Carnegie Mellon University Electrical & Computer Engineering Myopically Verifiable

Probabilistic Certificate for Long-term Safety

> **Zhuoyuan (Jacob) Wang**, Haoming Jing, Christian Kurniawan, Albert Chern and Yorie Nakahira

Motivation

Current Challenges

Aims

Existing approach: Control barrier function...

Under stochastic uncertainties safe at next time => safe at all time

safe with probability $1 - \delta$ at each step

unsafe with high probability in a long term

Carnegie Mellon University 6

Existing approach: Control barrier function...

Proposed approach:

Under stochastic uncertainties

Carnegie

University

Mellon

Control barrier functions: Reachability: safe set: $\mathcal{C} = \{x : \phi(x) \ge 0\}$ X_t X_t

Carnegie Mellon University

Forward rollout trajectories

Forward rollout trajectories

Carnegie Mellon University

Encoded safety probability $F(X_t)$

Forward rollout trajectories

Encoded safety probability $F(X_t)$

Forward rollout trajectories

Proposed Method

Long-term safe probability $F(X_t) = \Pr(X_\tau \in C, \tau \in [t, t + T] | X_t)$

A: infinitesimal generator $\alpha: \mathbb{R} \to \mathbb{R}$ monotonically increasing, concave, $\alpha(0) \leq 0$.

Carnegie

University

Mellonĭ

Proposed Safety Condition:

Proposed Safety Condition

Theoretical Guarantees

Theorem: Given

$$F(X_0) > 1 - \epsilon,$$

if we choose the control action to satisfy

$$A\mathbf{F}(X_t) \ge -\alpha(\mathbf{F}(X_t) - (1 - \epsilon))$$
 for $t > 0$

then we have

$$\Pr(X_{\tau} \in \mathcal{C}, \tau \in [t, t+T]) \ge 1 - \epsilon \text{ for } \forall t > 0$$

 $\alpha: \mathbb{R} \to \mathbb{R}$ is a monotonically increasing concave function that satisfies $\alpha(0) \leq 0$.

Wang et al., (2021).

Carnegie Mellon

University₁₉

Simulation

system dynamic:	$dx_t = (2x_t + 2.5u_t) dt + 2dw_t$
initial state:	$x_0 = 3$
safe set:	$\mathcal{C} = \{ x \in \mathbb{R} : x - 1 > 0 \}$
nominal controller:	$N(x_t) = 2.5x_t$

desired safety probability: $1 - \epsilon = 0.9$

Simulation

23

University₂₃

Simulation – Nonlinear trap

System becomes uncontrollable once reach state x = 1.5

University₂₄

Conclusion

- Provable long-term safety guarantee
- Fast reaction with reduced computation
- Controllable safety and performance trade-off
- Easy implementation with plug-in usage

Future Directions

Thanks for listening!

Scan for full manuscript on arXiv

Application to Autonomous Vehicles

S. Gangadhar, Z. Wang, H. Jing, and Y. Nakahira, "Adaptive Safe Control for Driving in Uncertain Environments," *the 33rd IEEE Intelligent Vehicles Symposium (IV)*, 2022.

Generalization to Distributed Systems

H. Jing, and Y. Nakahira, "Probabilistic safety certificate for multi-agent systems," *submitted to 2022 Control and Decision Conference (CDC)*, 2022.

Reference

- [1] Paulson, Joel A., et al. "Stochastic model predictive control with joint chance constraints." *International Journal of Control* 93.1 (2020): 126-139.
- [2] Ahmadi, Mohamadreza, Xiaobin Xiong, and Aaron D. Ames. "Risk-averse control via CVaR barrier functions: Application to bipedal robot locomotion." *IEEE Control Systems Letters* 6 (2021): 878-883.
- [3] Bansal, Somil, et al. "Hamilton-jacobi reachability: A brief overview and recent advances." 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017.
- [4] Oishi, Meeko, et al. "Addressing multiobjective control: Safety and performance through constrained optimization." *International Workshop on Hybrid Systems: Computation and Control*. Springer, Berlin, Heidelberg, 2001.
- [5] Prajna, Stephen, Ali Jadbabaie, and George J. Pappas. "Stochastic safety verification using barrier certificates." 2004 43rd IEEE conference on decision and control (CDC)(IEEE Cat. No. 04CH37601). Vol. 1. IEEE, 2004.
- [6] Clark, Andrew. "Control barrier functions for complete and incomplete information stochastic systems." 2019 American Control Conference (ACC). IEEE, 2019.

Vlelloñ

University

Reference

[7] Luo, Wenhao, Wen Sun, and Ashish Kapoor. "Multi-robot collision avoidance under uncertainty with probabilistic safety barrier certificates." *Advances in Neural Information Processing Systems* 33 (2020): 372-383.

[8] Wang, Zhuoyuan, et al. "Myopically Verifiable Probabilistic Certificate for Long-term Safety." *arXiv preprint arXiv:2110.13380* (2021).

[9] Chern, Albert, et al. "Safe Control in the Presence of Stochastic Uncertainties." *arXiv preprint arXiv:2104.01259* (2021).

