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Autonomous 
vehicles

Cobots
Intelligent manufacturing

Drones
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Safety is critical for intelligent systems 
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Resilience

Adaptability 

Collision 
Avoidance

Regular 
Operation

Dealing with 
uncertainty

Safety is critical for intelligent systems 



Challenges

safe at each step safe at all time

time
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safe at each step with 
probability 1 − 𝛿

time

Deterministic system

Stochastic system

Long-term safe probability can 
scale according to
lim
t→∞

1 − 𝛿 𝑡=0



precise long-term trajectories

approximate long-term safe probability

myopic safe probability

co
m

p
u

ta
ti
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safety guarantee

light

heavy

long-term short-term

slow reaction

compromise performance

no long-term guarantee

e.g., stochastic barrier certificate 

e.g., model predictive control (MPC), constrained optimization safety, 
reachability-based techniques, conditional value-at-risk (CVaR) 

e.g., barrier function-based control
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Challenges



precise long-term trajectories

approximate long-term safe probability

myopic safe probability

co
m

p
u

ta
ti
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safety guarantee

light

heavy

long-term short-term

slow reaction

compromise performance

no long-term guarantee

our 
aim

fast reaction

preserve performance

long-term safety guarantee
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Challenges



Proposed Method: Intuitions

Imposing forward invariance on 

State space                                              Probability space 

𝑋𝑡

Tail probability can 
accumulate over time  

1 − 𝜖

𝑡

Long-term safety probability
Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇])
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safe set: 
𝒞 = 𝑋 ∶ 𝜙 𝑋 ≥ 0

Direct control over 
accumulation of tail events



𝑋𝑡

safe set: 
𝒞 = 𝑥 ∶ 𝜙 𝑥 ≥ 0

unsafe region

Proposed Method: Intuition

𝑋𝑡

Barrier function based
-> Myopic evaluation

Reachability based
-> Ensures long-term safety



unsafe region

Proposed Method: Intuition

𝑋𝑡

Barrier function based
-> Myopic evaluation

Reachability based
-> Ensures long-term safety

1 − 𝜖

𝑡

Long-term safety probability
Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇])

Direct control over 
accumulation of tail events

Embed 



Proposed Method

𝐴: infinitesimal generator
𝛼: monotonically increasing, concave, 𝛼 0 ≤ 0

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))

desired safety 
probability

time derivative of 
safety probability

1 − 𝜖

𝑡

Long-term safety probability
Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇])

Direct control over 
accumulation of tail events

𝑭 𝑋𝑡 = Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇]|𝑋𝑡)



Theorem: Given

𝑭 𝑋0 > 1 − 𝜖,

if we choose the control action to satisfy

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖)) for 𝑡 > 0,  

then we have

Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇]) ≥ 1 − 𝜖 for ∀𝑡 > 0

𝛼:ℝ → ℝ is a monotonically increasing concave function that satisfies 𝛼 0 ≤ 0.

Theoretical Guarantees
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Proposed Safety Condition

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))
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𝑑𝑋𝑡 = 𝑓 𝑋𝑡 + 𝑔 𝑋𝑡 𝑈𝑡 𝑑𝑡 + 𝜎 𝑋𝑡 𝑑𝑊

linear constraints of 𝑈𝑡

ℒ𝑓𝑭 𝑋𝑡 + ℒ𝑔𝑭(𝑋𝑡) 𝑼𝒕 +
1

2
tr( 𝜎 𝑋𝑡

⊺Hess𝑭(𝑋𝑡) 𝜎(𝑋𝑡) ) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))

ℒ𝑔𝑭(𝑋𝑡) 𝑼𝒕 ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))- ℒ𝑓𝑭 𝑋𝑡 -
1

2
tr( 𝜎 𝑋𝑡

⊺Hess𝑭(𝑋𝑡) 𝜎(𝑋𝑡) )

Control constraints: A U_t >= B

A= ℒ𝑔𝑭(𝑋𝑡)

B=−𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))- ℒ𝑓𝑭 𝑋𝑡 -
1

2
tr( 𝜎 𝑋𝑡

⊺Hess𝑭(𝑋𝑡) 𝜎(𝑋𝑡) )

Affine control

Step 1: compute F 
Step 2: compute A, B based on X, F(X_t) and others



Proposed Safety Condition
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𝑑𝑋𝑡 = 𝑓 𝑋𝑡 + 𝑔 𝑋𝑡 𝑈𝑡 𝑑𝑡 + 𝜎 𝑋𝑡 𝑑𝑊
F(x)= Ax

G(X) = Bu

linear constraints of 𝑈𝑡

ℒ𝑓𝑭 𝑋𝑡 + ℒ𝑔𝑭(𝑋𝑡) 𝑼𝒕 +
1

2
tr( 𝜎 𝑋𝑡

⊺Hess𝑭(𝑋𝑡) 𝜎(𝑋𝑡) ) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))

ℒ𝑔𝑭(𝑋𝑡) 𝑼𝒕 ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))- ℒ𝑓𝑭 𝑋𝑡 -
1

2
tr( 𝜎 𝑋𝑡

⊺Hess𝑭(𝑋𝑡) 𝜎(𝑋𝑡) )

Control constraints: A U_t >= B – (1)

A= ℒ𝑔𝑭(𝑋𝑡) -(2)

B=−𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))- ℒ𝑓𝑭 𝑋𝑡 -
1

2
tr( 𝜎 𝑋𝑡

⊺Hess𝑭(𝑋𝑡) 𝜎(𝑋𝑡) ) –(3)

Step 0: define f(x), g(x), 
Sigma = 1, replace G = 1, w(t) -N(0,sampling time) 
dW is normal (mean zero, variance sigma)
Step 1: compute F 

replace their system dynamics with your in the 
monte carlo simulation of F
Step 2: compute A in (2), B in (3)
Step 3: replace safety condition using (1)



system dynamic:

initial state:

safe set:

nominal controller: 

desired safety probability:

Simulation
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𝑑𝑥𝑡 = 2𝑥𝑡 + 2.5𝑢𝑡 𝑑𝑡 + 2𝑑𝑤𝑡

𝑥0 = 3

𝒞 = 𝑥 ∈ ℝ : 𝑥 − 1 > 0

𝑁 𝑥𝑡 = 2.5𝑥𝑡

1 − 𝜖 = 0.9



Simulation
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Proposed: 

Clark:

Luo et al.: 

Ahmadi et al.:

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))

𝐴𝜙(𝑋𝑡) ≥ −𝛼𝜙(𝑋𝑡)

ℙ 𝑑𝜙 𝑋𝑡 , 𝑈𝑡 + 𝛼𝜙 𝑋𝑡 ≥ 0 ≥ 1 − 𝜖

CVaR𝛽(𝜙(𝑋𝑡+1)) ≥ 𝛾𝜙(𝑋𝑡)
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Adaptability 

Collision 
Avoidance

Regular 
Operation

Simulation



Advantage 1: Long-term Safety Guarantee 



Advantage 1: Long-term Safety Guarantee (Cont’d) 



Advantage 2: Better Performance Tradeoffs

cost:
deviation from 
the reference 
trajectory

safety: satisfaction of the tire force limits



Advantage 3: Less Computation Costs

• Computation of MPC grows in 𝑂 𝐻3

• Safety will not be compromised even with short outlook horizons



Random variables that inform safety 

Characterized the distribution of: 

• Worst-case margin:           Φ𝑥 𝑇 ≔ inf 𝜙 𝑋𝑡 ∈ ℝ: 𝑡 ∈ 0, 𝑇 , 𝑋0 = 𝑥

• First exit time:                    Γ𝑥 ℓ ≔ inf{𝑡 ∈ ℝ+: 𝜙 𝑋𝑡 < ℓ,𝑋0 = 𝑥}

• Distance to the safe set: Θ𝑥 𝑇 ≔ sup 𝜙 𝑋𝑡 ∈ ℝ, : 𝑡 ∈ 0, 𝑇 , 𝑋0 = 𝑥

• Recovery time:                   Ψ𝑥 ℓ ≔ inf{𝑡 ∈ ℝ+: 𝜙 𝑋𝑡 ≥ ℓ, 𝑋0 = 𝑥}

All distributions are given by the deterministic convection-diffusion equations



The complementary cumulative distribution function 
of the safety margin 𝛷𝑥 𝑇

𝐹 𝑧, 𝑇; ℓ = 𝑃 Φ𝑥 𝑇 ≥ ℓ , ℓ ∈ ℝ

is the solution to

𝜕𝐹

𝜕𝑡
=

1

2
∇ ⋅ 𝐷∇𝐹 + ℒ

𝜌−
1

2
∇⋅𝐷

𝐹 𝑧 1 ≥ ℓ, 𝑇 > 0

𝐹 𝑧, 𝑡 = 1 𝑧 1 ≥ ℓ, 𝑇 > 0

𝐹 𝑧, 0 = 𝟏 𝑧 1 <ℓ 𝑧 𝑧 ∈ ℝ𝑛+1

Theorem 1: Worst-case margin 𝛷𝑥 𝑇

Safe set 𝒞 = {𝑥: 𝜙 𝑥 ≥ ℓ}

State trajectory

𝐹(𝑧, 𝑇; 0) = safe probability during [0,T] 
𝑧 = [𝜙 𝑥 , 𝑥]

𝑋 0 = 𝑥

𝑋 𝑇



𝜕𝐺

𝜕𝑡
=
1

2
∇ ⋅ 𝐷∇𝐺 + ℒ

𝜌−
1
2∇⋅𝐷

𝐺 𝑧 1 ≥ ℓ, 𝑡 > 0

𝐺 𝑧, 𝑡 = 1 𝑧 1 < ℓ, 𝑡 > 0

𝐺 𝑧, 0 = 𝟙 𝑧 1 <ℓ 𝑧 𝑧 ∈ ℝ𝑛+1

The cumulative distribution function of the first exit 
time Γ𝑥(ℓ)

𝐺 𝑧, 𝑡; ℓ = 𝑃 Γ𝑥 ℓ ≤ 𝑡

is the solution to

Theorem 2: First exit time Γ𝑥 ℓ

State trajectory

1 − 𝐺(𝑧, 𝑇; 0) = safe probability during [0,T] 
𝑧 = [𝜙 𝑥 , 𝑥]

First exit time 

𝑋 0 = 𝑥

𝑋 𝑇

Safe set 𝒞 = {𝑥: 𝜙 𝑥 ≥ ℓ}



𝜕𝑄

𝜕𝑡
=
1

2
𝛻 ⋅ 𝐷𝛻𝑄 + ℒ

𝜌−
1
2𝛻⋅𝐷

𝑄 𝑧 1 < −ℓ, 𝑇 > 0

𝑄 𝑧, 𝑇;−ℓ = 0 𝑧 1 ≥ −ℓ, 𝑇 > 0

𝑄 𝑧, 0;−ℓ = 𝟙 𝑧 1 <ℓ 𝑧 𝑧 ∈ ℝ𝑛+1

The cumulative distribution function of the distance to the 
safe set 𝛩𝑥 𝑇

𝑄 𝑧, 𝑇;−ℓ = 𝑃 𝛩𝑥 𝑇 ≥ ℓ , ℓ ∈ ℝ

is the solution to

Theorem 3: Distance to the safe set Θ𝑥 𝑇

State trajectory

𝑄(𝑧, 𝑇;−ℓ) = the probability of getting 
within ℓ distance to C during [0,T] 

𝑧 = [𝜙 𝑥 , 𝑥]

𝑋 0 = 𝑥

𝑋 𝑇

Safe set 𝒞 = {𝑥: 𝜙 𝑥 ≥ ℓ}



𝜕𝑁

𝜕𝑡
=
1

2
∇ ⋅ 𝐷∇𝑁 + ℒ

𝜌−
1
2∇⋅𝐷

𝑁 𝑧 1 < ℓ, 𝑡 > 0

𝑁 𝑧, 𝑡 = 1 𝑧 1 ≥ ℓ, 𝑡 > 0

𝑁 𝑧, 0 = 𝟙 𝑧 1 ≥ℓ 𝑧 𝑧 ∈ ℝ𝑛+1

Let 𝐷 = 𝜁𝜁𝑇,the cumulative distribution function of 
recovery time Ψ𝑥(ℓ)

𝑁 𝑧, 𝑇; ℓ = 𝑃 Ψ𝑥 ℓ ≤ 𝑡

is the solution to

Theorem 4: First recovery time Ψ𝑥 ℓ

State trajectory

𝑁(𝑧, 𝑇; 0) = the probability of re-
enter during [0,T]

𝑧 = [𝜙 𝑥 , 𝑥]

First recovery time

𝑋 0 = 𝑥

𝑋 𝑇

Safe set 𝒞 = {𝑥: 𝜙 𝑥 ≥ ℓ}



Example use case

Ground truth      Monte Carlo PDE solver
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Constraints vs robust performance in human

Fast

InaccurateAccurate

Slow

Fast

InaccurateAccurate

Slow

31



Kyoto

Kyoto
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Task 1: Compensate for the head motion

Task 2: Tracking a moving object

Constraints vs robust performance in human

Fast

InaccurateAccurate

Slow

Fast

InaccurateAccurate

Slow
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Fast

InaccurateAccurate

Slow

Biological resources

Hardware 
(neurons, muscles) 

A feedback loop 
(e.g. VOR, reflex)

Biking, 
eye movement, etc. 

Fast

InaccurateAccurate

Slow
Neurophysiology

Sensorimotor control
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Constraints vs robust performance in human



Axon mean diameter (microns)

#axons 
per nerve

10
-1

10
0

10
1

10
0

10
5

Auditory

Optic (vision)

A-alpha
(proprioception)

Component speed-accuracy tradeoffs

resource use

Accurate 
(large R)

Fast (small 𝑇𝑠)
Rate Delay

𝑅 = 𝜆𝑇𝑠

Olfactory

Vestibular (VOR)

Spinal

Too 
expensive



Rate error

D
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ay
 e
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o

r

Diversity-enabled 
sweet spots

Diversity in axon radius
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Fast

InaccurateAccurate

Slow

(strong)

(cheap)

Different types of muscle

Slow-twitch oxidative fibers

Fast-twitch glycolytic fibers

Diversity in muscle compositions
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R
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Target width

Diversity Sweet Spot

Uniform

Diverse

Accurate

Fast

Slow     

Inaccurate

Fitts law

Reaching time = 𝑎 + 𝑏 log2(
2𝐷

𝑊
)

Target width

R
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g
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e

R
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ch
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e

Target width

Diversity in muscle compositions
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Diversity-enabled sweet spots in biology

Efficient learning Biking

InaccurateAccurate

Fast

Slow

Reaction 
to bumpsCombinationFast

RigidFlexible

Slow

Learning 

High layer

Low layer

Walk/balance/react

Fast

RigidFlexible

Slow

Learning 

Brain

Reflex

VOR

• Fitts law
• Weber-Fechner Law
• Ricco Law
• Accot-Zhai
• Power law of practice

RigidFlexible

Linear

Log

Fast

Slow

Logarithmic laws 
in nature

Trajectory planning

Immune system 

InaccurateAccurate

Fast

Slow Targeted 

General Combination
38



Smart grid

LimitedPowerful

Fast

Slow Camera

RigidFlexible

OPF dispatch

Fast

Slow

Frequency
controlCombination

Transportation

Combination
Fly

Walk

Drive

Fast

Slow

InaccurateAccurate

Investment

Slow

Combination
Equity

Cash

Fixed income

Safe Risky

Fast
return

LimitedPowerful

Fast

Slow Cloud

EdgeCombination

Computing in IoT
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Autonomous vehicles

Sonar, radar, 
lasers, IMU?

Accurate

Fast

Slow

Inaccurate

?

System performance

Hardware property

Lidar

Diversity-enabled sweet spots in engineering
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Motivation

Microfinance is a category of financial services 

targeting individuals and small businesses who lack 

access to conventional banking and related services.

Microfinance services are designed to reach 

excluded customers, usually poorer population 

segments, possibly socially marginalized, or 

geographically more isolated, and to help them 

become self-sufficient.

Microfinance in developing areas has been proven 

to improve the local economy significantly.

41



Challenges in microfinance:

1. Complexity in understanding default process

2. Asymmetry, heterogeneity, and incomplete information of individual applications

3. The scarcity of available past data

4. The dynamically evolving social and economic conditions

42

Microfinance from a control perspective  
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1. Robustness against missing data

2. Ability to deal with diverse microfinance distributions

Microfinance from a control perspective  
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3. Tradeoff between 
default rate vs. approval rate

4. Cheaper computational cost

5. Adaptation to changes

Microfinance from a control perspective  


