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Abstract— Advanced driver assistance and automated driving
systems rely on risk estimation modules to predict and avoid
dangerous situations. Current methods use expensive sensor se-
tups and complex processing pipelines, limiting their availability
and robustness. To address these issues, we introduce a novel
deep learning based driving risk assessment framework for
classifying dangerous lane change behavior in short video clips
captured by a monocular camera. First, semantic segmentation
masks were generated from individual video frames with a
pre-trained Mask R-CNN model. Then, frames overlayed with
these masks were fed into a time distributed CNN-LSTM
network with a final softmax classification layer. This network
was trained on a semi-naturalistic lane change dataset with
annotated risk labels. A comprehensive comparison of state-of-
the-art pre-trained feature extractors was carried out to find the
best network layout and training strategy. The best result, with
a 0.937 AUC score, was obtained with the proposed framework.
Our code and trained models are available open-source1.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) and Auto-

mated Driving Systems (ADS) are being developed with the

promise of reducing traffic and increasing safety on roads,

translating to considerable economic benefits [1]. Automated

driving functions categorized as level three and above have

already seen some success, typically through lidar and radar

perception, but the high cost of these sensing modalities

has slowed their integration in consumer vehicles. Moreover,

even though remarkable progress has been achieved, vehicles

equipped with these technologies are still involved in traffic

accidents [2].

In contrast, camera-based solutions to challenging percep-

tion tasks are low-cost and increasingly robust. Develop-

ments in machine learning, particularly through deep con-

volutional neural networks (CNNs), significantly increased

object detection capabilities [3] and made reliable object

tracking achievable [4]. Furthermore, CNNs trained on big

datasets became capable of learning generic feature rep-

resentations. As a result, generalized, multi-task networks

were developed [5], as well as end-to-end networks [6],

which avoid the need for complex pipelines. Combined with

recurrent neural networks (RNNs) and specifically Long-

Short Term Memory networks (LSTMs), spatiotemporal
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Fig. 1. Two lane change samples and classification outputs of our method.
The average duration of these clips is ∼10 seconds. 0.937 AUC score was
achieved with the proposed method. Video samples can be found in our
repository1.

relationships can now be modeled for action recognition

[7]. In the vehicle domain, velocity estimation with neural

networks using a monocular camera was achieved [8]. As

such, cameras, under their operational illumination condi-

tions, become a feasible sensing modality for intelligent

vehicle technologies. In this work, we propose a novel risk

estimation system that uses vision as its sole modality. This

increases the implementation possibility of our method, as

cameras are inexpensive and readily available in everyday

devices such as smartphones.

The focus of this study is specifically risk estimation in

lane changes. Lane changing is an essential driving action

that is executed millions of times on a daily basis. It has

been one of the most common pre-crash scenarios, where

7.62% of all traffic accidents between light vehicles can be

attributed to it [9]. Only rear-endings occur more frequently,

which are primarily due to inattention. On the other hand,

understanding a complex driving scene followed by acute

decision making is necessary for negotiating a lane change.

As such, a tool for unsafe behavior detection during lane

change is of paramount importance. Heuristic and rule-based

models often ignore the uncertainty of real systems. Forcing

handcrafted policies or building deductive theories leads to

observing unexpected behavior, which manifests itself as

unmodeled dynamics in these approaches. As such, we be-

lieve a data-centric, learning based framework is imperative

for finding the best explanation of the observed driving

phenomena.

Our experiments evaluated several spatiotemporal network

architectures on a naturalistic driving dataset consisting of
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860 lane change videos. Individual sequences in the dataset

were classified as risky or safe, as shown in Figure 1. We

also compared the feature representations of a wide selection

of pre-trained state-of-the-art image classification networks.

The major contributions of this work can be summarized

as:

• A novel deep learning based driving risk assessment

framework with semantic mask transfer is proposed and

used for detecting dangerous lane changes.

• Using solely a camera for the task

• Extensive comparison of state-of-the-art deep backbone

models with real-world data

The rest of the paper is organized as follows: after re-

viewing related literature in risk estimation, spatiotemporal

classification and transfer learning, we describe the proposed

method in Section III. Then, the experimental setting is

explained in Section IV, followed by results in Section V.

II. RELATED WORKS

A. Risk Studies

Safety is a key factor driving intelligent vehicle tech-

nologies forward and an active area of research. Recently

proposed ADAS usually attempt to detect and track sur-

rounding objects and decide whether an action is necessary.

Despite the successful implementation of such systems,

there is no common agreement on the definition of risk.

An objective definition based on a statistical probability of

collision was proposed in [10]. This objective risk framework

led to research focusing on vehicle tracking, where motion

models predicted the future position of vehicles, allowing

risk assessment [11], [12]. On the other hand, risk metrics

that consider the indeterministic human element was also

proposed. Subjective risk, as in the risk perceived by human

drivers, was studied as an alternative [13]. The findings of

this study indicate that human driving behavior is based

on a perceived level of risk instead of calculated, objective

collision probabilities. Bottom-up unsupervised learning ap-

proaches were shown to be working for extracting individual

driving styles [14], but the latent learned representations were

not associated with risk due to the nature of unsupervised

learning.

Lane change is a typical driving maneuver that can be per-

formed at a varied level of risk, and a significant percentage

of all crashes happen due to the erroneous execution of it

[9]. Risk in lane changes was studied mostly from the per-

spective of objective collision risk minimization [11], [15]. A

lane change dataset with manually annotated subjective risk

labels made it possible to approach this problem from the

perspective of supervised learning. The dataset includes ego-

vehicle signals such as steering and pedal operation, range

information and frames captured by a front-facing camera

close to the drivers’ point of view. However, previous works

on this dataset ignored the monocular camera footage and

used ego-vehicle signals [16], [17].

We utilized the video clips of the aforementioned dataset

and focused solely on 2D vision in this study.

B. Spatiotemporal Classification

Image-based spatiotemporal classification research primar-

ily focuses on video classification. An active application in

this field, closely related to this work, is action recognition,

where a sequence of 2D frames must be classified into

one of many, some very similar, actions. The widely used

UCF101 action recognition dataset [18] features 101 actions

such as running or soccer penalty kicks, which are difficult

to differentiate when examining individual frames. Another

widely used dataset is the Sports1M dataset [19], which

features one million videos of 487 classes of sports-related

actions.

The spatial relationship of things forms the context of a

single image frame. The spatiotemporal context, on the other

hand, is constituted by the motion of things, spanned across

time in multiple frames. This makes action recognition a

more challenging problem than image classification. Further-

more, in the case of a moving data collection platform, such

as a vehicle equipped with a camera, distinguishing the local

spatiotemporal context (the motion of things in the scene),

apart from the global context (the motion of the scene),

increases the difficulty of the problem.

While video classification has a history of using tradi-

tional computer vision, the current state-of-the-art is entirely

dominated by deep learning approaches. Transfer learning

is a staple in these methods: CNNs pre-trained on large

image datasets are used as a starting point, then modified

for spatiotemporal classification and fine-tuned using action

recognition datasets. Early work introduced two network

archetypes, one in which spatial and temporal features were

extracted simultaneously by a single network [19] and the

other which had two distinct spatial and temporal branches

followed by fusion [20]. Recently, both 3D CNNs [21] as

well as RNN variants, especially LSTMs, have been used

to approach this problem [22]. Various 2D CNNs have been

shown to produce good input features for temporal networks

like LSTMs. Optical flow output from CNNs has also been

used as input to LSTMs [7]. Closely related to this work,

features extracted from deep CNNs have been used as input

to temporal networks [23], [24].

C. Transfer Learning

Transfer learning can be generally thought of as modi-

fying an existing network for some other application. More

precisely, given a source domain and learning task, the aim is

to transfer the source model’s knowledge to a target model,

which may have another target domain and task. Transfer

learning methods are further classified depending on how the

source and target domain and task differ. Inductive transfer

learning refers to the case where the source and target tasks

are different, whereas in transductive transfer learning, the

domain changes while the task remains the same [25].

Transfer learning has been used for diverse applications

with varying complexity. It has been used for natural lan-

guage processing [26], speech recognition across different

languages [27], voice conversion [28] and other computer vi-

sion applications [29]. The instance segmentation algorithm
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Mask R-CNN [5], which is used in this paper, demonstrated

the benefits of multi-task transfer learning. It was trained for

both bounding box estimation and instance segmentation, yet

it was shown to outperform its previous work which focuses

on the former [30]. Furthermore, when its knowledge was

transferred to the task domain of human pose estimation, it

significantly outperformed competing algorithms. This shows

the potential of transfer learning for network generalization,

which was leveraged in this research.

Inductive transfer learning was used in this work, as the

target domain is somewhat similar to the source domain,

but the target task is entirely different. Specifically, the

assumption tested here is that feature representations learned

by deep CNNs trained on large image databases should be

transferable to our task and domain: classifying lane change

video clips as safe or dangerous. Feature representations

obtained from several pre-trained networks were utilized to

test this assumption as outlined in Section III-D.

III. PROPOSED METHOD

A novel deep spatiotemporal driving risk assessment

framework with Semantic Mask Transfer (SMT) is proposed

here. The proposed strategy was used for recognizing risky

actions in short lane change clips. Furthermore, an exhaustive

comparison of state-of-the-art deep feature extractors was

carried out to find the best model layout.

A. Problem Formulation

The principal postulation of this study is the partition of

the whole lane change set into two jointly exhaustive and

mutually exclusive subsets: safe and risky. This proposition

is an oversimplification and, depending on the domain, may

not suffice. Nevertheless, this dichotomy simplifies problem

formulation and enables the employment of state-of-the-

art binary video classification methods. All hypotheses that

contradict with this postulation are out of this study’s scope.

The objective is to classify a sequence of images captured

during a lane change into the risky or the safe subset. The

temporal dimension of videos can vary depending on the

application and the lane change itself. However, a fixed

number of frame constitution is assumed in this study. This

decision enables the deployment of fixed-dimension network

architectures to solve the problem. The classification problem

is formulated as follows:

For lane change i, the goal is to find the inferred risk

label ŷi, given the sequence of images captured during the

lane change xi = (x1, x2, · · · , xT ), with the spatiotemporal

classification function f .

ŷi = f(xi) (1)

where T is fixed ∀ lane changes and risk label y is encoded

as a one-hot vector.

y =

{

(1, 0) for safe lane changes

(0, 1) for risky lane changes
. (2)

The spatiotemporal classifier, f , is learned with supervised

deep learning models. Extraction of the ground truth, y, is

explained in Section IV-A

B. Deep Neural Network Architectures

Besides the proposed framework, spatiotemporal classifi-

cation with semantic mask transfer (SMT+CNN+LSTM), a

significant contribution of this study is the comprehensive

experimental analysis and evaluation of the state-of-the-art

video classification architectures for the task at hand.

Two different learning strategies were followed in this

work. The first one was the conventional supervised deep

learning approach: training a deep neural network archi-

tecture from scratch with raw image input and target risk

labels through backpropagation. In the second approach,

transfer learning was utilized for extracting high-level ab-

stract features from the raw image data. After extraction,

these features were fed into separate classifiers which were

trained using the target risk labels. A wide selection of

pre-trained state-of-the-art very deep networks was used as

feature extractors in the experiments.

Furthermore, six architecture families were compared

throughout the experiments. Details of each are given in

the following sections. High-level diagram of the proposed

method, labeled as SMT+CNN+LSTM, is shown in Figure

2.

C. Training From Scratch

Deep learning is a popular machine-learning algorithm

family. It is widely used especially for computer vision tasks.

However, huge amounts of data are required to train deep

architectures. Without adequate data, the performance drops

significantly. The lane change dichotomy that is introduced

here is not a well-established domain in comparison to the

standard image classification problem. As such, big datasets

that are annotated laboriously such as ImageNet [31] and

COCO [32] do not exist for the task. Therefore, a specific

lane change dataset was collected and annotated [33]. The

scope of this corpus, however, is not on the same scale as

the mentioned datasets.

Two different architectures were used for the training from

scratch stratagem. CNNs are an integral part of state-of-the-

art image classification models. As such, Frame-by-Frame

(FbF) classification with CNNs was selected as the baseline

here. The baseline was compared against the state-of-the-art

spatiotemporal classification architecture; the CNN + Long

Short-Term Memory (CNN+LSTM) model.

Frame-by-frame classification with CNNs (FbF CNN)

A CNN architecture with a fully connected softmax final

layer was designed as the baseline in this study. The temporal

dimension of lane change clips was disregarded in the base-

line. In other words, each frame was classified independently

as safe or risky.

The architecture is given in shorthand notation as follows:

xj → C(64, 5, 1) → P → C(32, 5, 1) → P → FC(1000) →
Softmax(2) → ŷj . Where C(r, w, s) indicates a convolu-

tional layer with r filters, a w × w window and s stride

size. P stands for max pooling layers and FC(h) for a fully

connected dense layer with h hidden units. The final layer

is a fully connected softmax with 2 classes. In order to train
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Fig. 2. The proposed framework. SMT stands for semantic mask transfer. Mask R-CNN [5] is used as the mask extractor, and no fine-tuning is done for
the SMT part. In this implementation, trucks are colored in magenta and cars in cyan. The average duration of lane change clips is ∼ 10 seconds. Each
clip is subsampled before processing. Details of frame selection is shown in Figure 3. A temporal composition with contrasting elements can be more
useful for relaying semantics of the scene. In our subjective opinion, after a glance, the masked image sequence relays a more striking version of the lane
change action than the raw sequence.

this network, risk labels were replicated to each constituent

frame correspondingly:

∀xj ∈ x, yj = y (3)

where xj is the jth frame of the lane change i.

Spatiotemporal classification (CNN+LSTM)

Video classification is a spatiotemporal problem. There-

fore, architectures that consider spatial and temporal aspects

of the input data are expected to perform better than the

baseline.

State-of-the-art performance for action clip classification

was achieved in [7] with a Long-Short Term Memory

(LSTM) network where CNN features were fed as inputs of

each time step. The distinction between two separate actions

such as walking and jumping might be easier to detect than

a postulated difference such as a risky or safe lane change.

However, even though action clip classification is not an

identical problem to the lane change dichotomy, it is still

relevant and shares the same modality. As such, a similar

architecture is proposed here to solve the problem at hand

as follows:

ŷ = fLSTM(fCNN(x1), · · · , fCNN(xj), · · · , fCNN(xT )). (4)

The spatial feature sequence z = (z1, z2, · · · , zT ) of

a given lane change was extracted from the raw image

sequence x with the CNN feature extractor fCNN. z was then

fed into LSTM cells to infer ŷ.

The LSTM network computes the sequence of hidden

3103



vectors h = (h1, h2, ..., hT ) given the input feature sequence

z by iterating the following equations for each timestep t.

gt = σ(Wgzi,t + Ught−1 + bg), (5)

it = σ(Wizi,t + Uiht−1 + bi), (6)

ot = σ(Wozi,t + Uoht−1 + bo), (7)

ct = gt ◦ ct−1 + it ◦ tanh(Wczi,t + Ucht−1 + bc), (8)

ht = ot ◦ tanh(ct), (9)

where gt, it, ot are the activation functions of the forget gate,

the input gate and the output gate respectively. ct is the cell

state vector, ◦ is Hadamard product i.e element-wise product

and W , U , b are weight matrices that are learned through

training. σ is the sigmoid activation function.

A many-to-one layout was used as only one label is

required per lane change. The last output vector of the

LSTM, hT , was fed into a dense layer with a softmax

activation function to infer the risk label ŷ = fsoftmax(hT ).
The shorthand notation of the complete architecture is as

follows: x → xj → C(16, 3, 1) → C(16, 3, 1) → P →

D → FC(200) → FC(50) → zj → z → LSTM(q, 20) →

Softmax(2) → ŷ. D stands for a dropout layer with 0.2

dropout probability. LSTM(q, h) indicates an LSTM layer

with q time steps and h hidden units. q was changed through-

out the experiments. Details of the temporal dimension is

given in Section IV-B.

D. Transfer Learning

As mentioned earlier, supervised training of very deep

networks requires enormous amounts of data. This creates

a bottleneck for certain problems such as the lane change

dichotomy due to the lack of a big dataset. This issue can

be circumvented with the use of models that are pre-trained

on big datasets. Even though the target task, classifying a

sequence of lane change images as risky or safe, is different

from the source task of classifying a single image as one of

the thousands of classes of ImageNet [31] dataset, pre-trained

state-of-the-art networks can be utilized as feature extractors.

In this study, four different transfer learning architectures

were compared.

Frame-by-frame classification with feature transfer

(FbF FT)

Frame-by-frame classification with feature extraction is

accepted as the baseline transfer learning strategy of this

study. The method is straightforward: first, the pre-trained

very deep network was cut before its final fully connected

layer. Then, for each frame xj , the transferred spatial feature

zj was obtained with the truncated pre-trained network ft.

zj = ft(xj). (10)

Finally, the extracted feature zj was fed into a shallow

fully connected softmax classifier that was trained with the

lane change data to infer the risk labels. VGG19 [34], Mo-

bileNet [35], InceptionResNet [36], NasNET [37], Xception

[38] and ResNet [39] were used as feature extractors in the

experiments. All of the networks were pre-trained on the

ImageNet [31] dataset.

Spatiotemporal classification with feature transfer

(FT+LSTM)

The second strategy had the same spatial feature extraction

step, but a full temporal network was trained instead of a

shallow classifier with the lane change data. The same pre-

trained networks used for the FbF FT were utilized again for

feature extraction.

In summary, FbF FT and FT+LSTM are similar to the

training from scratch strategies, namely FbF CNN and

CNN+LSTM. The only difference is the replacement of

training of convolutional layers with feature transfer.

Frame-by-frame classification with semantic mask

transfer (FbF SMT+CNN)

Multi-task deep networks have become popular recently,

especially for vision tasks, in urban driving applications.

State-of-the-art multi-task networks YOLOv3 [40] and Mask

R-CNN [5] were used for segmentation mask transfer in this

study. Both of the networks were pre-trained on the COCO

[32] dataset.

The performance of the pre-trained Mask R-CNN can be

qualitatively analyzed by inspecting Figure 2. The segmen-

tation masks shown in the figure were obtained for the lane

change dataset without any fine-tuning or training. It is the

out-of-the-box performance of Mask R-CNN trained on the

COCO dataset, with our inputs.

A slight post-process modification was done to YOLOv3

in order to obtain segmentation masks. The original network

outputs a bounding box and class id for detected objects.

For each class, bounding boxes were filled with 0.7 opacity

and with a unique color in this study. Mask R-CNN did

not need any modification as it outputs a segmentation mask

besides bounding box and class id. It is assumed that a high-

contrast composition is more useful for discerning distinct

elements. As such, bright and unnatural colors such as cyan

and magenta were selected as mask colors.

The out-of-the-box performance was good but not perfect.

Since the ground truth for segmentation masks are not

available for the lane change dataset, fine-tuning was not

possible nor any quantitative analysis. However, these masks

can still be used for risk detection. The idea is very similar

to FbF CNN: first, the lane change frames were converted

to the masked images with pre-trained networks. After this

step, the same network architecture of FbF CNN was used

to infer risk labels.

Spatiotemporal classification with semantic mask

transfer (SMT+CNN+LSTM)

The main contribution of this work, SMT+CNN+LSTM, is

a novel framework for binary video classification. To the best

of authors’ knowledge, semantic segmentation masks had not

been fed into an LSTM architecture for risk detection in the

literature before. The proposed method is shown in Figure

2.

The main hypothesis is that a temporal composition with

highly contrasting elements can tell a better story. Qualitative

evaluation of this claim can be done by inspecting Figure 2.
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Fig. 3. Subsampling the video clips. A fixed amount of T frames is selected uniformly for each lane change. This design choice enables the employment
of fixed frame rate architectures. T is a hyper-parameter of our framework and it affects the classification performance. We tested different values of T

throughout the experiments. This point is further elaborated in Section V.

In our subjective opinion, after a glance, the masked image

sequence relays a more striking version of the lane change

action than the raw sequence. Quantitative analysis is given

in Section V.

The starting point of the framework is the masked images

whose extraction is described in the previous section. These

masked images were passed through convolutional layers to

extract abstract features from the contrasted compositions

created by the mask colors. These high-level features were

then fed into LSTM cells to depict temporal relationships.

The same CNN+LSTM architecture that is given in Section

III-C was used with the only difference being the input type.

SMT+CNN+LSTM uses images with overlayed semantic

segmentation masks as its sequential input.

IV. EXPERIMENTS

A. Dataset

A subset of the NUDrive dataset was used in this study.

Data was collected with an instrumented test vehicle in

Nagoya, Japan. Details of the corpus can be found in [33].

The subset consists of 860 lane change video clips captured

by a front-facing camera. Eleven different drivers executed

the lane changes on Nagoya expressway. Drivers followed

the same route and were asked to keep their natural driving

habits while doing lane changes as much as possible. The

whole trip of each driver was parsed manually to extract the

lane change clips afterward.

The footage was captured with a resolution of 692x480

at 29.4 frames per second. The average duration of a lane

change clip is approximately 10 seconds.

Establishing the ground truth: Ten annotators watched

the video clips and rated the risk level of each instance sub-

jectively. Annotators gave a risk score between one (safest)

and five (most risky) to each lane change. Risk ratings were

normalized for each annotator. Then, the normalized scores

obtained from ten annotators were averaged to obtain a single

score per lane change. The riskiest 5% of the lane change

population was accepted as risky while the rest was assumed

to be safe. Risky lane changes were taken as the positive

class in this binary classification. The final distribution is 43

to 817 for the positive and negative classes respectively.

B. Experimental Conditions and Evaluation Criteria

Temporal dimension length, which is equal to the number

of frames fed into the LSTM architecture, was changed

throughout the experiments. The number of frames affected

the performance significantly. Details of this phenomena are

discussed further in Section V.

For each architecture and cross-validation fold, seven

different training sessions were run with 5, 10, 15, 20, 50,

and 100 frames that were subsampled uniformly per lane

change sequence. The average total number of frames per

lane change is around 300. The uniform video subsampling

is shown in Figure 3.

10-fold-cross-validation was applied all through the ex-

periments. 18 architectures and 6 subsampling options were

compared with 10-fold-validation, which totaled in training

of 1080 networks.

The lane change dataset is heavily skewed towards the

negative class. Accuracy is not a definitive metric under this

circumstance. Instead, Area Under the Curve (AUC) was

chosen as it is widely used for binary classification problems

with large class imbalance. The evaluation focus of AUC

is the ability for avoiding false classification [41]. Besides

classification performance, inference time is an important

criterion. Especially for real-time applications very deep

networks can get cumbersome. The main factor that affects

inference time is the number of total parameters in an

architecture. The evaluation of the experiments with respect

to these criteria is given in Section V.

C. Training and Implementation Details

The Adam optimizer was used throughout the experiments

with 0.0001 learning and 0.01 decay rate. A batch size of

32 was used on each training run which consisted of 1000
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TABLE I

CLASSIFICATION PERFORMANCES ON THE LANE CHANGE DATASET. OUR METHOD, SMT+CNN+LSTM, ACHIEVED THE BEST AUC SCORE.

Architecture Backbone model Pre-trained on # Parameters (millions) Best T AUC

FbF CNN - - 1.6 1 0.815
FbF FT VGG19 [34] ImageNET [31] 144.1 1 0.809
FbF FT MobileNet [35] ImageNET 3.7 1 0.779
FbF FT Inceptionresnet [36] ImageNET 56 1 0.617
FbF FT NASNet [37] ImageNET 89.5 1 0.738
FbF FT Xception [38] ImageNET 23.1 1 0.683
FbF FT ResNet50 [39] ImageNET 25.8 1 0.861

FbF SMT+CNN YOLOv3 [40] COCO [32] 63.6 1 0.854
FbF SMT+CNN Mask RCNN [5] COCO 65.8 1 0.853

CNN+LSTM - - 0.6 50 0.888
FT+LSTM VGG19 [34] ImageNET 143.9 50 0.886
FT+LSTM MobileNet [35] ImageNET 3.6 10 0.844
FT+LSTM Inceptionresnet [36] ImageNET 56 20 0.5
FT+LSTM NASNet [37] ImageNET 89.3 5 0.761
FT+LSTM Xception [38] ImageNET 23 50 0.768

Best 3

FT+LSTM ResNet50 [39] ImageNET 25.8 20 0.910
SMT+CNN+LSTM YOLOv3 [40] COCO 62.5 50 0.927
SMT+CNN+LSTM Mask R-CNN [5] COCO 64.8 50 0.937

FbF: Frame-by-frame, FT: Feature Transfer, SMT: Semantic Mask Transfer

epochs. Training to validation split-ratio was 0.9 for all cross-

validation runs. A categorical cross entropy loss function was

employed for all architectures.

The proposed approaches were implemented in Keras, a

deep learning library for Python. Our code is open-source

and can be accessed from our GitHub repository2. The

computational experiments took less than a month to finish.

A GPU cluster with 6 Nvidia GTX TITAN X was utilized

for this research.

V. RESULTS

Table I summarizes the experimental results, where net-

work architectures are shown in the first column. The back-

bone model column indicates the base transferred very deep

network if there was any. Not all architectures used transfer

learning, namely FbF CNN and CNN+LSTM. Datasets that

the transferred networks were pre-trained on are given in

column three. It should be noted again that all architectures

were trained with our data for the final classification task.

The total number of network parameters for each architecture

is shown in column four for assessing the computational load.

Lower parameter amount correlates with faster inference

time. T , the fixed number of frames, were changed between 5

to 100 for each configuration. The best scoring T in terms of

AUC of each row is given in column five. The final column

is the AUC score, the main performance metric of this study.

All spatiotemporal architectures with an LSTM layer out-

performed their spatial counterparts, except the configuration

with the Inceptionresnet [36] base model, which had the

lowest performance. These results underline the importance

of the temporal dimension. However, a very large depen-

dence on temporal information is also undesired because; it

swells the network, increases the input data size and slows

the inference time.

2https://github.com/Ekim-Yurtsever/DeepTL-Lane-Change-Classification

The best result was obtained with the proposed

SMT+CNN+LSTM framework which used a Mask R-CNN

[5] semantic mask extractor. We believe this result was due

to the masked-contrasted temporal compositions’ aptitude

for relaying semantic information. The third best result

was obtained with an FT+LSTM architecture which used

ResNet50 [39] as its backbone model. The rest of the

architectures fell behind the top three by a noticeable margin.

For example, the proposed SMT+CNN+LSTM’s risky lane

change detection performance was 25% better than the FbF

FT with an Xception backbone.

VI. CONCLUSIONS

Classifying short lane change video clips as risky or

safe has been achieved with a 0.937 AUC score using the

proposed SMT+CNN+LSTM method.

Our experiments bolster the belief in the adaptive capabili-

ties of deep learning. Transfer learning expands the potential

use of trained models. With the increasing availability of

open-source libraries and fully trained models with high

out-of-the-box performance, new problems can be tackled

without tailoring huge datasets for them. The results of this

study reinforce this claim.

Promising results were obtained in this work, but only

a single driving action, the lane change maneuver, was

investigated. In order to parse and assess continuous driving

footage, more spatiotemporal techniques should be tested

such as feature pooling and 3D convolution in future works.

Improving the transfer learning strategies with fine-tuning

and utilizing more modalities such as lidar are also amongst

our future objectives.
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K. Mekhnacha, and A. Nègre, “Probabilistic analysis of dynamic
scenes and collision risks assessment to improve driving safety,” IEEE

Intell. Transp. Syst. Mag., vol. 3, no. 4, pp. 4–19, 2011.
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