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The school bus routing problem (SBRP) is crucial because of its impact on
economic and social objectives. To this end, this project considers the problem of
multi-school SBRP with collaboration in which three simultaneous decisions have to
be made for a multi-school transportation network: (1) select the subset of stops to
visit amount all potential stops (2) assign each student to a stop (s)he should walk to
(3) generate optimal routing and scheduling for each bus while allowing
collaboration across multiple schools, so that the number of buses and the total
travel distance are minimized. The scale and complexity of a multi-school SBRP is
visualized in Fig. 1 with the example of Allegheny County school districts. The state-
of-art methods are classified in Tab.1. In this project, subproblems (1) and (2) are
solved using an exact mixed-integer programming (MIP) model; a two-stage
metaheuristic method based on a tabu search is proposed for subproblem (3). The
performance of these methods are evaluated by computational studies.

Fig. 1: Geographic and network visualization of
the SBRP complexity for Allegheny County. (A)
Allegheny County school districts 2018-2019
data, with blue nodes representing bus stops and
red nodes representing schools. (B) Allegheny
County student population heatmap. (C) Network
of student flow between Allegheny County school
districts during a morning service, with nodes
representing school districts and intensity of the
edges representing the flow size.
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Stop Selection and Assignment

Simulation Study

The problem of stop selection (select the stop for the fleet to visit) and assignment
(assign each student to a stop) can be solved jointly as a single integer optimization
problem with maximum walking distance constraint. Both (I) the number of stops
selected and (II) total walking distance for students are minimized. The following
MIP is solved for each school.

The parameter 𝛽 controls the trade-off between the two objectives. When 𝛽 is larger
than a threshold value, students will be assigned to the nearest stop to their home;
for 𝛽 value close to zero, students may walk to longer in order to consolidate
several stops. This trade-off is explored on a synthetic instance (as shown in Fig. 2)
with Pareto frontier shown in Fig. 3.
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Fig. 2: Stop selection and assignment result
on a synthetic instance with a single school,
55 potential stops and 256 students. Green
triangles: student homes; Red squares:
school; Yellow squares: stops selected (15);
Blue squares: stops not selected (40);
Edges: stop assignment for each student.
Fig. 3: Trade-off between stops per school
and average student walking distance. The
simulation is performed on the instance
shown in Fig. 2. The curve suggests
diminishing returns in increasing the
average student walking distance.
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School Bus Routing and Scheduling with Bus Sharing
Given the solution to the stop selection and assignment, the last stage of the
multi-school SBRP is to generate optimal routing and scheduling for each bus
while allowing collaboration across multiple schools. Formally, this subproblem
can be defined as a pickup and delivery problem with time windows (PDPTW).
We proposed a two-stage metaheuristic method based on a tabu search. The
method first finds a decentralized initial solution that is optimal for each school in
isolation. This initial solution is then used to initialize the search that tries to find
the centralized bus routing and scheduling solution that is optimal across all
schools with collaboration.

Simulation Study
Fig. 4: Visualization of bus
routing and scheduling
problem. Demand at each stop
is generated by solving the
stop selection and assignment
problem: (A) Synthetic data.
Green node: bus depot; Red
nodes: school I (large) and
stops with demand for school I
(small); Blue nodes: school II
(large) and stops with demand
for school II (small). (B)
Centralized solution with
collaboration. (C) (D)
Decentralized solution for
school I and school II.
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Future Work

Tab. 2: Comparison between decentralized and centralized routing and scheduling 
solutions on synthetic instances

The proposed method is tested on synthetic data. Fig. 4 shows both the
decentralized (Fig. 4 (C) (D)) and the centralized solutions (Fig. 4 (B)) to an
instance of two school system with a total of 256 students and a bus capacity of
70. Furthermore, simulations are performed on four different instances generated
by varying the geographical information. Two performance metrics (I) number of
buses and (II) total distance are compared between the decentralized solution
and the centralized solution. As shown in Tab. 2 centralized method with
collaboration improves both metrics significantly (in particular, a [22.4%, 26.8%]
improvement on total distance).

For future work, the performance of the methods should be evaluated on large-
scale data sets and compared with the state-of-the-art. In addition, a mixed-load
post-improvement algorithm of the current routing and scheduling method can
further improve the objectives.

Tab. 1: State-of-the-art methods classified by the sub-problems studied.


