Myopically Verifiable Probabilistic Certificate for Long-term Safety

Yorie Nakahira

Control & Learning group @ CMU

理学

Stochastic safe control Robust control Optimization Information theory ...

Neuroscience Biomolecular control...

工学

Safety is critical for intelligent systems

Autonomous vehicles

Cobots Intelligent manufacturing

Drones

Safety is critical for intelligent systems

Challenges

Deterministic system

Stochastic system

safe at each step with probability $1 - \delta$

+ + + + + time

Long-term safe probability can scale according to $\lim_{t\to\infty} (1-\delta)^t = 0$

Challenges

Proposed Method: Intuitions

Imposing forward invariance on

State space

Probability space

Long-term safety probability $Pr(X_{\tau} \in C, \tau \in [t, t + T])$

Tail probability can accumulate over time

Direct control over accumulation of tail events

Proposed Method: Intuition

Barrier function based -> Myopic evaluation Reachability based -> Ensures long-term safety

Proposed Method: Intuition

Barrier function based -> Myopic evaluation Reachability based -> Ensures long-term safety

Direct control over accumulation of tail events

Proposed Method

 $\boldsymbol{F}(X_t) = \Pr(X_\tau \in \mathcal{C}, \tau \in [t, t+T] | X_t)$

Direct control over accumulation of tail events $AF(X_t) \ge -\alpha(F(X_t) - (1 - \epsilon))$ \downarrow time derivative of desired safety safety probability probability

A: infinitesimal generator α : monotonically increasing, concave, $\alpha(0) \leq 0$

Theoretical Guarantees

Theorem: Given

$$F(X_0) > 1 - \epsilon,$$

if we choose the control action to satisfy

$$A\mathbf{F}(X_t) \ge -\alpha(\mathbf{F}(X_t) - (1 - \epsilon))$$
 for $t > 0$

then we have

$$\Pr(X_{\tau} \in \mathcal{C}, \tau \in [t, t + T]) \ge 1 - \epsilon \text{ for } \forall t > 0$$

 $\alpha: \mathbb{R} \to \mathbb{R}$ is a monotonically increasing concave function that satisfies $\alpha(0) \leq 0$.

Proposed Safety Condition

$$AF(X_t) \ge -\alpha(F(X_t) - (1 - \epsilon))$$

$$dX_t = (f(X_t) + g(X_t)U_t)dt + \sigma(X_t)dW$$
Affine control
$$\mathcal{L}_f F(X_t) + (\mathcal{L}_g F(X_t))U_t + \frac{1}{2} \operatorname{tr}([\sigma(X_t)]^{\mathsf{T}} \operatorname{Hess} F(X_t)[\sigma(X_t)]) \ge -\alpha(F(X_t) - (1 - \epsilon))$$
linear constraints of U_t

Simulation

system dynamic:	$dx_t = (2x_t + 2.5u_t) dt + 2dw_t$
initial state:	$x_0 = 3$
safe set:	$\mathcal{C} = \{x \in \mathbb{R} : x - 1 > 0\}$
nominal controller:	$N(x_t) = 2.5x_t$
desired safety probability:	$1 - \epsilon = 0.9$

Simulation

Proposed:
$$AF(X_t) \ge -\alpha(F(X_t) - (1 - \epsilon))$$

Clark: $A\phi(X_t) \ge -\alpha\phi(X_t)$
Luo et al.: $\mathbb{P}(d\phi(X_t, U_t) + \alpha\phi(X_t) \ge 0) \ge 1 - \epsilon$
Ahmadi et al.: $CVaR_\beta(\phi(X_{t+1})) \ge \gamma\phi(X_t)$

Simulation

Advantage 1: Long-term Safety Guarantee

Advantage 1: Long-term Safety Guarantee (Cont'd)

Advantage 2: Better Performance Tradeoffs

the reference trajectory

safety: satisfaction of the tire force limits

0.35

Safety v/s Performance

Advantage 3: Less Computation Costs

- Computation of MPC grows in $O(H^3)$
- Safety will not be compromised even with short outlook horizons

Random variables that inform safety

Characterized the distribution of:

- Worst-case margin: $\Phi_x(T) \coloneqq \inf\{\phi(X_t) \in \mathbb{R} : t \in [0, T], X_0 = x\}$
- First exit time: $\Gamma_x(\ell) \coloneqq \inf\{t \in \mathbb{R}_+ : \phi(X_t) < \ell, X_0 = x\}$
- **Distance to the safe set:** $\Theta_x(T) \coloneqq \sup\{\phi(X_t) \in \mathbb{R}, : t \in [0, T], X_0 = x\}$
- **Recovery time:** $\Psi_x(\ell) \coloneqq \inf\{t \in \mathbb{R}_+ : \phi(X_t) \ge \ell, X_0 = x\}$

All distributions are given by the deterministic convection-diffusion equations

Theorem 1: Worst-case margin $\Phi_{\chi}(T)$

Theorem 2: First exit time $\Gamma_{\chi}(\ell)$

Theorem 3: Distance to the safe set $\Theta_{\chi}(T)$

Theorem 4: First recovery time $\Psi_x(\ell)$

Example use case

Ground truth

Monte Carlo

PDE solver

Today's talk

理学

Stochastic safe control Robust control Optimization Information theory ...

工学

Microfinance from a control perspective

Challenges in microfinance:

- 1. Complexity in understanding default process
- 2. Asymmetry, heterogeneity, and incomplete information of individual applications
- 3. The scarcity of available past data
- 4. The dynamically evolving social and economic conditions

Benefit in Microfinance

Information Gathering	Exploration	Initial Learning Stage	Proactive Policy Design	Steady Stage
		Provide financial opportunities		Adapt to changing economic
Policy Objective			Design new policies with - Group association	
Optimized Decision	Exploitation	Find reliable loan policies Sustainability Concern		Optimize social welfare Financial Inclusion

Technical Enablers

- Systematically trade-off exploration vs. exploitation
- Immediate feedback from small samples toward better policy
 - Ability to add new features
- Convergence
 - to optimal parameters
- Continuously adapt to changes

Microfinance from a control perspective

1. Robustness against missing data

2. Ability to deal with diverse microfinance distributions

Microfinance from a control perspective

3. Tradeoff between default rate vs. approval rate

4. Cheaper computational cost

5. Adaptation to changes

Today's talk

Neuroscience Biomolecular control...

工学

Constraints vs robust performance in human

Constraints vs robust performance in human

Task 1: Compensate for the head motion Slow **Tokyo Tech** Fast Accurate Inaccurate Task 2: Tracking a moving object Slow Iradeoff; **Tokyo Tech** Fast Accurate Inaccurate

Constraints vs robust performance in human

