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vehicles

industrial 
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drones



3Why robust safety in stochastic systems?

uncertainties

internal: 

mechanical faults

unmodeled dynamics

ሶ𝑥 = ? ? ? ? ?

external: 

wind

other agents
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approximate long-term safe probability
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Existing methods 

slow reaction

compromise performance

no long-term guarantee

e.g., stochastic barrier certificate

e.g., model predictive control (MPC), constrained optimization safety, 
reachability-based techniques, conditional value-at-risk (CVaR)

e.g., barrier function-based control
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slow reaction
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fast reaction

preserve performance
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𝒞 0 = 𝑥 ∶ 𝜙 𝑥 ≥ 0
𝑋𝑡

𝑑𝑋𝑡 = 𝑓 𝑋𝑡 + 𝑔 𝑋𝑡 𝑈𝑡 𝑑𝑡 + 𝜎 𝑋𝑡 𝑑𝑊𝑡

𝑋𝑡 : state of the system

𝑈𝑡 : control input

𝑊𝑡 : system uncertainty

𝜙(𝑥) : barrier function

𝒞(0) : safe set

𝒞(𝐿): 𝐿-safe set 

𝜙 𝑥

System description

Safety margin



8Safety in stochastic system: time horizon and safety margin

We consider fixed time horizon:

𝑇𝑡 = 𝐻, safety evaluated at 𝑡 for 𝑡, 𝑡 + 𝐻

And receding time horizon:

𝑇𝑡 = 𝐻 − 𝑡, safety evaluated at 𝑡 for [𝑡, 𝐻]
0 time

𝑡 𝐻

𝑇𝑡 = 𝐻 − 𝑡

time

𝑡 𝑡 + 𝐻

𝑇𝑡 = 𝐻
0
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safe set𝑋𝑡
𝑑𝑋𝑡

𝜙 𝑥

𝑑𝑋𝑡 = 𝑓 𝑋𝑡 + 𝑔 𝑋𝑡 𝑈𝑡 𝑑𝑡

𝑋𝑡
𝑑𝑋𝑡

𝑑𝑋𝑡

Myopic 
evaluation

Deterministic systems (noiseless)

safe at next time => safe at all time
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𝜙 𝑥

Stochastic settings

𝑋𝑡

𝑑𝑋𝑡

𝑑𝑋𝑡 = 𝑓 𝑋𝑡 + 𝑔 𝑋𝑡 𝑈𝑡 𝑑𝑡 + 𝜎 𝑋𝑡 𝑑𝑊𝑡𝑑𝑋𝑡 = 𝑓 𝑋𝑡 + 𝑔 𝑋𝑡 𝑈𝑡 𝑑𝑡

safe at next time => safe at all time
 

safe with probability 
1 − 𝛿 at each step

unsafe with high 
probability in a long term

time



13Proposed method: intuitions

safe set

safe 
probability

𝜙 𝑥
𝒞 𝐿 = 𝑥 ∶ 𝜙 𝑥 ≥ 𝐿

𝑑𝐹 𝑋

𝑑𝑡
=

𝑑𝐹 𝑋

𝑑𝑋

𝑑𝑋

𝑑𝑡
≥ 0

myopic 
evaluation

long-term 
guarantee

time derivative of 
safe probability
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slow reaction

no long-term guarantee

co
m

p
u

ta
ti

o
n

safety guarantee

light

heavy

long-term short-term

our 
aim

conservative

Proposed method: benefits

fast reaction



long-term guarantee



better tradeoffs

𝑑𝐹 𝑋

𝑑𝑡
=

𝑑𝐹 𝑋

𝑑𝑋

𝑑𝑋

𝑑𝑡



15Proposed method: safety condition

The control action satisfies
𝐷𝑭 𝑍𝑡, 𝑈𝑡 ≥ −𝛼(𝑭 𝑍𝑡 − (1 − 𝜖))

where
𝐷𝑭 𝑍𝑡, 𝑈𝑡 ≔ 𝐴𝑭 𝑍𝑡

= ℒ ሚ𝑓𝑭 𝑍𝑡 + ℒ ෤𝑔𝑭 𝑍𝑡 𝑈𝑡 +
1

2
tr( ෤𝜎 𝑍𝑡 ෤𝜎 𝑍𝑡

⊺Hess𝑭(𝑍𝑡))

and 𝛼:ℝ → ℝ is a monotonically increasing concave function that 
satisfies 𝛼 0 ≤ 0.



16Proposed safe condition

Theorem [1]: If we choose the control action to satisfy
𝐷𝑭 𝑍𝑡 , 𝑈𝑡 ≥ −𝛼(𝑭 𝑍𝑡 − (1 − 𝜖)) for 𝑡 > 0,  

then we have
𝑭 𝑍0 > 1 − 𝜖 ⇒ 𝔼 𝑭 𝑍𝑡 ≥ 1 − 𝜖 for 𝑡 > 0

𝛼:ℝ → ℝ is a monotonically increasing concave function that satisfies 𝛼 0 ≤ 0.

Haoming

However, these figures should have the same style (of 
the safe set in probability space) as the figure in the 
intuition slide, which I still do not have a good idea 
about how to make.

How about this? Plot x: time, y: probability E[F(
we constrain this value to be non
about to violate 1

1 − 𝜖

𝔼 𝑭 𝑍𝑡 ∶ the probability of staying within 𝐶 𝐿𝑡 during 𝑡, 𝑡 + 𝑇𝑡

𝑡

𝔼(𝑭 𝑍𝑡 ) (expected safe probability) is 
pushed up by positive gradient when close 
to the 1 − 𝜖 boundary

[1] Wang, Z., et al. "Myopically Verifiable Probabilistic Certificate for Long-term Safety." arXiv preprint arXiv:2110.13380 (2021).



17Proposed safe condition

Theorem [1]: If we choose the control action to satisfy
𝐷𝑭 𝑍𝑡 , 𝑈𝑡 ≥ −𝛼(𝑭 𝑍𝑡 − (1 − 𝜖)) for 𝑡 > 0,  

then we have
𝑭 𝑍0 > 1 − 𝜖 ⇒ 𝔼 𝑭 𝑍𝑡 ≥ 1 − 𝜖 for 𝑡 > 0

𝛼:ℝ → ℝ is a monotonically increasing concave function that satisfies 𝛼 0 ≤ 0.

Haoming

However, these figures should have the same style (of 
the safe set in probability space) as the figure in the 
intuition slide, which I still do not have a good idea 
about how to make.

How about this? Plot x: time, y: probability E[F(
we constrain this value to be non
about to violate 1

1 − 𝜖

𝔼 𝑭 𝑍𝑡 : the probability of recovering to 𝐶 𝐿𝑡 within 𝑡, 𝑡 + 𝑇𝑡

𝑡

𝔼(𝑭 𝑍𝑡 ) (expected safe probability) is 
pushed up by positive gradient when close 
to the 1 − 𝜖 boundary

[1] Wang, Z., et al. "Myopically Verifiable Probabilistic Certificate for Long-term Safety." arXiv preprint arXiv:2110.13380 (2021).



19Proposed safe controllers

Assumption: nominal controller 𝑈𝑡 = 𝑁 𝑋𝑡 ensures desired 
performance without considering safety.

Approach 1: additive modification

𝑈𝑡 = 𝑁 𝑋𝑡 + 𝜅 𝑍𝑡 ℒ ෤𝑔𝑭 𝑍𝑡
⊺

Approach 2: conditioning

𝑈𝑡 = arg min
𝑢

𝐽(𝑁 𝑋𝑡 , 𝑢) such that 𝐴𝑭 𝑍𝑡 ≥ −𝛼(𝑭 𝑍𝑡 − (1 − 𝜖))

Nonnegative function that pushes 𝐷𝑭 𝑍𝑡 , 𝑈𝑡
to satisfy the proposed control policy

Objective function that penalizes derivation from desired performance
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𝑑𝑋𝑡 = 𝑓 𝑋𝑡 + 𝑔 𝑋𝑡 𝑈𝑡 𝑑𝑡 + 𝜎 𝑋𝑡 𝑑𝑊𝑡

system dynamic:

where 𝑋 ∈ ℝ, 𝑓 𝑋 ≡ 2, 𝑔 𝑋 ≡ 2.5, 𝜎(𝑡) ≡ 2, 𝑑𝑊 is a standard Weiner process 
with 0 initial value.
safe set:

The initial state is 𝑥0 = 3. We consider fixed time horizon setting with 𝐻 = 1𝑠.
nominal controller: 

with 𝐾 = 2.5. This means the nominal controller tends to drag the system state 
to unsafe regions.

𝒞 0 = 𝑥 ∈ ℝ𝑛: 𝜙 𝑥 > 0 = 𝑥 ∈ ℝ𝑛: 𝑥 − 1 > 0

𝑁 𝑋𝑡 = 𝐾𝑋𝑡

Simulation
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Worst case control
Impose safe controller all the time to exam the safety enforcement power of 
different safety constraints. 

Simulation
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nominal controller

Switching control
Impose safe controller only when the nominal controller does not satisfy the 
safety constraint, to test the performance in a more practical setting.

Simulation



25Observations and insights

To simulate similar behaviors, we add nonlinear dynamics to the 
system, when 𝑋𝑡 < 1.5 the system becomes totally uncontrollable, 
with the new dynamics:

where 𝑓′ 𝑋 ≡ −3.
The safe set and the nominal controller are not changed.

𝑑𝑋𝑡 = 𝑓′ 𝑋𝑡 𝑑𝑡 + 𝜎 𝑋𝑡 𝑑𝑊𝑡 ,

Myopic problems of CBF:

violation of safety due to
nonlinear traps in the system

Example 1:
car on slippery surface
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Worst case control
Impose safe controller all the time to exam the safety enforcement power of 
different safety constraints. 
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Switching control
Impose safe controller only when the nominal controller does not satisfy the 
safety constraint, to test the performance in a more practical setting.



28Observations and insights

Myopic problems of CBF:

Example 2 Example 3

deadlock!

goal

unsafe region

stuck here!



29Simulation

Traction control of 4-wheel vehicle

Performance goal: track a reference trajectory

Safety requirement: vehicle’s tires do not slip

i.e., the total force of each tire do not exceed a 
certain percentage 𝜂 of the maximum tire grip 
force.

Vehicle model: four-wheel 3-DoF vehicle [2]

Tire model: Burckhardt’s tire model [3]

[2] Isaksson Palmqvist, Mia. "Model predictive control for autonomous driving of a truck." (2016).
[3] Kiencke, Uwe, and Lars Nielsen. "Automotive control systems: for engine, driveline, and vehicle." (2000): 

1828.



31Simulation

Traction control of 4-wheel vehicle
B-spline planner and a Linear Time-Varying MPC (LTV-MPC) [4] as the baseline nominal 
controller with steering limits and lane constraints

[4] Falcone, Paolo, et al. "A linear time varying model predictive control approach to the integrated vehicle dynamics 
control problem in autonomous systems." 2007 46th IEEE Conference on Decision and Control. IEEE, 2007.



32Simulation

Traction control of 4-wheel vehicle

Proposed controller [5]

[5] Gangadhar, Siddharth, et al. “Dealing with Stochastic Uncertainty and Prediction in Extreme Driving.” 
https://github.com/haomingj/Dealing-with-Stochastic-Uncertainty-and-Prediction-in-Extreme-Driving.



34Simulation

Traction control of 4-wheel vehicle



35Simulation

Traction control of 4-wheel vehicle



37Conclusion

• Provable long-term safety guarantee

• Fast reaction with reduced 
computation

• Controllable safety and performance 
trade-off

• Easy implementation with plug-in usage



39Potential Future works

• Multi-agent and distributed version of the safe control strategy

• Online learning of safe probability with high-dimensional state 
space

• Online adaption of barrier function for out-of-distribution data

• Gradient-based methods for safe control in RL framework

• …
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Thanks for listening!
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