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Safety is critical for intelligent systems

Autonomous Cobots Drones
vehicles Intelligent manufacturing



Real-time safety certificate in uncertainty environment
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Safety is critical for intelligent systems
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Safety is critical for intelligent systems




Challenges: achieving safety in uncertainty

Existing approach:
Control barrier function...
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Proposed Method: Intuitions

Existing approach:
Control barrier function...

Safe set C
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Proposed Method: Intuitions

Existing approach:
Control barrier function...

Safe set C
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safe set:
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Under stochastic
uncertainties

Proposed approach:

Long-term safety probability

F(X,) = Pr(X, € C,T € [t,t + T]|X,)

Forward invariance in
probability space

>t
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Proposed Method: Intuition

Control barrier functions: Reachability:
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Proposed Method: Intuition

Control barrier functions: Reachability:
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Proposed Method: Intuition

Control barrier functions: Reachability:
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Proposed Method: Intuition

Control barrier functions: Reachability:
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Proposed Method

Long-term safe probability
F(X;) =Pr(X; €C,t €[t t+T]|X) Proposed Safety Condition:

1—¢€

K AF(X) = —a(F(X) — (1 - )
Myopically verifiable 1 \

_________ e _ _
Forward invariance time derivative of  desired safety
in probability space safety probability probability
> 1

A: infinitesimal generator
a: R - R monotonically increasing, concave, a(0) < 0.



Theoretical Guarantees

Georem: Given \

F(Xo) > 1_6,

if we choose the control action to satisfy
AF(X,) = —a(F(X,) — (1 —¢€)) fort > 0,
then we have

PriX,eCte|t,t+T])=1—€eforvVt >0

(R — R is @ monotonically increasing concave function that satisfies a(0) < O/




Proposed Safety Condition
F(X;) =Pr(X; €C,t €[t t+T]lXs)

AF(X¢) 2 —a(F(Xy) — (1 —¢€))
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AF(Xe) = LpF(Xo) + (LF(X))u + = ! - tr([o (X)) HessF (X)) [o (X))

\‘k _
constant given system dynamics
dX; = (f(X) + g(XpUpdt + o (X )dW
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Simulation

system dynamic:
initial state:

safe set:

nominal controller:

desired safety probability:

dx; = (2x; + 2.5u;) dt + 2dw;
Xg =3
C={x€ R:x—1>0}
N(x;) = 2.5x;

1—€=0.9



Simulation

Empirical safe probability

Empirical safety probability:
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—Proposed controller ||
Clark, (2019).
—VLuo et al., (2019)
—Ahmadi et al., (2020) |
—Nominal controller

OC)

Safety conditions:

Proposed: AF(X;) =2 —a(F(X;) — (1 —¢€))
Clark: APp(Xy) = —ap(X;)
luoetal.: PdopX;,U;)+ap(X;)=0)=>1—¢
Ahmadi et al.: CVaRg (¢ (Xt4+1)) = vp(Xe)
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Simulation

Averaged state

Empirical safe probability

o
o

O
o

O
~

O
N
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—Nominal controller

—Proposed controller |

——Ahmadi et al., (2020).
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Simulation - Nonlinear trap

System becomes uncontrollable once reach state x = 1.5

Averaged state

Empirical safe probability
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—Proposed controller
Clark, (2019).
—Luo et al., (2019)
—Ahmadi et al., (2020)
—Nominal controller
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Setting: vehicle slippery -> lose of control -> loss of safety




Advantage 1: Long-term Safety Guarantee
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Advantage 1: Long-term Safety Guarantee (Cont’d)
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Advantage 2: Better Performance Tradeoffs

cost:

deviation from
the reference
trajectory

Safety v/s Performance
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2.0

0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35
Safety

safety: satisfaction of the tire force limits



Advantage 3: Less Computation Costs

« Computation of MPC grows in 0(H?3)

« Safety will not be compromised even with short outlook horizons

Safety v/s MPC Prediction Horizon
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Microfinance from a control perspective

e Microfinance in developing areas has been proven to improve the local economy significantly.

However, building reliable microfinance system is challenging

I N

Complexity in understanding default process
Asymmetry, heterogeneity, and incomplete information of individual applications
The scarcity of available past data
The dynamically evolving social and economic conditions

Features of Proposed Algorithm:

Benefit in Microfinance

Information

Gathering

Policy
Obiective

v
Optimized
Decision

Exploration
Provide

financial opportunities

D I . T P

reliable loan policies

SRIENEUIE Systainability Concern

Initial Learning Stage Proactive Policy Design

Steady Stage

:Adapt to
:changing economic
: & social situations

......................................................................................................................................

: social welfare

Technical Enablers
- Systematically trade-off
exploration vs. exploitation
- Immediate feedback
from small samples toward better policy
- Ability
to add new features

to optimal parameters
- Continuously
adapt to changes
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Microfinance from a control perspective

1. Robustness against missing data
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2. Ability to deal with diverse microfinance distributions
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Microfinance from a control perspective

3. Tradeoff between
default rate vs. approval rate
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4. Cheaper computational cost
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Adaptation to changes
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Constraints vs robust performance in human

Sensorimotor control

Neurophysiology

Biking,
eye movement, etc.

A

A feedback loop
(e.g. VOR, reflex)

Hardware
(neurons, muscles)

A

Biological resources

SlOV\I

Fast

>
Acc.\rate Inaccurate

Diversity-enabled sweet spots
through effective architectures

Slo

Fast

Accurate Inaccurate



