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Safety is critical for intelligent systems

Autonomous Cobots Drones
vehicles Intelligent manufacturing



Safety is critical for intelligent systems
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Challenges

Deterministic system

safe at each step > safe at all time
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| | | |

Stochastic system

safe at each step with Long-term safe probability can
probability 1 — 6 —) scale according to
SN VS N W tlim (1-6)t=0




Challenges
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Proposed Method: Intuitions

Imposing forward invariance on

State space

s ¥ @

safe set:
» C={X:pX) =0}

e

Tail probability can
accumulate over time

Probability space

Long-term safety probability

Pr(X, € C,T € [t,t +T])
A

N PO S
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Direct control over
accumulation of tail events



Proposed Method: Intuition

Barrier function based Reachability based
-> Myopic evaluation -> Ensures long-term safety

s v
safe set:

C={x:¢p(x) =0}

»




Proposed Method: Intuition

Barrier function based Reachability based
-> Myopic evaluation -> Ensures long-term safety

Long-term safety probability
Pr(X; €eC,Te[t,t+T])

*. .

Direct control over
accumulation of tail events



Proposed Method

Long-term safety probability

Pr(X, € C,T € [t,t +T])
A

N P S s

>t

Direct control over
accumulation of tail events

F(X;) =Pr(X;€Cte|tt+T]lXy)

AF(Xe) 2 —a(F(Xy) — (1 —€))

l \

time derivative of desired safety
safety probability probability

A: infinitesimal generator
a: monotonically increasing, concave, a(0) <0



Theoretical Guarantees

Georem: Given \

F(Xo) > 1_6,

if we choose the control action to satisfy
AF(X,) = —a(F(X,) — (1 —¢€)) fort > 0,
then we have

PriX,eCte|t,t+T])=1—€eforvVt >0

(R — R is @ monotonically increasing concave function that satisfies a(0) < O/




Proposed Safety Condition

Step 1: compute F
Step 2: compute A, B based on X, F(X_t) and othel

AF(X¢) 2 —a(F(Xy) — (1 —¢€))

dX; = (f(Xp) + g(X)Up)dt + o (X )dW
Affine control

\4

1
LeF(Xe) + (L F(X,))Uy + Etr([U(Xt)]THeSSF(Xt)[U(Xt)]) = —a(F(X;) —(1—¢€))
(L,FX))U, = —a(F(X,) — (1= €))- LF(X,)- %tr([a(Xt)]THessF(Xt)[J(Xt)])

Control constraints: AU t>=B

- (L FX, ) ear constra nts of U
lin | ;
B=—a(F(X;) — (1 - €))- LF(X,)- 5 tr([o(X,)] HessF (X)) [a(X)]) 13



Proposed Safety Condition Step 0: define flx), g(x),

Sigma =1, replace G = 1, w(t) -N(0,sampling time)
dW is normal (mean zero, variance sigma)

dXt — (f(Xt) + g(Xt)Ut)dt + O'(Xt)dW Step 1: compute F

= replace their system dynamics with your in the
F(X)_ AX monte carlo simulation of F

G(X) = Bu Step 2: compute Ain (2), Biin (3)
Step 3: replace safety condition using (1)

1
LfF(Xt) + (LgF(Xt))Ut + Etr([U(Xt)]THeSSF(Xt)[U(Xt)]) = —a(F(X;) — (1 —¢€))
(LoFXO)Ue = —a(F(X,) — (1 — ))- LiF(X,)- ~tr([o(X)] HessF (X)) [0 (X))
Control constraints: AU t>=B - (1)

A= (L,F (X)) -(2)
B=—a(F(X,) — (1 — €))- LiF(X)- > tr([o(X,)] HessF (X)) [0 (X,)]) -(3)

linear constraints of U,

14



Simulation

system dynamic:
initial state:

safe set:

nominal controller:

desired safety probability:

dx; = (2x; + 2.5u;) dt + 2dw;
Xg =3
C={x€ R:x—1>0}
N(x;) = 2.5x;

1—€=0.9



Simulation

—

— Proposed controller
Clark, (2019).
—Luo et al., (2019)
—Ahmadi et al., (2020)
—Nominal controller

>

Proposed: AF(Xy) = —a(F(Xy) — (1 —¢€)) EO-S
O

Clark: AP(Xe) = —ad(Xe) 05;0.6

Luoetal.: P(dp(X.,Up) +ap(X) =20)=>1—¢€ 20_4_
ks

Ahmadi et al.: CvaRB (¢(Xt+1)) > y¢(Xt) '5_0_2 I
5

0

0

16



Simulation

Adaptability

Collision
Avoidance

Regular
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Advantage 1: Long-term Safety Guarantee

1.0

Probability

o
N

0.0

Safe Probability

o
ol

o
4?-“'

| —— Safe Controller with € =0.10

—— MPC

—— Safe Controller with £ =0.15
—— Safe Controller with € =0.20 P P |
0 2 4 6 8 10 12 14

Time (s)




Advantage 1: Long-term Safety Guarantee (Cont’d)

Total Tire Forces

Front Left Front Right
700 : 700:
~600; 6001
Z500 500
© 400+ 4001
£ 300+ 300
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100- 1001
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—————— LTV-MPC —— Proposed Method with € =0.20
—— Proposed Method with e=0.10 - Maximum Tire Grip Force Fgs¢

—— Proposed Method with e=0.15 - 85% Maximum Tire Grip Force Fq¢



Advantage 2: Better Performance Tradeoffs

cost:

deviation from
the reference
trajectory

Safety v/s Performance

5.5 —@— Proposed Method
LTV-MPC

2.5/
2.0

0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35
Safety

safety: satisfaction of the tire force limits



Advantage 3: Less Computation Costs

« Computation of MPC grows in 0(H?3)

« Safety will not be compromised even with short outlook horizons

Safety v/s MPC Prediction Horizon

Computation Load v/s MPC Prediction Horizon
0.351
v >8] H‘\‘/‘\‘
@ 0.30"
£
— 0.6
c 0.25 iy
O Q
© &
+£0.20 0.4
Q.
5 0.15-
S 0.2]
0.10-
‘ ‘ ‘ 0.0~ ‘ ‘ ‘ ‘
0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8
Prediction Horizon H (s)

0.4 0.5
Prediction Horizon H (s)



Random variables that inform safety

Characterized the distribution of:

-/ Worst-case margin: d. . (T) = inf{p(X;) e R:t € [0, T], X, = x} \
* First exit time: [,(¥) :=inf{t € R.: p(X;) < ¥, X,y = x}
« Distance to the safe set: 0,.(T) = sup{¢p(X;) e R,:t € [0,T], Xy = x}

 Recovery time: Y.(¥) =inf{t e Ry:p(X;) = £, X, = x
\ y { 4 (X 0 } /

All distributions are given by the deterministic convection-diffusion equations



Theorem 1: Worst-case margin @,(T)

Safe set C = {x: p(x) = ¥}

The complementary cumulative distribution function

of the safety margin @,.(T) ;,b«@o
F(z,T;¥) = P(®,.(T) =¥#),f €R
State trajectory
is the solution to
(oF 1 A
Ezzv.(DVF)-I_Lp—%V-DF Z[l]Z'g,T>O
< F(Z; t) =1 Z[l] = &T >0 F(z,T;0) = safe probability during [0,T]
F(Z, 0) = 1{2[1]<g}(2) 7 € ]Rn+1 z = [¢p(x),x]

N Y,




Theorem 2: First exit time I, (¥)

Safe set C = {x: p(x) = ¥}

The cumulative distribution function of the first exit First exit time

time T, (#)

G(z,t;2) =PI, (£) <t)

State trajectory

is the solution to
© |X(T)

| at — > . ( ) -+ p—%V'D Z[ ] — L= 1 — G(Z T- 0) = safe probability during [0,T]
G(Z’ t) —1 Z[]_] <£t>0 zZ = [Qb(X’);;C] |
LG(2,0) = 1[11<p(2) 2 € R

-




Theorem 3: Distance to the safe set 0,.(T)

Safe set C = {x: p(x) = ¥}

The cumulative distribution function of the distance to the
safe set 0,.(T)

X(0) =x

©)

State trajectory

0(z,T; =) = P(0,(T) = £),£ € R

is the solution to

X(T)°
“(a0 1 A
E ~ E 7 (DVQ) o Lp—%V-DQ Z[l] <—tT>0 Q(z,T; —?) = the probability of getting
. within £ distance to C during [0,T]
Q(Z)T; _'8) =0 Z[l] = _’E,T>O z = [¢p(x), x]
Q(z,0; —?) = I;[11<n(2) z € Rt
& ‘ Yy




Theorem 4: First recovery time ¥,.(¥)

Safe set C = {x: p(x) = ¥}

Let D = {7 the cumulative distribution function of
recovery time W, (¥)

N(z,T;?) = P(P,(£) < t) X(0) = x

o

is the solution to SIS

First reqovery time

/(ON = L V-(DVN L N 1 4 O\
) E - E . ( ) T P—%V'D Z[ ] stt=> N(z,T;0) = the probability of re-
_ enter during [0O,T]
N(z,t)=1 z[1] = ¢,t > 0 2 = (D00
N(z,0) = Li[1]2¢(2) z € R+l

\k




xample use case
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Ground truth Monte Carlo PDE solver



Today's talk

Neuroscience
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Constraints vs robust performance in human

SlOV\I

Fast

*

Accurate Inaccurate

Slo 7,
l‘e Q’@
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Fast
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Constraints vs robust performance in human

Task 1: Compensate for the head motion 510\,\1

Kyoto Fast

. S

Accurate Inaccurate

Task 2: Tracking a moving object
Slo n
‘90,
K &
yoto &
Fast

Accurate Inaccurate



Constraints vs robust performance in human

Sensorimotor control

Neurophysiology

Biking,
eye movement, etc.

A

A feedback loop
(e.g. VOR, reflex)

Hardware
(neurons, muscles)

A

Biological resources

SlOV\I

Fast

*

Accurate

Slo 7}

Fast

>
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Component speed-accuracy tradeoffs

Accurate Olfactory — T Too
(large R) Optic (vision) expensive

- 10 ﬁf Auditory
; / f#axons stibular (vor)
e per nerve | x/
o

A ,‘ , - |
2\ ‘> |
resource use | Qal A-alpha

(propriioception)
Rate \Delay 100 N — .
R = AT 107 10° Fast (small T)
S . .
Axon mean diameter (microns)




Diversity in axon radius

3 _
\
52 |
= \
> \
T \
Q
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~ < o Uniform
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Rate error



Diversity in muscle compositions

Different types of muscle

Slow-twitch oxidative fibers

Slow

Fast-twitch glycolytic fibers

Fast
(strong)

Accurate Inaccurate
(cheap)



Diversity in muscle compositions

Slow Fitts law
\ . . - 2D
~ qé Reaching time = a + blog, (W)
~ B
~ Q0
2 150 ~ :
 p \ 6
5 S o g
i= Uniform ™
< 100 ~ |
3 ~ ~ Target width
a7 ~

———ap===-

Fast
0 ' ' A
0 0.01 0.02 °

Accurate Target width  Inaccurate




Diversity-enabled sweet spots in biology

Efficient learning Biking Logarithmic laws
4 4 :
- In nature
Slow| ((High layer Slow Trajectory planning
Fittslaw
Reaction Weber-Fechner Law
Low layer to bumps e  Ricco Law
Fast _ — Fast > *  Accot-Zhai
Flexible Rigid Accurate Inaccurate +  Power law of practice
Walk/balance/ regt/ Immune system
A = A A
Slow| « Brain @\_// Slow| \ Targeted Slow
VOR Linear
Reflex General
Fast . Fast . Fast .

Flexible Rigid Accurate Inaccurate Flexible Rigid



Diversity-enabled sweet spots in engineering

Transportation . Smartgrid Autonomous vehicles
Slow|  Walk Slow OPF dispatch . 4 System performance
ow
Drive
Fly FrequenC}I ?
Fast , || Fast contro R -
Accurate [naccurate Flexible Rigid ast >
Accurate Inaccurate
Investment Computing in [oT Hardware property
A A A
Slow|  Cash Slow] \_Cloud Slow|\ Camera

Sonar, radar)

Fixed income
lasers, IMU?

Lidar

Fast Equit
return auy > Fast Edge > Fast

Safe Risky Powerful Limited Powerful Limited

>




Today's talk

Stochastic safe control
Robust control
Optimization
Information theory ...




Motivation

Microfinance is a category of financial services
targeting individuals and small businesses who lack
access to conventional banking and related services.

Microfinance services are designed to reach
excluded customers, usually poorer population
segments, possibly socially marginalized, or
geographically more isolated, and to help them
become self-sufficient.

Microfinance in developing areas has been proven
to improve the local economy significantly.

41



Microfinance from a control perspective

Challenges in microfinance:

Complexity in understanding default process
Asymmetry, heterogeneity, and incomplete information of individual applications
The scarcity of available past data

I N

The dynamically evolving social and economic conditions

Benefit in Microfinance

Technical Enablers

Information . 1o tion  Initial Learning Stage  Proactive Policy Design ~ Steady Stage - Systematically trade-off
Gathering = . Adapt to exploration vs. exploitation
I financial opportunities : changing economic - Immediate feedback _
poicy B s i&social situations from small samples toward better policy
ongfe :  Design - Ability
:  new policies with to add new features
OO SRt (o1 X--1o1 L1 O S
A N : § WP to optimal parameters
"y reliable loan policies : : social welfare .
Optimized Exploitation ——— : ; - Continuously
Decision Sustainability Concern adapt to changes
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Microfinance from a control perspective

1. Robustness against missing data

1o | | | O L(g) = 1 —exp(—q)

M B L(a) = fomdy — 1
I probability extrapolation
05 F 4 | I perceptron

I random forest

I 5V M

0F 4 | [ logistic regresion

average converged
normalized utilitics

no empty entry  10% empty entry 25% empty entry 50% empty entry

2. Ability to deal with diverse microfinance distributions

g é, ] 200 t

5 5004

normalized
converged utilities
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0
Qﬂo Qi I L(q) = 1 —exp(—q) [ L(q) = f_—?}%ﬁ% — 1 [ probability extrapolation [l perceptron
dccision algorithms [ random forest I SV M I logistic regresion

decision algorithms



Microfinance from a control perspective

3. Tradeoff between
default rate vs. approval rate

203 () —L(g)=1- ?XP(*Q‘)
< _ 2explg)
— /. L(q) o l+l>}§p(lq) -1
=02 _/ = ——probability extrapolation
= ’
3 _ .../-/ S e perceptron
g 01 —__=77 » random forest
o SVM
0.6 0.8 1

o logistic regression

approval rate - - -group applications

4. Cheaper computational cost

computational
time, (s)

100} - .

il
X
wlfie
X

«vvq\@ N o (o

S5 O
o .12)(4;;{& < 9 Qe’x‘l 0‘@ ,6{30x

9 * o

decision algorithms

5.

Adaptation to changes

iy —L(q) =1 —exp(—q)
= _ 2exp(g)
'43 L(Q) - l+4explq) 1
5 —perfect scenario
o ——probability extrapolation
§ ——perceptron
< ——random forest
60 —SVM
0 200 400 - )
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decision algorithms
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