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Safety is critical for intelligent systems

Autonomous Cobots Drones
vehicles Intelligent manufacturing



Safety is critical for intelligent systems
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Challenges

Deterministic system

safe at each step > safe at all time
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Stochastic system

safe at each step with Long-term safe probability can
probability 1 — 6 —) scale according to
SN VS N W tlim (1-6)t=0




Challenges
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Proposed Method: Intuitions

Imposing forward invariance on

State space

s ¥ @

safe set:
» C={X:pX) =0}

e

Tail probability can
accumulate over time

Probability space

Long-term safety probability

Pr(X, € C,T € [t,t +T])
A
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Direct control over
accumulation of tail events



Proposed Method: Intuition

Barrier function based Reachability based
-> Myopic evaluation -> Ensures long-term safety

s v
safe set:

C={x:¢p(x) =0}
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Proposed Method: Intuition

Barrier function based Reachability based
-> Myopic evaluation -> Ensures long-term safety

Long-term safety probability
Pr(X; €eC,Te[t,t+T])
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Direct control over
accumulation of tail events



Proposed Method

Long-term safety probability

Pr(X, € C,T € [t,t +T])
A

N P S s

>t

Direct control over
accumulation of tail events

F(X;) =Pr(X;€Cte|tt+T]lXy)

AF(Xe) 2 —a(F(Xy) — (1 —€))

l \

time derivative of desired safety
safety probability probability

A: infinitesimal generator
a: monotonically increasing, concave, a(0) <0



Theoretical Guarantees

Georem: Given \

F(Xo) > 1_6,

if we choose the control action to satisfy
AF(X,) = —a(F(X,) — (1 —¢€)) fort > 0,
then we have

PriX,eCte|t,t+T])=1—€eforvVt >0

(R — R is @ monotonically increasing concave function that satisfies a(0) < O/




Proposed Safety Condition

AF(X¢) 2 —a(F(Xy) — (1 —¢€))

dX; = (f(Xp) + g(X)Updt + o (X )dW
Affine control

\4

1
LeF(X;) + (LgF(Xt))Ut + Etr([U(Xt)]THeSSF(Xt)[U(Xt)]) = —a(F(X;) — (1 —¢€))

linear constraints of U,
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Simulation

system dynamic:
initial state:

safe set:

nominal controller:

desired safety probability:

dx; = (2x; + 2.5u;) dt + 2dw;
Xg =3
C={x€ R:x—1>0}
N(x;) = 2.5x;

1—€=0.9



Simulation

—

— Proposed controller
Clark, (2019).
—Luo et al., (2019)
—Ahmadi et al., (2020)
—Nominal controller

>

Proposed: AF(Xy) = —a(F(Xy) — (1 —¢€)) EO-S
O

Clark: AP(Xe) = —ad(Xe) 05;0.6

Luoetal.: P(dp(X.,Up) +ap(X) =20)=>1—¢€ 20_4_
ks

Ahmadi et al.: CvaRB (¢(Xt+1)) > y¢(Xt) '5_0_2 I
5

0

0
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Advantage 1: Long-term Safety Guarantee

1.0

Probability
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| —— Safe Controller with € =0.10

—— MPC

—— Safe Controller with £ =0.15
—— Safe Controller with € =0.20 P P |
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Time (s)




Advantage 1: Long-term Safety Guarantee (Cont’d)

Total Tire Forces

Front Left Front Right
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Advantage 2: Better Performance Tradeoffs

cost:

deviation from
the reference
trajectory

Safety v/s Performance

5.5 —@— Proposed Method
LTV-MPC

2.5/
2.0

0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35
Safety

safety: satisfaction of the tire force limits



Advantage 3: Less Computation Costs

« Computation of MPC grows in 0(H?3)

« Safety will not be compromised even with short outlook horizons

Safety v/s MPC Prediction Horizon

Computation Load v/s MPC Prediction Horizon
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Random variables that inform safety

Characterized the distribution of:

-/ Worst-case margin: d. . (T) = inf{p(X;) e R:t € [0, T], X, = x} \
* First exit time: [,(¥) :=inf{t € R.: p(X;) < ¥, X,y = x}
« Distance to the safe set: 0,.(T) = sup{¢p(X;) e R,:t € [0,T], Xy = x}

 Recovery time: Y.(¥) =inf{t e Ry:p(X;) = £, X, = x
\ y { 4 (X 0 } /

All distributions are given by the deterministic convection-diffusion equations



Theorem 1: Worst-case margin @,(T)

Safe set C = {x: p(x) = ¥}

The complementary cumulative distribution function

of the safety margin @,.(T) ;,b«@o
F(z,T;¥) = P(®,.(T) =¥#),f €R
State trajectory
is the solution to
(oF 1 A
Ezzv.(DVF)-I_Lp—%V-DF Z[l]Z'g,T>O
< F(Z; t) =1 Z[l] = &T >0 F(z,T;0) = safe probability during [0,T]
F(Z, 0) = 1{2[1]<g}(2) 7 € ]Rn+1 z = [¢p(x),x]

N Y,




Theorem 2: First exit time I, (¥)

Safe set C = {x: p(x) = ¥}

The cumulative distribution function of the first exit First exit time

time T, (#)

G(z,t;2) =PI, (£) <t)

State trajectory

is the solution to
© |X(T)

| at — > . ( ) -+ p—%V'D Z[ ] — L= 1 — G(Z T- 0) = safe probability during [0,T]
G(Z’ t) —1 Z[]_] <£t>0 zZ = [Qb(X’);;C] |
LG(2,0) = 1[11<p(2) 2 € R

-




Theorem 3: Distance to the safe set 0,.(T)

Safe set C = {x: p(x) = ¥}

The cumulative distribution function of the distance to the
safe set 0,.(T)

X(0) =x

©)

State trajectory

0(z,T; =) = P(0,(T) = £),£ € R

is the solution to

X(T)°
“(a0 1 A
E ~ E 7 (DVQ) o Lp—%V-DQ Z[l] <—tT>0 Q(z,T; —?) = the probability of getting
. within £ distance to C during [0,T]
Q(Z)T; _'8) =0 Z[l] = _’E,T>O z = [¢p(x), x]
Q(z,0; —?) = I;[11<n(2) z € Rt
& ‘ Yy




Theorem 4: First recovery time ¥,.(¥)

Safe set C = {x: p(x) = ¥}

Let D = {7 the cumulative distribution function of
recovery time W, (¥)

N(z,T;?) = P(P,(£) < t) X(0) = x

o

is the solution to SIS

First reqovery time

/(ON = L V-(DVN L N 1 4 O\
) E - E . ( ) T P—%V'D Z[ ] stt=> N(z,T;0) = the probability of re-
_ enter during [0O,T]
N(z,t)=1 z[1] = ¢,t > 0 2 = (D00
N(z,0) = Li[1]2¢(2) z € R+l

\k




xample use case
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Ground truth Monte Carlo PDE solver
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Microfinance from a control perspective

Challenges in microfinance:

Complexity in understanding default process
Asymmetry, heterogeneity, and incomplete information of individual applications
The scarcity of available past data

I N

The dynamically evolving social and economic conditions

Benefit in Microfinance

Technical Enablers

Information . 1o tion  Initial Learning Stage  Proactive Policy Design ~ Steady Stage - Systematically trade-off
Gathering = . Adapt to exploration vs. exploitation
I financial opportunities : changing economic - Immediate feedback _
poicy B s i&social situations from small samples toward better policy
ongfe :  Design - Ability
:  new policies with to add new features
OO SRt (o1 X--1o1 L1 O S
A N : § WP to optimal parameters
"y reliable loan policies : : social welfare .
Optimized Exploitation ——— : ; - Continuously
Decision Sustainability Concern adapt to changes
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Microfinance from a control perspective

1. Robustness against missing data

1o | | | O L(g) = 1 —exp(—q)

M B L(a) = fomdy — 1
I probability extrapolation
05 F 4 | I perceptron

I random forest

I 5V M

0F 4 | [ logistic regresion

average converged
normalized utilitics

no empty entry  10% empty entry 25% empty entry 50% empty entry

2. Ability to deal with diverse microfinance distributions
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decision algorithms



Microfinance from a control perspective

3. Tradeoff between
default rate vs. approval rate

203 () —L(g)=1- ?XP(*Q‘)
< _ 2explg)
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= ’
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approval rate - - -group applications

4. Cheaper computational cost

computational
time, (s)
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decision algorithms

5.

Adaptation to changes
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Constraints vs robust performance in human
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Constraints vs robust performance in human

Task 1: Compensate for the head motion 510\,\1

Tokyo Tech

. S

Accurate Inaccurate

Fast

Task 2: Tracking a moving object
Slo n
%y %
Tokyo Tech 2%,
Fast

Accurate Inaccurate,



Constraints vs robust performance in human

Sensorimotor control

Neurophysiology

Biking,
eye movement, etc.

A

A feedback loop
(e.g. VOR, reflex)

Hardware
(neurons, muscles)

A

Biological resources
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