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Safety is critical for intelligent systems 
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Real-time safety certificate in uncertainty environment 

slow reaction

compromise performance

no long-term guarantee

e.g., stochastic barrier certificate [5]

e.g., model predictive control (MPC), constrained optimization safety, 
reachability-based techniques, conditional value-at-risk (CVaR) [1-4]

e.g., barrier function-based control [6-7]
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Resilience

Adaptability 
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Regular 
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Safety is critical for intelligent systems 



Challenges: achieving safety in uncertainty

safe at next time => safe at all time

safe with probability 
1 − 𝛿 at each step

unsafe with high probability 
in a long term

time



𝑋𝑡

?

?

Under stochastic 
uncertainties
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Safe set 𝒞

Existing approach: 
Control barrier function…

safe set: 
𝒞 = 𝑥 ∶ 𝜙 𝑥 ≥ 0
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slow reaction

compromise performance
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our 
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fast reaction

preserve performance

long-term safety guarantee
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Proposed Method: Intuitions

time

safe at next time => safe at all time

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?

?

Under stochastic 
uncertainties
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Safe set 𝒞

Existing approach: 
Control barrier function…

safe set: 
𝒞 = 𝑥 ∶ 𝜙 𝑥 ≥ 0

safe with probability 
1 − 𝛿 at each step

1 − 𝛿

unsafe with high 
probability in a long term

1 − 𝛿 𝑛



Proposed Method: Intuitions

Existing approach: 
Control barrier function…

𝑋𝑡

?

?

Under stochastic 
uncertainties

1 − 𝜖

𝑡

Long-term safety probability
𝑭 𝑋𝑡 = Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇]|𝑋𝑡)

Forward invariance in 
probability space

Proposed approach:
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Safe set 𝒞

safe set: 
𝒞 = 𝑥 ∶ 𝜙 𝑥 ≥ 0
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Proposed Method

1 − 𝜖

𝑡

Long-term safe probability
𝑭 𝑋𝑡 = Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇]|𝑋𝑡)

Myopically verifiable

Forward invariance 
in probability space

𝐴: infinitesimal generator
𝛼:ℝ → ℝ monotonically increasing, concave, 𝛼 0 ≤ 0.

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))

desired safety 
probability

time derivative of 
safety probability

Proposed Safety Condition:



Theorem: Given

𝑭 𝑋0 > 1 − 𝜖,

if we choose the control action to satisfy

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖)) for 𝑡 > 0,  

then we have

Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇]) ≥ 1 − 𝜖 for ∀𝑡 > 0

𝛼:ℝ → ℝ is a monotonically increasing concave function that satisfies 𝛼 0 ≤ 0.

Theoretical Guarantees

20



Proposed Safety Condition

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))
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𝐴𝑭 𝑋𝑡 = ℒ𝑓𝑭 𝑋𝑡 + ℒ𝑔𝑭(𝑋𝑡) 𝑢 +
1

2
tr( 𝜎 𝑋𝑡

⊺Hess𝑭(𝑋𝑡) 𝜎(𝑋𝑡) )

constant given system dynamics
𝑑𝑋𝑡 = 𝑓 𝑋𝑡 + 𝑔 𝑋𝑡 𝑈𝑡 𝑑𝑡 + 𝜎 𝑋𝑡 𝑑𝑊

linear with respect to 𝑢

𝐴𝑭 𝑋𝑡 = ℒ𝑓𝑭 𝑋𝑡 + ℒ𝑔𝑭(𝑋𝑡) 𝑢 +
1

2
tr( 𝜎 𝑋𝑡

⊺Hess𝑭(𝑋𝑡) 𝜎(𝑋𝑡) )𝐴𝑭 𝑋𝑡 = ℒ𝑓𝑭 𝑋𝑡 + ℒ𝑔𝑭(𝑋𝑡) 𝑢 +
1

2
tr( 𝜎 𝑋𝑡

⊺Hess𝑭(𝑋𝑡) 𝜎(𝑋𝑡) )

𝑭 𝑋𝑡 = Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇]|𝑋𝑡)



system dynamic:

initial state:

safe set:

nominal controller: 

desired safety probability:

Simulation
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𝑑𝑥𝑡 = 2𝑥𝑡 + 2.5𝑢𝑡 𝑑𝑡 + 2𝑑𝑤𝑡

𝑥0 = 3

𝒞 = 𝑥 ∈ ℝ : 𝑥 − 1 > 0

𝑁 𝑥𝑡 = 2.5𝑥𝑡

1 − 𝜖 = 0.9



Simulation
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Empirical safety probability: Safety conditions:

Proposed: 

Clark:

Luo et al.: 

Ahmadi et al.:

𝐴𝑭(𝑋𝑡) ≥ −𝛼(𝑭(𝑋𝑡) − (1 − 𝜖))

𝐴𝜙(𝑋𝑡) ≥ −𝛼𝜙(𝑋𝑡)

ℙ 𝑑𝜙 𝑋𝑡 , 𝑈𝑡 + 𝛼𝜙 𝑋𝑡 ≥ 0 ≥ 1 − 𝜖

CVaR𝛽(𝜙(𝑋𝑡+1)) ≥ 𝛾𝜙(𝑋𝑡)



Simulation
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Clark, (2019).

Luo et al., (2019).

Ahmadi et al., (2020).



Simulation – Nonlinear trap
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System becomes uncontrollable once reach state 𝑥 = 1.5



Setting: vehicle slippery -> lose of control -> loss of safety



Advantage 1: Long-term Safety Guarantee 



Advantage 1: Long-term Safety Guarantee (Cont’d) 



Advantage 2: Better Performance Tradeoffs

cost:
deviation from 
the reference 
trajectory

safety: satisfaction of the tire force limits



Advantage 3: Less Computation Costs

• Computation of MPC grows in 𝑂 𝐻3

• Safety will not be compromised even with short outlook horizons
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● Microfinance in developing areas has been proven to improve the local economy significantly.

However, building reliable microfinance system is challenging

1. Complexity in understanding default process

2. Asymmetry, heterogeneity, and incomplete information of individual applications

3. The scarcity of available past data

4. The dynamically evolving social and economic conditions

Features of Proposed Algorithm:

33

Microfinance from a control perspective  
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1. Robustness against missing data

2. Ability to deal with diverse microfinance distributions

Microfinance from a control perspective  
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3. Tradeoff between 
default rate vs. approval rate

4. Cheaper computational cost

5. Adaptation to changes

Microfinance from a control perspective  
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Fast

InaccurateAccurate

Slow

Biological resources

Hardware 
(neurons, muscles) 

A feedback loop 
(e.g. VOR, reflex)

Biking, 
eye movement, etc. 

Fast

InaccurateAccurate

Slow
Neurophysiology

Sensorimotor control

Diversity-enabled sweet spots
through effective architectures
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Constraints vs robust performance in human


