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4Research Goal

• Control algorithm design for autonomous vehicles

• Robust, adaptive, and computationally efficient

• Guarantee long-term safety 

• Work under large uncertainties and changing 
environments.



5Related works

• Probabilistic safe controls: over conservatism from 
attempting robust behaviors to worst-case errors [1-3].

• Control Barrier/Lyapunov Functions: difficulty in 
integrating competing safety v.s. performance objectives 
[4,5].

• Reachability based safety: stringent time-horizon vs 
computation/reaction-time tradeoffs [6,7].



6Advantage 1: Long-term Safety Guarantee 



7Advantage 1: Long-term Safety Guarantee (Cont’d) 



8Advantage 2: Better Performance Tradeoffs

cost:
deviation from 
the reference 
trajectory

safety: satisfaction of the tire force limits



9Advantage 3: Less Computation Costs

• Computation of MPC grows in 𝑂 𝐻3

• Safety will not be compromised even with short outlook horizons
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Control barrier functions:

𝑋𝑡

safe set: 
𝒮 = 𝑥 ∶ 𝜙 𝑥 ≥ 0

unsafe region

Reachability:

Proposed Method: Intuition
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1 − 𝜖

𝑡

Long-term safe probability
𝚿 𝑋𝑡 = Pr(𝑋𝜏 ∈ 𝒞, 𝜏 ∈ [𝑡, 𝑡 + 𝑇]|𝑋𝑡 , 𝜉𝑡)

Myopically verifiable

Forward invariance in probability space

Reliability



17Safe Control Method

𝐴Ψ(𝑋𝑡) ≥ −𝛾(Ψ(𝑋𝑡) − (1 − 𝜖))

𝛾: ℝ → ℝ is a concave function, with 𝛾 𝑞 ≤ 𝑞, ∀𝑞 ∈ ℝ.

desired safe 
probability

time derivative of 
safe probability

Ψ 𝑋𝑡 = Pr(𝑋𝜏 ∈ 𝒮, 𝜏 ∈ [𝑡, 𝑡 + 𝑇]|𝑋𝑡, 𝜉𝑡)
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𝐴Ψ(𝑋𝑡) ≥ −𝛾(Ψ(𝑋𝑡) − (1 − 𝜖))

𝐴Ψ 𝑋𝑡 = ℒ𝑓Ψ 𝑋𝑡 + ℒ𝑔Ψ(𝑋𝑡) 𝑢 +
1

2
tr( 𝜎 𝑋𝑡

⊺HessΨ(𝑋𝑡) 𝜎(𝑋𝑡) )

constant given system dynamics
𝑑𝑋𝑡 = 𝑓 𝑋𝑡 + 𝑔 𝑋𝑡 𝑈𝑡 𝑑𝑡 + 𝜎 𝑋𝑡 𝑑𝑊

linear with respect to 𝑢

𝐴Ψ 𝑋𝑡 = ℒ𝑓Ψ 𝑋𝑡 + ℒ𝑔Ψ(𝑋𝑡) 𝑢 +
1

2
tr( 𝜎 𝑋𝑡

⊺HessΨ(𝑋𝑡) 𝜎(𝑋𝑡) )𝐴Ψ 𝑋𝑡 = ℒ𝑓Ψ 𝑋𝑡 + ℒ𝑔Ψ(𝑋𝑡) 𝑢 +
1

2
tr( 𝜎 𝑋𝑡

⊺HessΨ(𝑋𝑡) 𝜎(𝑋𝑡) )

Efficiency



19Safe Control Method

Modularity

nominal controller 𝑈𝑡 = 𝑁 𝑋𝑡 ensures desired performance without 
considering safety

The proposed safe controller:

𝑈𝑡 = arg min
𝑢

𝐽(𝑁 𝑋𝑡 , 𝑢)

s. t. 𝐴Ψ 𝑋𝑡 ≥ −𝛾(Ψ 𝑋𝑡 − (1 − 𝜖))

Objective function that penalizes derivation from desired performance,
constrained by safety condition.



20Conclusion

Theme: Safe control strategy for vehicle lateral force control

Features: 

• Provable long-term safety guarantee

• Can deal with uncertainties and adapt to changes

• Better trade-off between performance, safety, and 
computation
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Thanks for listening!
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