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Integrating Occupancy Grids with Spatial-Temporal Reinforcement
Learning for Enhanced Control — Project Goals

* Enhance the capability and efficiency of a deep reinforcement learning-
based vehicle control framework to interpret and navigate spatially and
temporally complex dynamic driving environments.

* Improve vehicle safety with an innovative planning and control strategy
utilizing attention mechanisms.

e Combine the strengths of reinforcement learning and transformer-based
architectures.

* Increase the interpretability of reinforcement learning-based behavior
generation across spatial and temporal dimensions.
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Integrating Occupancy Grids with Spatial-Temporal Reinforcement
Learning for Enhanced Control — Motivation

 Automated driving can be structured as

H . . E— Actuators
* End-to-end: machine learning representation- not driving

explainable, unclear safety measures and constraints.

* Modular: decomposed into subproblems, complex, lacks
generalization.

* General reinforcement learning: operates under the Markov
assumption that current behavior solely depends on the
current action and state. Focused on the immediate transition.

* End-to-end training using both spatial and temporal attention.
 The combination of the occupancy grid representation, CNNs, and spatial attention
mechanisms provides a structured way to represent complex spatial information.
* The incorporation of temporal embedding and temporal transformers allows the
model to make informed decisions based on a series of actions and states over time.
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Integrating Occupancy Grids with Spatial-Temporal Reinforcement
Learning for Enhanced Control — Approach

This research represents an
advancement in spatial-temporal
understanding within autonomous
driving systems. By leveraging
transformers, which are renowned for
their effectiveness in sequence-to-
sequence tasks, in combination with
occupancy grids and spatial attention
mechanisms, the model is expected to
demonstrate superior performance in
interpreting complex environmental data
and navigating intricate traffic scenarios.
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Integrating Occupancy Grids with Spatial-Temporal Reinforcement
Learning for Enhanced Control — Expected Outcomes

We will present case studies and demonstrations of the model in various scenarios,
including simulations of autonomous navigation, obstacle avoidance, and planning and
decision-making, and evaluate quantitively and qualitatively:
* Navigation success o .
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Highway driving scenarios to test the feasibility of this spatial and temporal framework
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