our customized incentive design considers the ride request probability increase at the destination
as an incentive, which forces the optimization algorithm to select the destination with a higher ride request
probability to reduce the monetary incentivizing cost. Meanwhile, the ride request matching rate is also decided
by the spatial distribution of taxi and ride request at that time. Our system incentivizes more taxis than the
benchmark methods and consistently keeps a higher ride request matching rate. The advantage comes from the
robustness of our mobility prediction model and ride request prediction model.

5. CONCLUSION

This paper presents a system that incentivizes non-dedicated vehicular platforms like taxis to optimize the
sensing coverage for mobile crowdsensing in large-scale smart city applications. The main challenge in achieving



this goal is the limited budget for incentivizing. We design a new customized incentive by considering the ride
request improvement as the non-monetary reward to utilize the budget in an efficient way. Then we formulate
the problem as a multiple-choice knapsack problem and propose a multi-incentive algorithm to approximate
the optimal incentivizing strategy. This algorithm integrates 1) a mobility prediction model that guides the
selection of taxis to incentivize and 2) a ride request prediction model to help match ride requests with taxis,
lower incentive cost, and improve taxi drivers’ motivation. Extensive simulation and field experiments on taxi
testbed show that our system can achieve up to 26.99% better sensing coverage quality and up to 20% more ride
request matching rate than baselines.
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