Carnegie Mellon University Electrical & Computer Engineering

Long-term Safety for Autonomous Systems

> Zhuoyuan (Jacob) Wang 3/4/2022

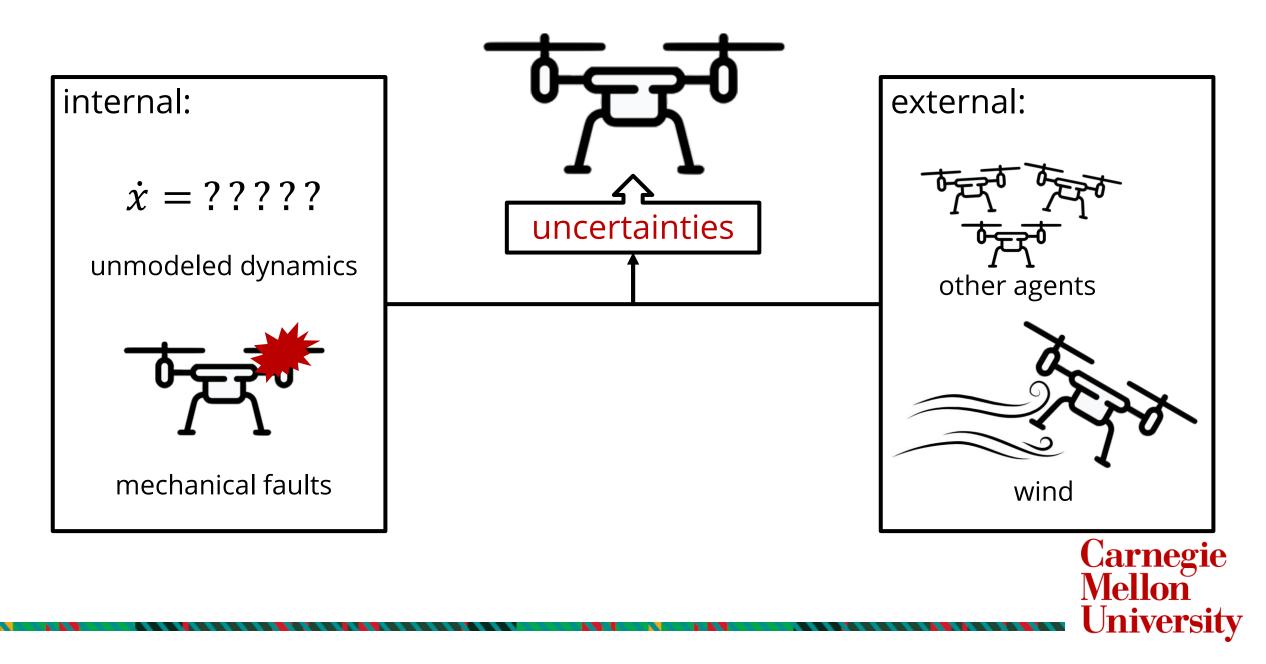
Autonomous control systems

autonomous vehicles

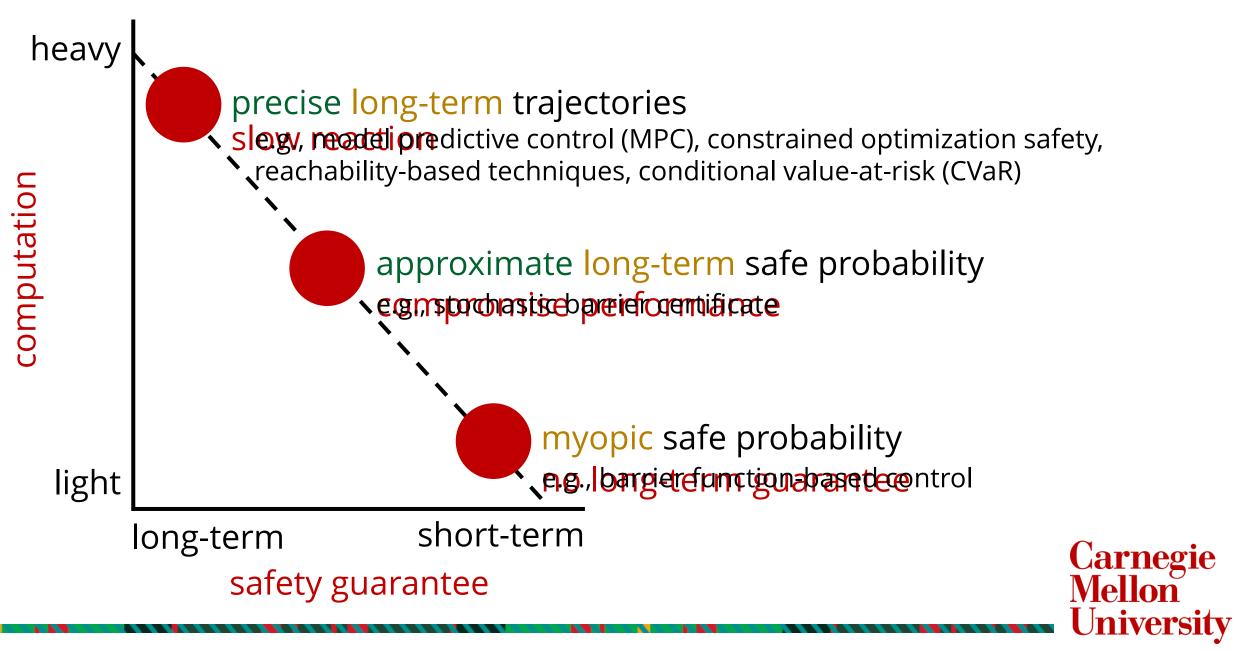
industrial robots

drones

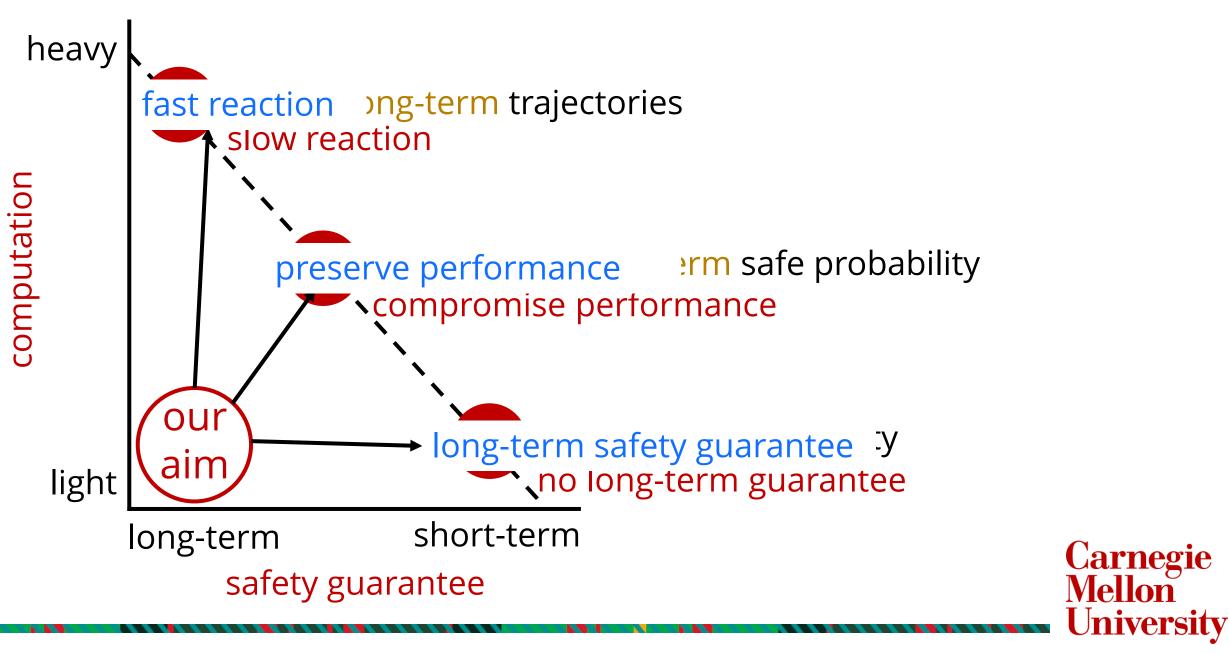
Why robust safety in stochastic systems?



Existing methods



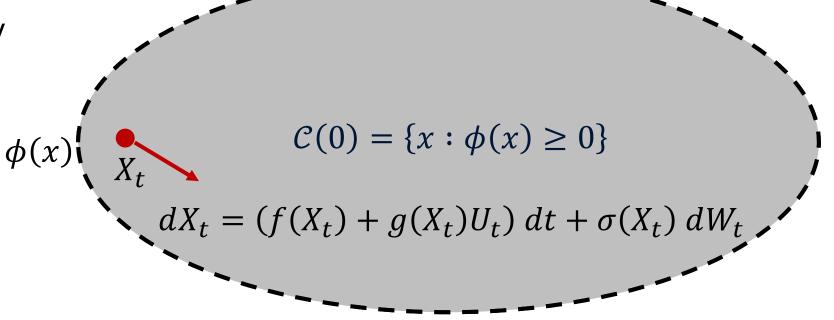
Project aims



System description

- X_t : state of the system
- U_t : control input
- W_t : system uncertainty
- $\phi(x)$: barrier function
- C(0) : safe set

 $\underbrace{\mathcal{C}(L): L}_{\text{Safety margin}}$



Carnegie Mellon University

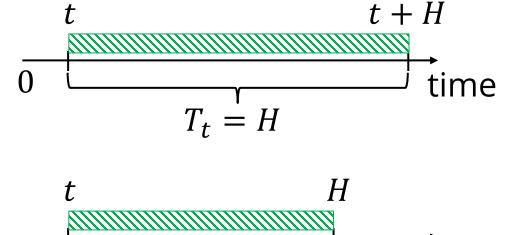
Safety in stochastic system: time horizon and safety margin

We consider fixed time horizon:

 $T_t = H$, safety evaluated at t for [t, t + H]

And receding time horizon:

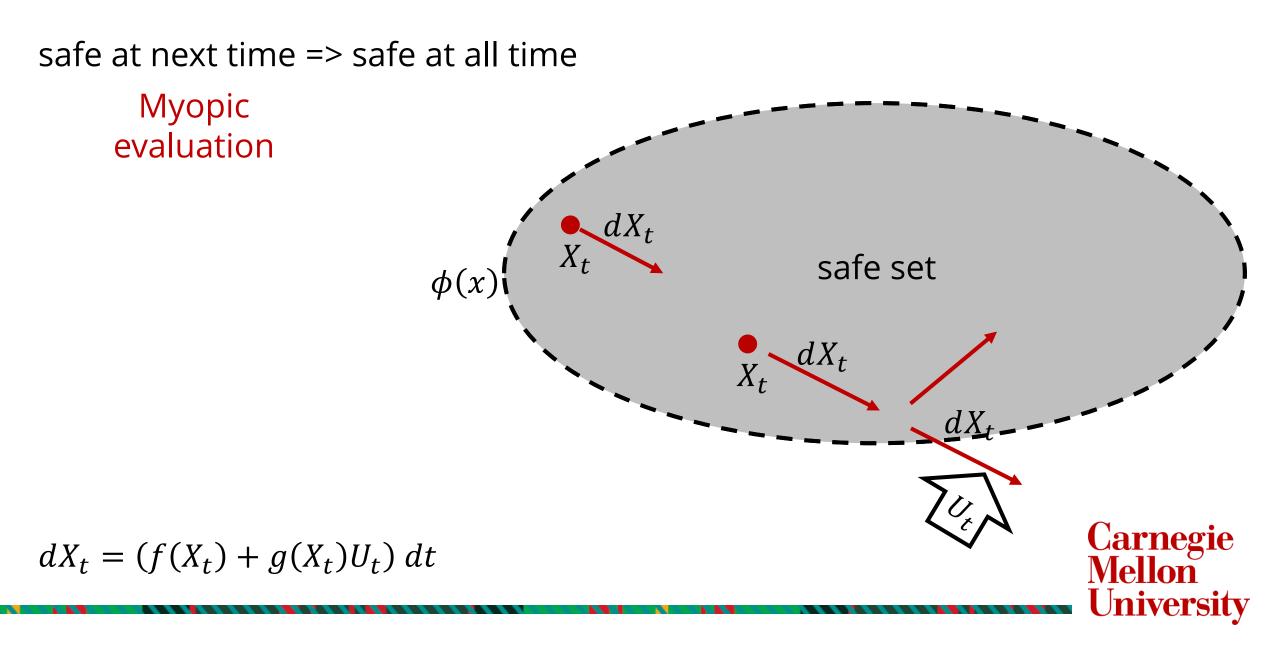
 $T_t = H - t$, safety evaluated at t for [t, H]

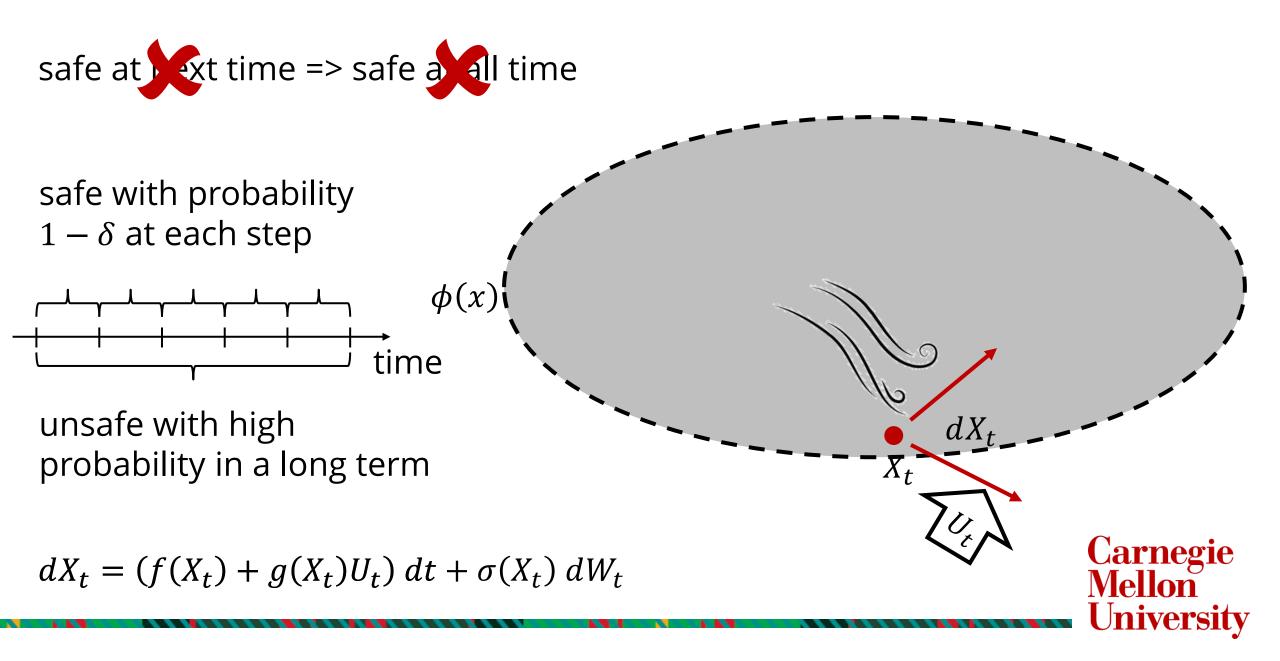


$$\begin{array}{c} t & H \\ \hline 0 & & \\ \hline 0 & & \\ T_t = H - t \end{array}$$
 time

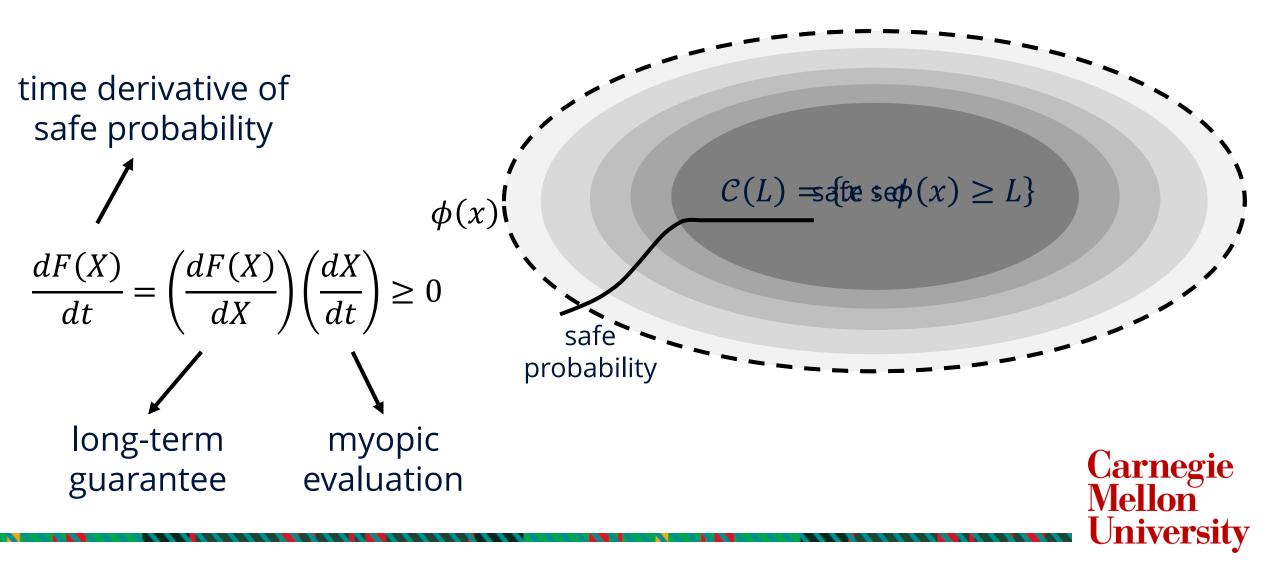
8

Deterministic systems (noiseless)

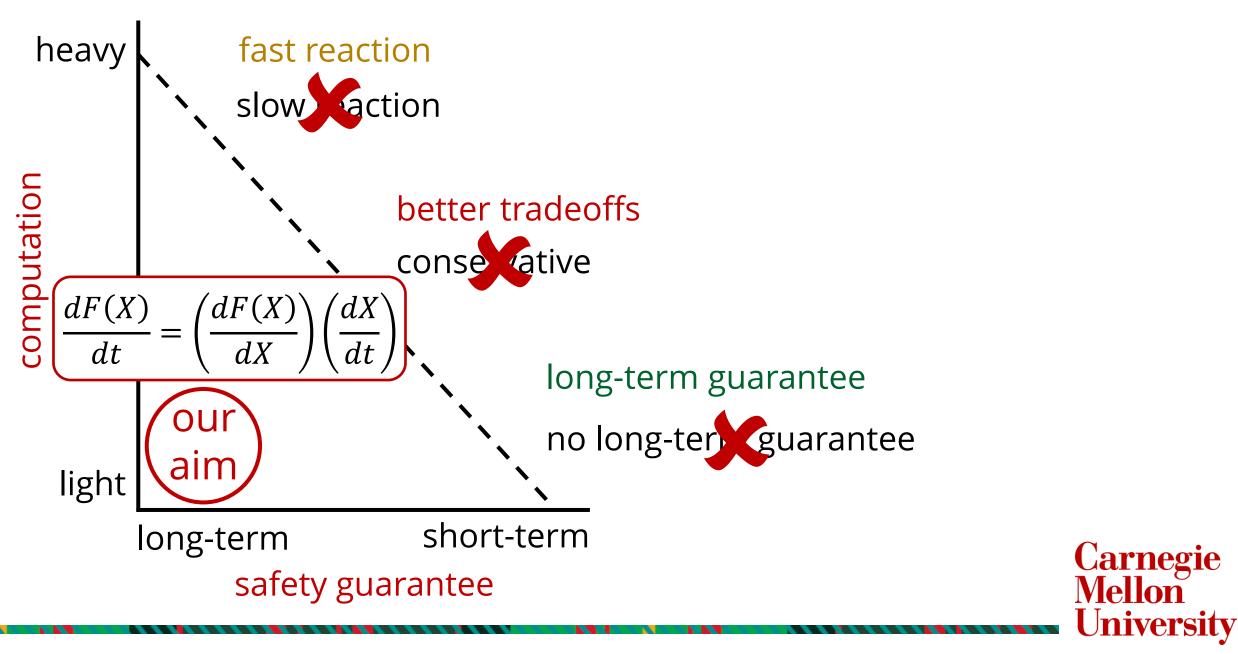




Proposed method: intuitions



Proposed method: benefits



Proposed method: safety condition

The control action satisfies $D_F(Z_t, U_t) \ge -\alpha(F(Z_t) - (1 - \epsilon))$

where

$$D_{F}(Z_{t}, U_{t}) \coloneqq AF(Z_{t})$$

= $\mathcal{L}_{\tilde{f}}F(Z_{t}) + \left(\mathcal{L}_{\tilde{g}}F(Z_{t})\right)U_{t} + \frac{1}{2}\operatorname{tr}([\tilde{\sigma}(Z_{t})][\tilde{\sigma}(Z_{t})]^{\mathsf{T}}\operatorname{Hess}F(Z_{t}))$

and α : $\mathbb{R} \to \mathbb{R}$ is a monotonically increasing concave function that satisfies $\alpha(0) \leq 0$.

Proposed safe condition

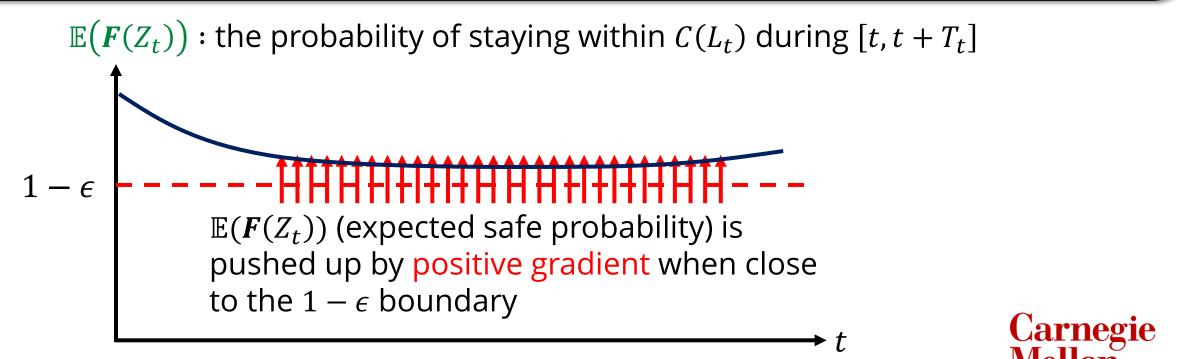
Theorem [1]: If we choose the control action to satisfy

$$D_{\mathbf{F}}(Z_t, U_t) \ge -\alpha(\mathbf{F}(Z_t) - (1 - \epsilon))$$
 for $t > 0$,

then we have

$$F(Z_0) > 1 - \epsilon \Rightarrow \mathbb{E}[F(Z_t)] \ge 1 - \epsilon \text{ for } t > 0$$

 $\alpha: \mathbb{R} \to \mathbb{R}$ is a monotonically increasing concave function that satisfies $\alpha(0) \leq 0$.



[1] Wang, Z., et al. "Myopically Verifiable Probabilistic Certificate for Long-term Safety." arXiv preprint arXiv:2110.13380 (2021). University

Proposed safe condition

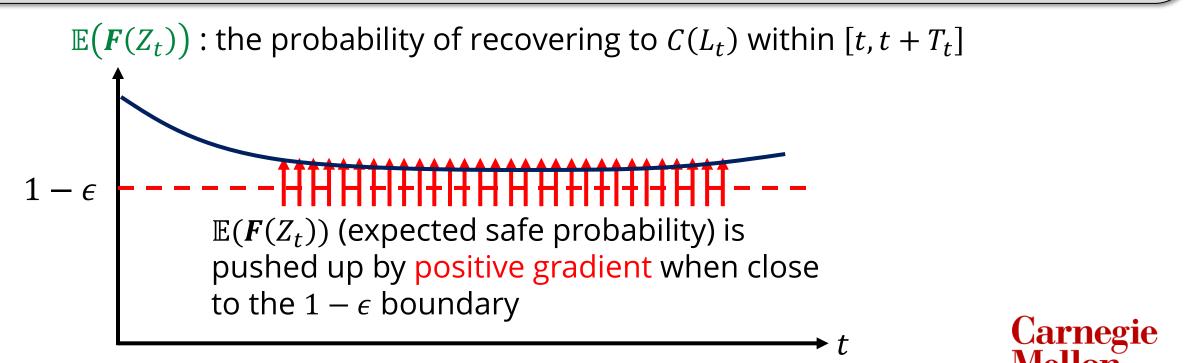
Theorem [1]: If we choose the control action to satisfy

$$D_{\mathbf{F}}(Z_t, U_t) \ge -\alpha(\mathbf{F}(Z_t) - (1 - \epsilon))$$
 for $t > 0$,

then we have

$$F(Z_0) > 1 - \epsilon \Rightarrow \mathbb{E}[F(Z_t)] \ge 1 - \epsilon \text{ for } t > 0$$

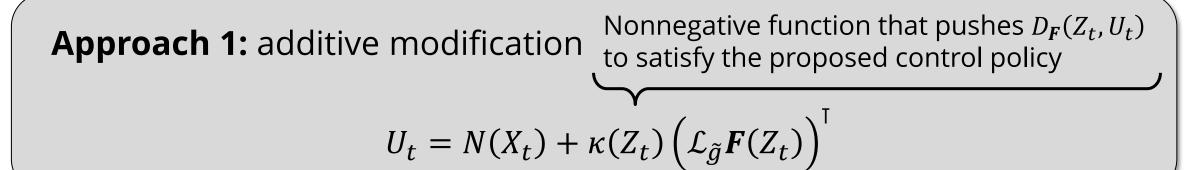
 $\alpha: \mathbb{R} \to \mathbb{R}$ is a monotonically increasing concave function that satisfies $\alpha(0) \leq 0$.



[1] Wang, Z., et al. "Myopically Verifiable Probabilistic Certificate for Long-term Safety." arXiv preprint arXiv:2110.13380 (2021). University

Proposed safe controllers

Assumption: nominal controller $U_t = N(X_t)$ ensures desired performance without considering safety.



Approach 2: conditioning

 $U_t = \arg \min_{u} J(N(X_t), u) \text{ such that } AF(Z_t) \ge -\alpha(F(Z_t) - (1 - \epsilon))$ Objective function that penalizes derivation from desired performance

Carnegie Mellon University

system dynamic:

$$dX_t = (f(X_t) + g(X_t)U_t) dt + \sigma(X_t) dW_t$$

where $X \in \mathbb{R}$, $f(X) \equiv 2$, $g(X) \equiv 2.5$, $\sigma(t) \equiv 2$, dW is a standard Weiner process with 0 initial value.

safe set:

$$\mathcal{C}(0) = \{x \in \mathbb{R}^n : \phi(x) > 0\} = \{x \in \mathbb{R}^n : x - 1 > 0\}$$

The initial state is $x_0 = 3$. We consider fixed time horizon setting with H = 1s. **nominal controller:**

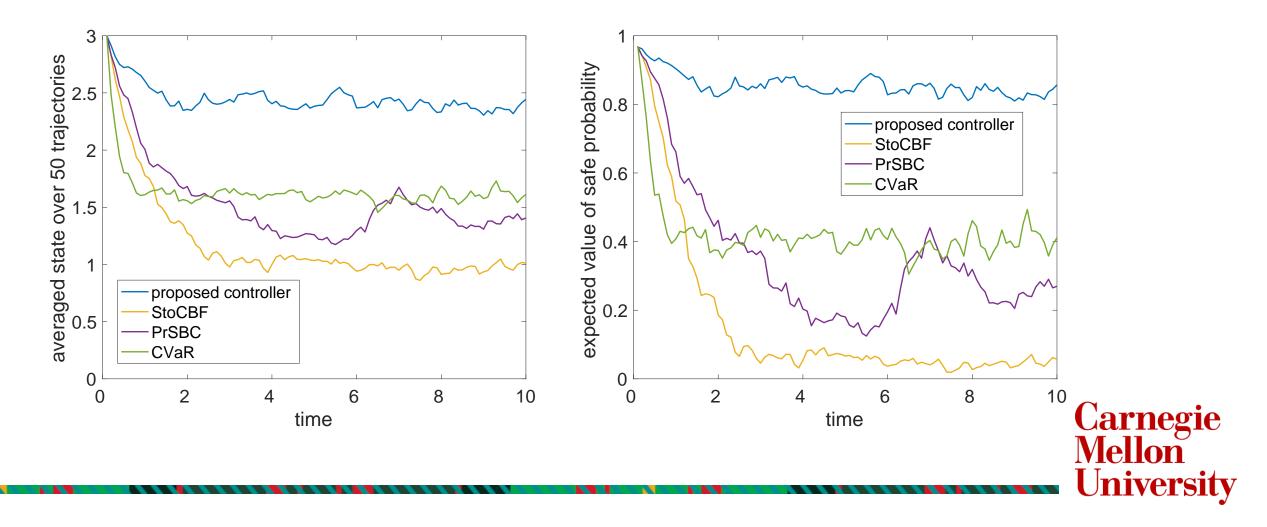
$$N(X_t) = KX_t$$

with K = 2.5. This means the nominal controller tends to drag the system state to unsafe regions. Carnegie Mellon

University

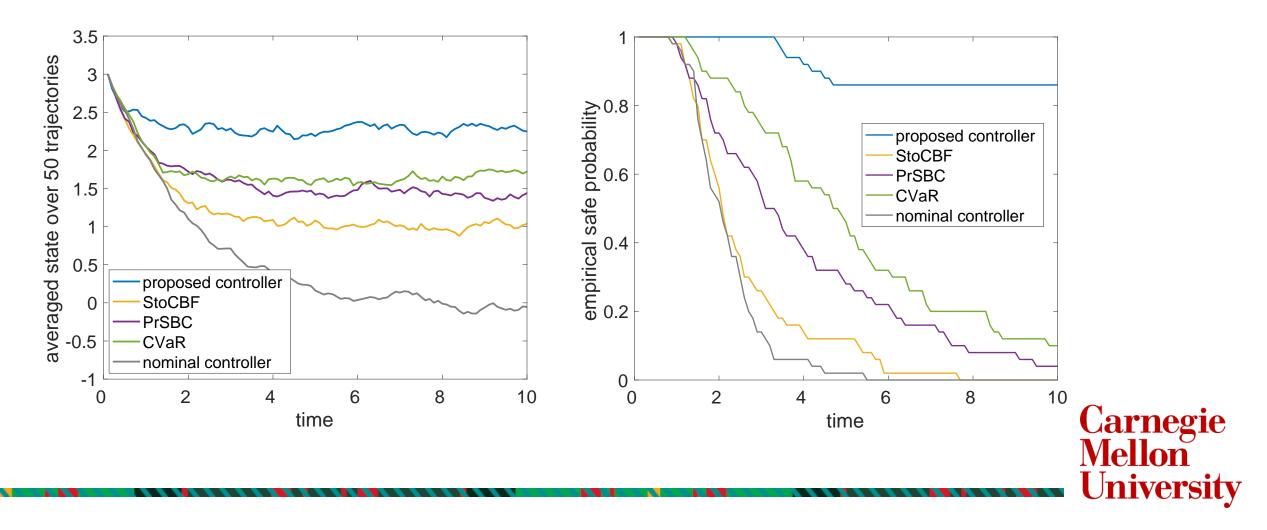
Worst case control

Impose safe controller all the time to exam the safety enforcement power of different safety constraints.



Switching control

Impose safe controller only when the nominal controller does not satisfy the safety constraint, to test the performance in a more practical setting.



Observations and insights

Myopic problems of CBF:

Example 1: violation of safety due to **nonlinear traps** in the system

car on slippery surface

To simulate similar behaviors, we add **nonlinear dynamics** to the system, when $X_t < 1.5$ the system becomes totally **uncontrollable**, with the new dynamics:

$$dX_t = f'(X_t) dt + \sigma(X_t) dW_t,$$

where $f'(X) \equiv -3$. The safe set and the nominal controller are not changed.

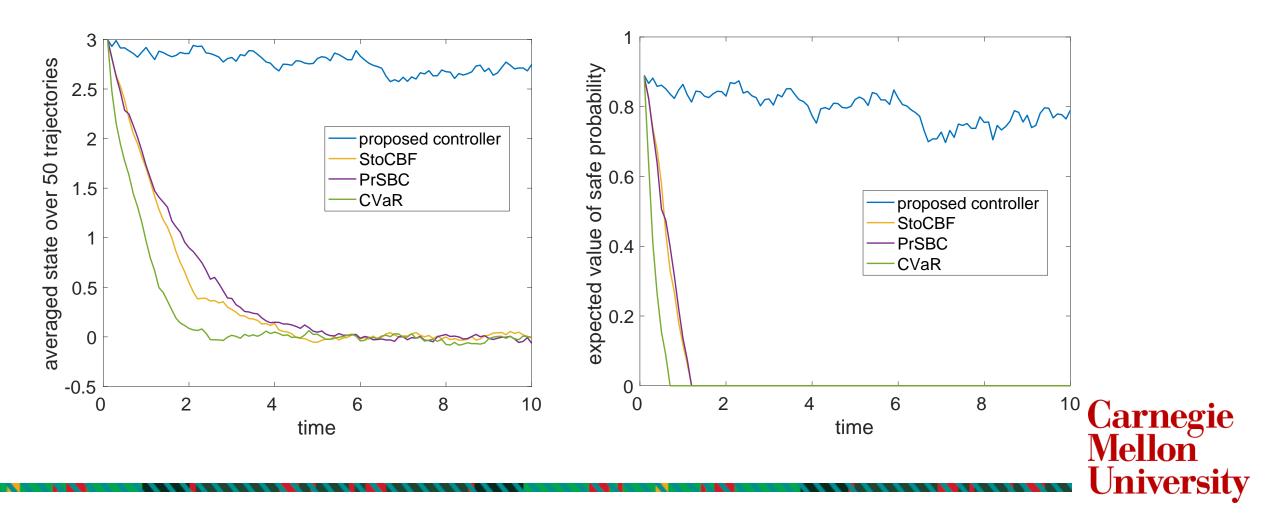
Carnegie

University

Mellon

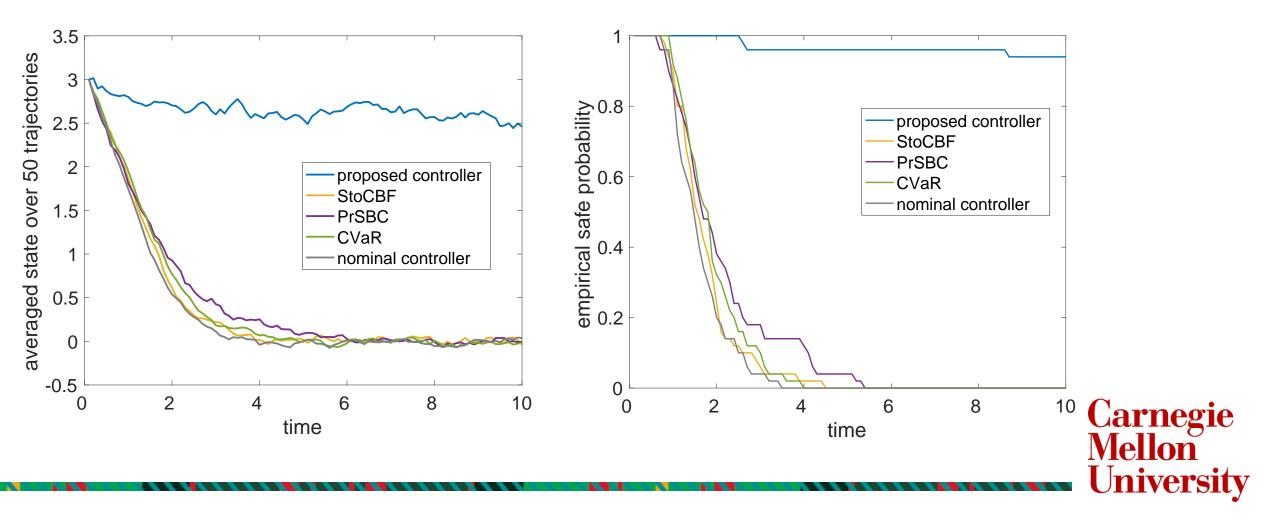
Worst case control

Impose safe controller all the time to exam the safety enforcement power of different safety constraints.



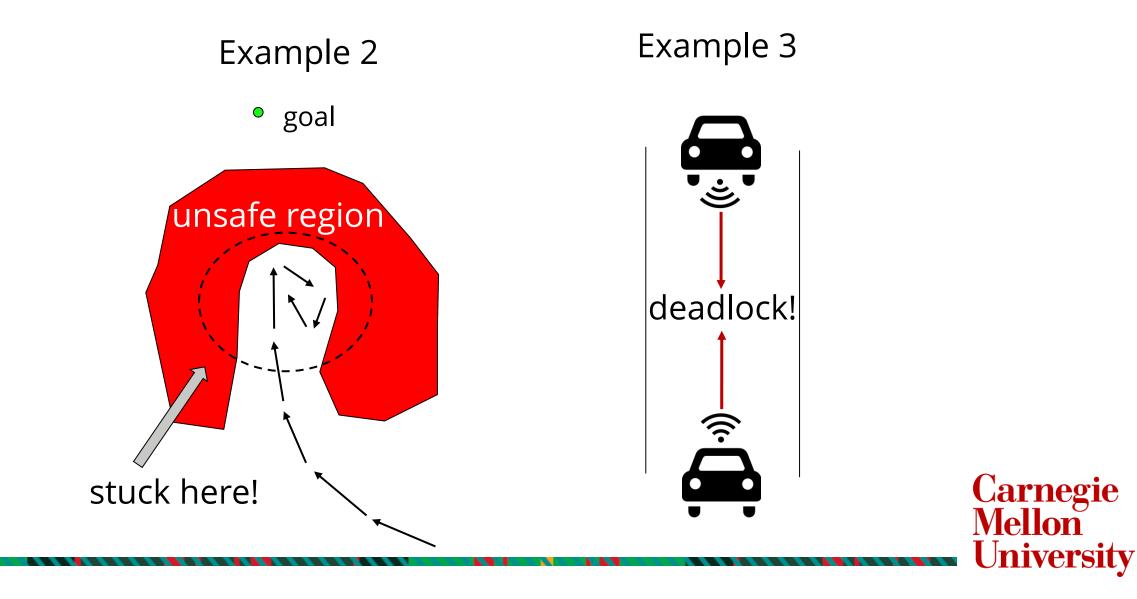
Switching control

Impose safe controller only when the nominal controller does not satisfy the safety constraint, to test the performance in a more practical setting.



Observations and insights

Myopic problems of CBF:



Traction control of 4-wheel vehicle

Performance goal: track a reference trajectory

Safety requirement: vehicle's tires do not slip

i.e., the total force of each tire do not exceed a certain percentage η of the maximum tire grip force.

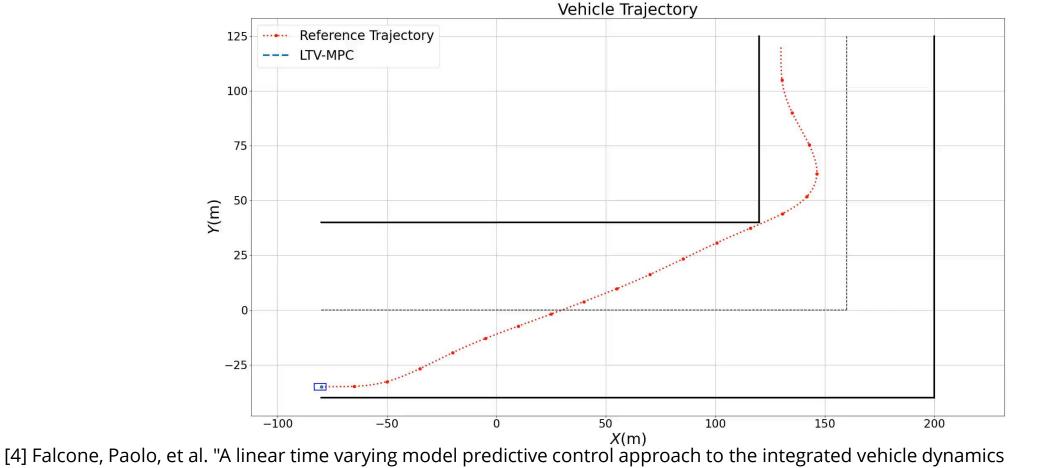
Vehicle model: four-wheel 3-DoF vehicle [2]

Tire model: Burckhardt's tire model [3]

[2] Isaksson Palmqvist, Mia. "Model predictive control for autonomous driving of a truck." (2016).
[3] Kiencke, Uwe, and Lars Nielsen. "Automotive control systems: for engine, driveline, and vehicle." (2000): Mellon 1828.

Traction control of 4-wheel vehicle

B-spline planner and a Linear Time-Varying MPC (LTV-MPC) [4] as the baseline nominal controller with steering limits and lane constraints



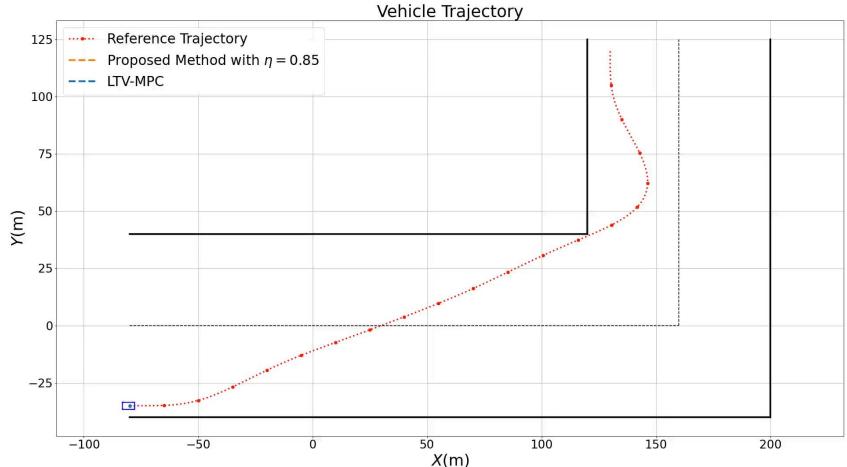
control problem in autonomous systems." 2007 46th IEEE Conference on Decision and Control. IEEE, 2007.

Carnegie Mellon

University

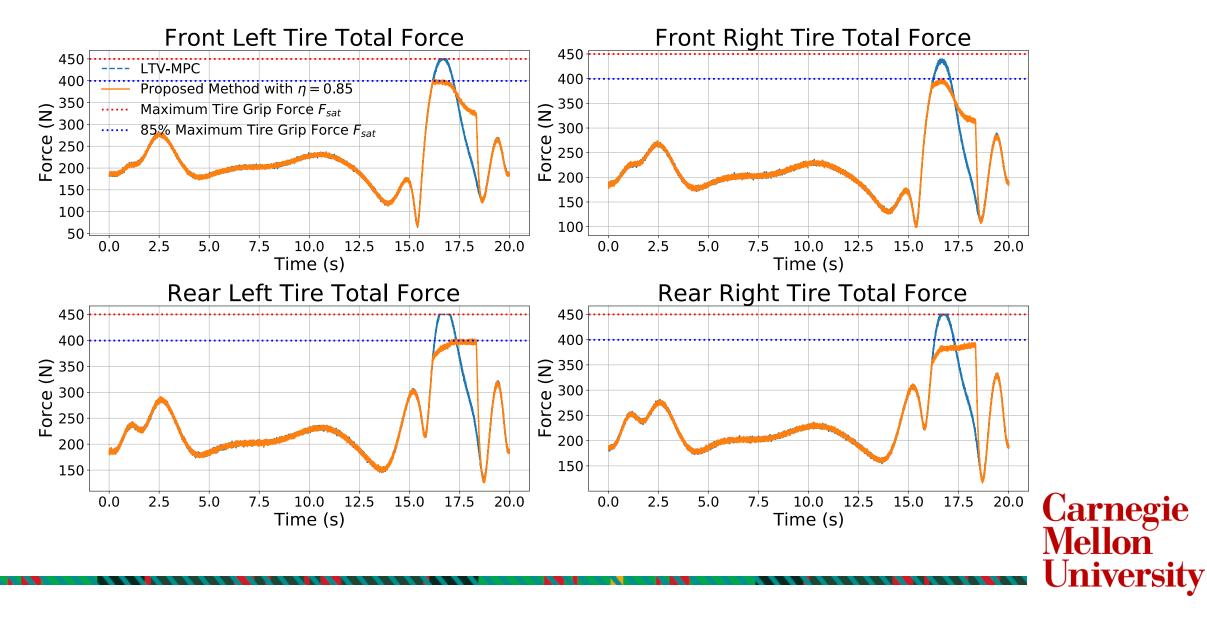
Traction control of 4-wheel vehicle

Proposed controller [5]

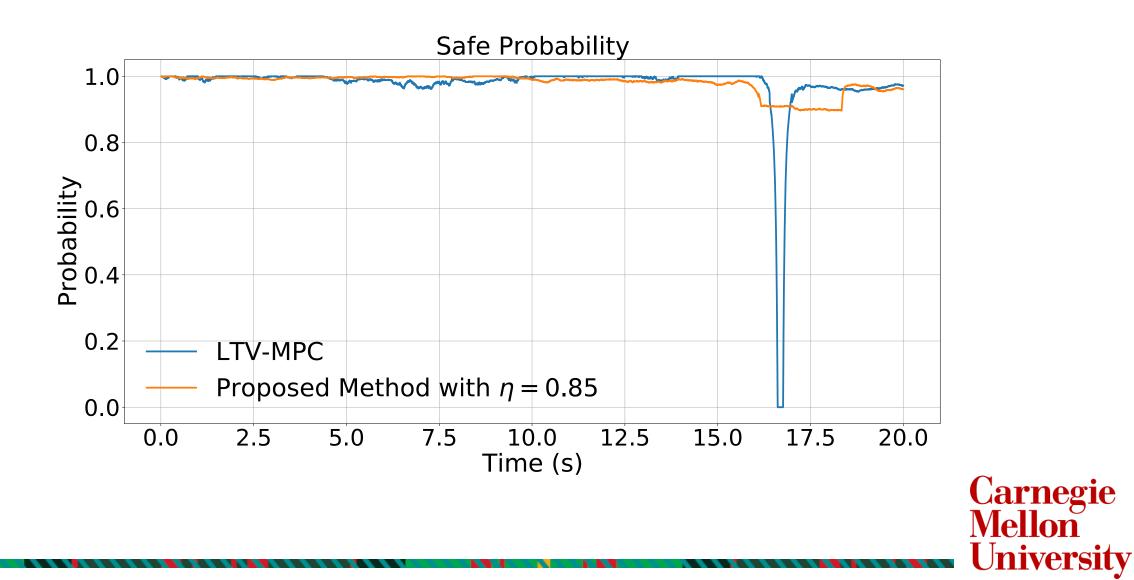


[5] Gangadhar, Siddharth, et al. "Dealing with Stochastic Uncertainty and Prediction in Extreme Driving." https://github.com/haomingj/Dealing-with-Stochastic-Uncertainty-and-Prediction-in-Extreme-Driving. Carnegie Mellon University

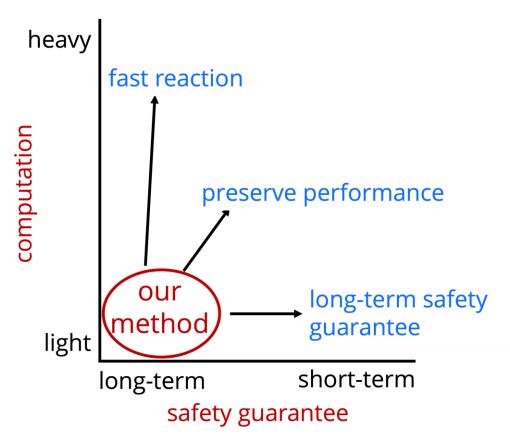
Traction control of 4-wheel vehicle



Traction control of 4-wheel vehicle



Conclusion



- Provable long-term safety guarantee
- Fast reaction with reduced computation
- Controllable safety and performance trade-off
- Easy implementation with plug-in usage

Potential Future works

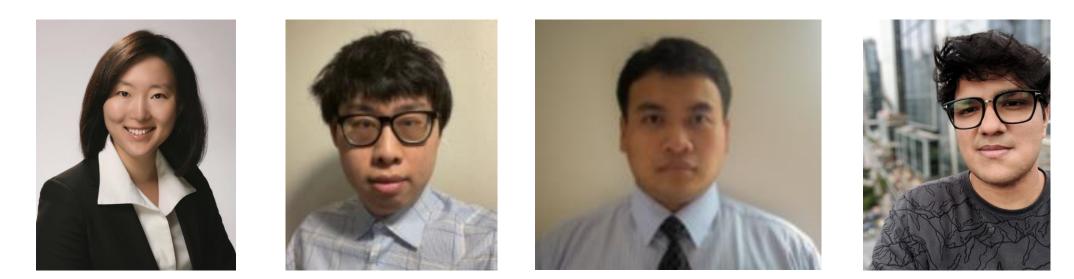
- Multi-agent and distributed version of the safe control strategy
- Online learning of safe probability with high-dimensional state space
- Online adaption of barrier function for out-of-distribution data
- Gradient-based methods for safe control in RL framework
- •

Carnegie

University

Mellon

Acknowledgement



Yorie Nakahira

Haoming Jing

Christian Kurniawan Siddharth Gangadhar

Thanks for listening!

Reference

[1] Wang, Zhuoyuan, et al. "Myopically Verifiable Probabilistic Certificate for Long-term Safety." *arXiv preprint arXiv:2110.13380* (2021).

[2] Isaksson Palmqvist, Mia. "Model predictive control for autonomous driving of a truck." (2016).

- [3] Kiencke, Uwe, and Lars Nielsen. "Automotive control systems: for engine, driveline, and vehicle." (2000): 1828.
- [4] Falcone, Paolo, et al. "A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems." 2007 46th IEEE Conference on Decision and Control. IEEE, 2007.
- [5] Gangadhar, Siddharth, et al. "Dealing with Stochastic Uncertainty and Prediction in Extreme Driving." https://github.com/haomingj/Dealing-with-Stochastic-Uncertainty-and-Prediction-in-Extreme-Driving.

[6] Chern, Albert, et al. "Safe Control in the Presence of Stochastic Uncertainties." *arXiv preprint arXiv:2104.01259* (2021).