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Autonomous 
vehicles

Cobots
Intelligent manufacturing

Drones
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Safety is critical for intelligent systems 
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Resilience

Adaptability 

Collision 
Avoidance

Regular 
Operation

Dealing with 
uncertainty

Safety is critical for intelligent systems 



Challenges

safe at each step safe at all time

time
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safe at each step with 
probability 1 − 𝛿

time

Deterministic system

Stochastic system

Long-term safe probability can 
scale according to
lim
t→∞

1 − 𝛿 𝑡=0



precise long-term trajectories

approximate long-term safe probability

myopic safe probability
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safety guarantee

light

heavy

long-term short-term

slow reaction

compromise performance

no long-term guarantee

e.g., stochastic barrier certificate 

e.g., model predictive control (MPC), constrained optimization safety, 
reachability-based techniques, conditional value-at-risk (CVaR) 

e.g., barrier function-based control
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Challenges



precise long-term trajectories

approximate long-term safe probability

myopic safe probability
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light
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long-term short-term

slow reaction

compromise performance

no long-term guarantee

our 
aim

fast reaction

preserve performance

long-term safety guarantee
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Challenges



Proposed Method: Intuitions

Imposing forward invariance on 

State space                                              Probability space 

𝑋𝑡

Tail probability can 
accumulate over time  

1 − 𝜖

𝑡

Long-term safety probability
Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇])
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safe set: 
𝒞 = 𝑋 ∶ 𝜙 𝑋 ≥ 0

Direct control over 
accumulation of tail events



𝑋𝑡

safe set: 
𝒞 = 𝑥 ∶ 𝜙 𝑥 ≥ 0

unsafe region

Proposed Method: Intuition

𝑋𝑡

Barrier function based
-> Myopic evaluation

Reachability based
-> Ensures long-term safety



unsafe region

Proposed Method: Intuition

𝑋𝑡

Barrier function based
-> Myopic evaluation

Reachability based
-> Ensures long-term safety

1 − 𝜖

𝑡

Long-term safety probability
Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇])

Direct control over 
accumulation of tail events

Embed 



Proposed Method

𝐴: infinitesimal generator
𝛼: monotonically increasing, concave, 𝛼 0 ≤ 0

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))

desired safety 
probability

time derivative of 
safety probability

1 − 𝜖

𝑡

Long-term safety probability
Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇])

Direct control over 
accumulation of tail events

𝑭 𝑋𝑡 = Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇]|𝑋𝑡)



Theorem: Given

𝑭 𝑋0 > 1 − 𝜖,

if we choose the control action to satisfy

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖)) for 𝑡 > 0,  

then we have

Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇]) ≥ 1 − 𝜖 for ∀𝑡 > 0

𝛼:ℝ → ℝ is a monotonically increasing concave function that satisfies 𝛼 0 ≤ 0.

Theoretical Guarantees
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Proposed Safety Condition

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))
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𝑑𝑋𝑡 = 𝑓 𝑋𝑡 + 𝑔 𝑋𝑡 𝑈𝑡 𝑑𝑡 + 𝜎 𝑋𝑡 𝑑𝑊

linear constraints of 𝑈𝑡

ℒ𝑓𝑭 𝑋𝑡 + ℒ𝑔𝑭(𝑋𝑡) 𝑼𝒕 +
1

2
tr( 𝜎 𝑋𝑡

⊺Hess𝑭(𝑋𝑡) 𝜎(𝑋𝑡) ) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))

Affine control



system dynamic:

initial state:

safe set:

nominal controller: 

desired safety probability:

Simulation
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𝑑𝑥𝑡 = 2𝑥𝑡 + 2.5𝑢𝑡 𝑑𝑡 + 2𝑑𝑤𝑡

𝑥0 = 3

𝒞 = 𝑥 ∈ ℝ : 𝑥 − 1 > 0

𝑁 𝑥𝑡 = 2.5𝑥𝑡

1 − 𝜖 = 0.9



Simulation
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Proposed: 

Clark:

Luo et al.: 

Ahmadi et al.:

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))

𝐴𝜙(𝑋𝑡) ≥ −𝛼𝜙(𝑋𝑡)

ℙ 𝑑𝜙 𝑋𝑡 , 𝑈𝑡 + 𝛼𝜙 𝑋𝑡 ≥ 0 ≥ 1 − 𝜖

CVaR𝛽(𝜙(𝑋𝑡+1)) ≥ 𝛾𝜙(𝑋𝑡)
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Adaptability 

Collision 
Avoidance

Regular 
Operation

Simulation



Advantage 1: Long-term Safety Guarantee 



Advantage 1: Long-term Safety Guarantee (Cont’d) 



Advantage 2: Better Performance Tradeoffs

cost:
deviation from 
the reference 
trajectory

safety: satisfaction of the tire force limits



Advantage 3: Less Computation Costs

• Computation of MPC grows in 𝑂 𝐻3

• Safety will not be compromised even with short outlook horizons



Random variables that inform safety 

Characterized the distribution of: 

• Worst-case margin:           Φ𝑥 𝑇 ≔ inf 𝜙 𝑋𝑡 ∈ ℝ: 𝑡 ∈ 0, 𝑇 , 𝑋0 = 𝑥

• First exit time:                    Γ𝑥 ℓ ≔ inf{𝑡 ∈ ℝ+: 𝜙 𝑋𝑡 < ℓ,𝑋0 = 𝑥}

• Distance to the safe set: Θ𝑥 𝑇 ≔ sup 𝜙 𝑋𝑡 ∈ ℝ, : 𝑡 ∈ 0, 𝑇 , 𝑋0 = 𝑥

• Recovery time:                   Ψ𝑥 ℓ ≔ inf{𝑡 ∈ ℝ+: 𝜙 𝑋𝑡 ≥ ℓ, 𝑋0 = 𝑥}

All distributions are given by the deterministic convection-diffusion equations



The complementary cumulative distribution function 
of the safety margin 𝛷𝑥 𝑇

𝐹 𝑧, 𝑇; ℓ = 𝑃 Φ𝑥 𝑇 ≥ ℓ , ℓ ∈ ℝ

is the solution to

𝜕𝐹

𝜕𝑡
=

1

2
∇ ⋅ 𝐷∇𝐹 + ℒ

𝜌−
1

2
∇⋅𝐷

𝐹 𝑧 1 ≥ ℓ, 𝑇 > 0

𝐹 𝑧, 𝑡 = 1 𝑧 1 ≥ ℓ, 𝑇 > 0

𝐹 𝑧, 0 = 𝟏 𝑧 1 <ℓ 𝑧 𝑧 ∈ ℝ𝑛+1

Theorem 1: Worst-case margin 𝛷𝑥 𝑇

Safe set 𝒞 = {𝑥: 𝜙 𝑥 ≥ ℓ}

State trajectory

𝐹(𝑧, 𝑇; 0) = safe probability during [0,T] 
𝑧 = [𝜙 𝑥 , 𝑥]

𝑋 0 = 𝑥

𝑋 𝑇



𝜕𝐺

𝜕𝑡
=
1

2
∇ ⋅ 𝐷∇𝐺 + ℒ

𝜌−
1
2∇⋅𝐷

𝐺 𝑧 1 ≥ ℓ, 𝑡 > 0

𝐺 𝑧, 𝑡 = 1 𝑧 1 < ℓ, 𝑡 > 0

𝐺 𝑧, 0 = 𝟙 𝑧 1 <ℓ 𝑧 𝑧 ∈ ℝ𝑛+1

The cumulative distribution function of the first exit 
time Γ𝑥(ℓ)

𝐺 𝑧, 𝑡; ℓ = 𝑃 Γ𝑥 ℓ ≤ 𝑡

is the solution to

Theorem 2: First exit time Γ𝑥 ℓ

State trajectory

1 − 𝐺(𝑧, 𝑇; 0) = safe probability during [0,T] 
𝑧 = [𝜙 𝑥 , 𝑥]

First exit time 

𝑋 0 = 𝑥

𝑋 𝑇

Safe set 𝒞 = {𝑥: 𝜙 𝑥 ≥ ℓ}



𝜕𝑄

𝜕𝑡
=
1

2
𝛻 ⋅ 𝐷𝛻𝑄 + ℒ

𝜌−
1
2𝛻⋅𝐷

𝑄 𝑧 1 < −ℓ, 𝑇 > 0

𝑄 𝑧, 𝑇;−ℓ = 0 𝑧 1 ≥ −ℓ, 𝑇 > 0

𝑄 𝑧, 0;−ℓ = 𝟙 𝑧 1 <ℓ 𝑧 𝑧 ∈ ℝ𝑛+1

The cumulative distribution function of the distance to the 
safe set 𝛩𝑥 𝑇

𝑄 𝑧, 𝑇;−ℓ = 𝑃 𝛩𝑥 𝑇 ≥ ℓ , ℓ ∈ ℝ

is the solution to

Theorem 3: Distance to the safe set Θ𝑥 𝑇

State trajectory

𝑄(𝑧, 𝑇;−ℓ) = the probability of getting 
within ℓ distance to C during [0,T] 

𝑧 = [𝜙 𝑥 , 𝑥]

𝑋 0 = 𝑥

𝑋 𝑇

Safe set 𝒞 = {𝑥: 𝜙 𝑥 ≥ ℓ}



𝜕𝑁

𝜕𝑡
=
1

2
∇ ⋅ 𝐷∇𝑁 + ℒ

𝜌−
1
2∇⋅𝐷

𝑁 𝑧 1 < ℓ, 𝑡 > 0

𝑁 𝑧, 𝑡 = 1 𝑧 1 ≥ ℓ, 𝑡 > 0

𝑁 𝑧, 0 = 𝟙 𝑧 1 ≥ℓ 𝑧 𝑧 ∈ ℝ𝑛+1

Let 𝐷 = 𝜁𝜁𝑇,the cumulative distribution function of 
recovery time Ψ𝑥(ℓ)

𝑁 𝑧, 𝑇; ℓ = 𝑃 Ψ𝑥 ℓ ≤ 𝑡

is the solution to

Theorem 4: First recovery time Ψ𝑥 ℓ

State trajectory

𝑁(𝑧, 𝑇; 0) = the probability of re-
enter during [0,T]

𝑧 = [𝜙 𝑥 , 𝑥]

First recovery time

𝑋 0 = 𝑥

𝑋 𝑇

Safe set 𝒞 = {𝑥: 𝜙 𝑥 ≥ ℓ}



Example use case

Ground truth      Monte Carlo PDE solver
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Challenges in microfinance:

1. Complexity in understanding default process

2. Asymmetry, heterogeneity, and incomplete information of individual applications

3. The scarcity of available past data

4. The dynamically evolving social and economic conditions

30

Microfinance from a control perspective  
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1. Robustness against missing data

2. Ability to deal with diverse microfinance distributions

Microfinance from a control perspective  
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3. Tradeoff between 
default rate vs. approval rate

4. Cheaper computational cost

5. Adaptation to changes

Microfinance from a control perspective  
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Constraints vs robust performance in human

Fast

InaccurateAccurate

Slow

Fast

InaccurateAccurate

Slow
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Tokyo Tech

Tokyo Tech
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Task 1: Compensate for the head motion

Task 2: Tracking a moving object

Constraints vs robust performance in human

Fast

InaccurateAccurate

Slow

Fast

InaccurateAccurate

Slow
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Fast

InaccurateAccurate

Slow

Biological resources

Hardware 
(neurons, muscles) 

A feedback loop 
(e.g. VOR, reflex)

Biking, 
eye movement, etc. 

Fast

InaccurateAccurate

Slow
Neurophysiology

Sensorimotor control
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Constraints vs robust performance in human


