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Abstract—Predicting vulnerable road user behavior is an essen-
tial prerequisite for deploying Automated Driving Systems (ADS) in
the real-world. Pedestrian crossing intention should be recognized
in real-time, especially for urban driving. Recent works have shown
the potential of using vision-based deep neural network models for
this task. However, these models are not robust and certain issues
still need to be resolved. First, the global spatio-temporal context
that accounts for the interaction between the target pedestrian
and the scene has not been properly utilized. Second, the optimal
strategy for fusing different sensor data has not been thoroughly
investigated. This work addresses the above limitations by intro-
ducing a novel neural network architecture to fuse inherently
different spatio-temporal features for pedestrian crossing inten-
tion prediction. We fuse different phenomena such as sequences
of RGB imagery, semantic segmentation masks, and ego-vehicle
speed in an optimal way using attention mechanisms and a stack of
recurrent neural networks. The optimal architecture was obtained
through exhaustive ablation and comparison studies. Extensive
comparative experiments on the JAAD and PIE pedestrian action
prediction benchmarks demonstrate the effectiveness of the pro-
posed method, where state-of-the-art performance was achieved.
QOur code is open-source and publicly available: https://github.com/
OSU-Haolin/Pedestrian_Crossing_Intention_Prediction.

Index Terms—Pedestrian intention, autonomous

spatial-temporal fusion.

driving,

1. INTRODUCTION

UTONOMOUS driving technology has progressed signif-
A icantly in the past few years. However, to develop vehicle
intelligence that is comparable to human drivers, understanding
and predicting the behaviors of traffic agents is indispensable.
This work aims to develop behavior understanding algorithms
for vulnerable road users. Specifically, a vision-based pedestrian
crossing intention prediction algorithm is proposed.
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Behavior understanding plays an crucial role in autonomous
driving. It establishes the trust between people and autonomous
driving systems. By explicitly showing passengers how the
system makes its decisions, people will be more willing to accept
this technology.

In level 4 autonomy’s driving, pedestrian crossing behavior
is one of the most important behaviors that needs to be stud-
ied urgently. In urban scenarios, vehicles frequently interact
with crossing pedestrians. If the autonomous system fails to
handle vehicle-pedestrian interactions appropriately, casualties
will most likely occur. With accurate intention prediction, the
decision-making and planning modules in autonomous driving
systems can access additional meaningful information, hence
generating safer and more efficient maneuvers.

Nowadays, visual sensors such as front-facing cameras are
becoming the standard configuration for autonomous driving
systems. In the tasks of object detection and tracking, both the
software and hardware of vision components are mature and
ready for mass production. This provides a perfect platform
on which vision-based behavior prediction algorithms can be
deployed. Researchers and engineers in the prediction field can
just focus on algorithm design. When the algorithm is ready,
deployment becomes relatively trivial. The proposed algorithm
is based on pure vision, it can be easily deployed. As long as the
prediction algorithm is appropriately tested and verified, mass
deployment becomes straightforward.

Vision-based pedestrian crossing intention prediction has
been explored for several years. Early works [1] usually utilized
a single frame as input to a convolutional neural network (CNN)
based prediction system. This approach ignores the temporal
aspect of image frames, which plays a critical role in the intention
prediction task. Later on, with the maturity of recurrent neural
networks (RNNs), pedestrian crossing intention was predicted
by considering both the spatial and temporal information [2]—
[4]. This led to different ways of fusing different features,
e.g., the detected pedestrian bounding boxes, poses, appearance,
and even the ego-vehicle information [5]-[9]. The most re-
cent benchmark of pedestrian intention prediction was released
by [10], in which the PCPA model achieved the state-of-the-art
in the most popular dataset JAAD [1]. However, PCPA does not
consider global contexts such as road geometry and other road
users, factors we believe are nonnegligible in pedestrian crossing
intention prediction. Furthermore, the existing fusion strategies
may not be optimal.
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Fig. 1. Predicting pedestrian crossing intention is a multi-modal spatio-
temporal problem. Our method fuses inherently different spatio-temporal
phenomena with CNN-based visual encoders, RNN stacks, and attention mech-
anisms to achieve state-of-the-art performance.

In this work, we focus on improving the performance of
vision-based prediction of pedestrian crossing intention, i.e.,
whether a pedestrian detected by a front-facing camera will cross
the road or not in a short time horizon (1-2 s). Our work leverages
the power of deep neural networks and fuses the features from
different channels. As shown in Fig. 1, the proposed model
considers both non-visual and visual information. They are
extracted from a sequence of video frames 1-2 s before the
crossing / not crossing (C/NC) event. Non-visual information
includes the pedestrian’s bounding box, pose keypoints, and
ego-vehicle speed. Visual information contains local context and
global context. Local context is the enlarged pedestrian appear-
ance based on the bounding box position. Global context is the
semantic segmentation of the road, pedestrians (all pedestrians in
the scene), and vehicles. They are used because they significantly
affect the target pedestrian’s crossing decision. We propose a
hybrid method of fusing the the non-visual and visual features,
which is justified by comparing different strategies of feature
fusion.

Our main contributions are as follows:

® A novel vision-based pedestrian intention prediction
framework for ADSs and ADASs. The proposed method
employs a novel neural network architecture for utilizing
different spatio-temporal features with a hybrid fusion
strategy.

* Extensive ablation studies on different feature fusion strate-
gies (early, later, hierarchical, or hybrid), input configu-
rations (adding/removing input channels, using semantic
segmentation masks as explicit global context), and visual
encoder options (3D CNN or 2D convolution with RNN +
attention) to identify the best model layout.

® Demonstrating the efficiency of the proposed method on
the commonly used JAAD [1] and PIE [4] datasets, and
achieving state-of-the-art performance on the most recent
pedestrian action prediction benchmark [10].

II. RELATED WORK

Vision-based pedestrian crossing prediction traces back to
the works [11] that utilize the Caltech Pedestrian Detection
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Benchmark [12]. However, the Caltech dataset does not ex-
plicitly annotate the crossing behavior of the pedestrians. This
gap was later filled by the introduction of the JAAD dataset [1]
that offers high-resolution videos and explicit crossing behavior
annotations. With the release of the JAAD dataset, a simple
baseline was also created that uses a 2D convolutional neural
network (CNN) to encode the features in a given previous frame
and then uses a linear support vector machine (SVM) to predict
the C/NC event.

Spatio-temporal modeling: Instead of using a single image,
most recent works use image sequences as input to the prediction
model due to the importance of temporal information in the
prediction task. This leads to spatio-temporal modeling.

Spatio-temporal modeling can be achieved by first extracting
visual (spatial) features per frame via 2D CNNs [13] or graph
convolution networks (GCNs) [14], and then feeding these fea-
tures into RNNs such as the long-short term memory (LSTM)
model [15] and the gate recurrent unit (GRU) model [16].
For example, [2]-[4] use 2D convolution to extract the visual
features from image sequence and RNNs to encode the tempo-
ral information among these features. The encoded sequential
visual features are fed into a fully-connected layer to obtain
the final intention prediction. [14] uses a graph representation
to encode the spatial relationship among the target pedestrian
and surrounding agents. The prediction task was evaluated from
two different perspectives, a pedestrian-centric setting and a
location-centric setting. However, ego vehicle motion and ex-
plicit visual features are not modeled in this work.

Another way of extracting the sequential visual features is
utilizing a 3D CNN [17]. It directly captures the spatio-temporal
features by replacing the 2D kernels of the convolution and
the pooling layers in the 2D CNN with 3D counterparts. For
example, [18], [19] use a 3D CNN based framework (3D
DenseNet) to directly extract the sequential visual features from
the pedestrian image sequence. The final prediction is achieved
by using a fully-connected layer.

The crossing intention prediction task can also be combined
with scene prediction. A couple of works [20], [21] attempted
to decompose the prediction task into two stages. In the first
stage, the model predicts a sequence of future scenes using an
encoder/decoder network. Then, pedestrian actions are predicted
based on the generated future scenes using a binary classifier.

Feature fusion: Instead of end-to-end modeling of visual
features, information such as pedestrian’s bounding box, body-
pose keypoints, vehicle motion, and the explicit global scene
context can also be modeled as separate channels as inputs to
the prediction model. This requires a proper way of fusing the
above information.

For example, [5], [6], [22]-[24] introduced human
poses/skeletons in pedestrian crossing prediction tasks since the
human pose can be considered as a good indicator of human
behaviors. By extracting the pose keypoints from cropped pedes-
trian images, crossing behavior classifiers were built based on the
human pose feature vectors. Improvement in prediction accuracy
shows the effectiveness of using pose features. However, these
methods either only rely on human pose features without con-
sidering other important features or pay less attention to feature
fusion.
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Some other methods focused on novel fusion architectures.
For instance, [7] proposed SF-GRU, a stacked RNN-based ar-
chitecture, to hierarchically fuse five feature sources (pedes-
trian appearance, surrounding context, pose, bounding box, and
ego-vehicle speed) for pedestrian crossing intention prediction.
Nevertheless, this method does not take global context into
account. [8] proposed a multi-modal based prediction system
that integrates four feature sources (local scene, semantic map,
pedestrian motion, and ego-motion). The global context (se-
mantic map) is utilized, but it lacks other important features
such as human pose. [25] proposed a multi-task based prediction
framework to take advantages of feature sharing and multi-task
learning. It fuses four feature sources (semantic map, pedestri-
ans’ trajectory, grid locations, and ego-motion). However, local
context and human pose are not considered in the model.

Very recently, more datasets such as PIE [4] and PeP-
Scenes [26] provide annotations for fusing different features.
A benchmark was also released with the PCPA model [10].
These create more room for researchers to explore the task of
vision-based pedestrian crossing intention prediction.

III. PROPOSED METHOD
A. Problem Formulation

The task of vision-based pedestrian crossing intention pre-
diction is formulated as follows. Given a sequence of observed
video frames from the vehicle’s front view and the relevant
information of ego-vehicle motion, the goal is to design a model
that can estimate the probability of the target pedestrian ¢’s action
AlT™ € {0,1} of crossing the road, where ¢ is the specific time
of the last observed frame and n is the number of frames from
the last observed frame to the crossing / not crossing (C/NC)
event.

It is worth noting that the existing literature usually uses the
terms pedestrian action, behavior, and intention interchangeably.
What is being predicted in this work is whether a pedestrian will
cross or not in a short time horizon. Here we use pedestrian
crossing intention as surrogates for crossing action or behavior.
We assume that the action of crossing is equivalent to the
intention of crossing.

In the proposed model, explicit features such as pedestrian’s
bounding box, pose keypoints, local context (cropped image
around the pedestrian), and global context (semantic segmen-
tation) are first extracted. They are then used together with the
vehicle’s speed as separate channels that serve as the input to
the prediction model. Our model has the following inputs:

e The sequential local context around pedestrian ¢:

_ pot-m  t—m+1 L.
Cri ={e; ™, cp; N TR

e The 2D location trajectory of pedestrian ¢ denoted by
bounding box coordinates (top-left points and bottom-right
points):

Ly = {imm ity
® Pose keypoints of pedestrian ¢:

_ t—m , t—m-+1
Pi={p; " p ",

NS

e Speed of ego-vehicle:

S = {stm, st

Lsh

e The sequential global context denoted by the mask of
semantic segmentation:
Cy = {c';_"L7cZ_"L"'17 .. .702 .
Each source has a sequence of length m + 1. The input
sources are illustrated in Fig. 2 and further described below.

B. Input Acquisition

Local context and 2D location trajectory: The local context
C}; provides visual features of the target pedestrian. The 2D loca-
tion trajectory L; gives the position change of the target pedes-
trian in the image. They can be extracted by a detection (e.g.
YOLO [27]) and tracking (e.g. Deep-SORT [28]) system. At
present, the detection and tracking algorithms are good enough
to generate near ground-truth results. Therefore, in this work, we
directly use the ground truth Cj; and L; from the dataset. The
main reason is that pedestrian detection and tracking are not the
primary focus of this work. We would like to focus on the model
architecture design and remove the noise from the detection and
tracking. This also follows the configurations in most related
works. A small part of the work of [6] considers the impact of
2D detection in the prediction task. However, their innovation
and focus are on how to build the overall pipeline. Another
reason is that by using ground truth we can fairly compare our
method with most related works. Specifically, the local context
Cp = {ci7™ b1 ... cl,} consists of a sequence of RGB
images of size [224,224] pixels around the target pedestrian. The
2D location trajectory L; = {1¢=™ 11" . [I'} consists of
target pedestrian’s bounding box coordinates, i.e.,

t—m __ t—m t—m t—m t—m
R U TN T &
t—m

where z%, ™, y!;™ denotes the top-left point and sz_ m, yfb_ m
bottom-right point.

Pedestrian pose keypoints: Pedestrian pose keypoints repre-
sent the target pedestrian’s detailed motion, i.e., the posture at
each frame while moving. They can be obtained by applying
a pose estimation algorithm on the local context C;. Since the
applied JAAD dataset does not provide ground truth pose key-
points, we utilize the pre-trained OpenPose model [29] to extract
the pedestrian pose keypoints P; = {p!~™ p!=™"1 ... pi},
where p is a 36D vector of 2D coordinates that contain 18 pose
joints, i.e.,

pi " = ey s s

Ego-vehicle speed: Ego-vehicle speed S is a major factor that
affects the pedestrian’s crossing decision. It can be directly read
from the ego-vehicle’s system. Since the dataset contains the
annotation of ego-vehicle’s speed, we directly use the ground
truth labels for the vehicle speed S = {st=™ st=mFL st}

Global context: Global context Cy = {c/ ™, ¢l . ¢!
offers the visual features that account for multi-interactions
between the road and road users, or among road users. In our
work, we use pixel-level semantic masks to represent the global
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Overview of the proposed pedestrian crossing intention prediction model. The yellow part denotes the fusion of visual features. 2D convolutional features

of local context and global context are encoded by GRUs and fed to the attention blocks respectively. The two outputs are concatenated as final visual features.
The blue part denotes the fusion of local features (non-visual). These non-visual features are encoded by another GRU and fused hierarchically, and then fed to an
attention block to obtain the final non-visual features. The red part denotes the final fusion. Final visual features and final non-visual features are concatenated and
fed to an attention block. A fully-connected (FC) layer is then applied to make the final prediction.

context. The semantic masks classify and localize different
objects in the image by labeling all the pixels associated with the
objects. Since the JAAD dataset does not have annotated ground
truth of semantic masks, we use the DeepLabV3 model [30]
pre-trained on the Cityscapes Dataset [31] to extract the semantic
masks and select important objects (e.g. road, street, pedestrians
and vehicles) as the global context. For the model to learn the
interactions between the target pedestrian 7 and these objects,
the target pedestrian is masked by an unique label. The mask
area uses the target pedestrian i’s bounding box (obtained from
L;). The semantic segmentation of all input frames are scaled
to be of size [224,224] pixels, which is the same as the local
context.

C. Model Architecture

The overall architecture is shown in Fig. 2. It consists of CNN
modules, RNN modules, attention modules, and a novel way of
fusing different features.

CNN module: We use the VGG19 [13] model pre-trained
on the ImageNet dataset [32] to build the CNN module. Se-
quential RGB images are collected as a 4D array input with the
dimensions of [number of observed frames, row, cols, channels]
([16,224, 224, 3] in this work), and then loaded by the CNN
module. First, the feature map of every image from the fourth
maxpooling layer of VGG19 is extracted with size [512,14,14].
Second, every feature map is averaged by a pooling layer with
a 14 x 14 kernel, and then flattened and concatenated, to obtain
a final feature tensor with size [16, 512], as sequential visual
features.

RNN module: We use a gated recurrent unit (GRU) [16] to
build the RNN module. The reason for choosing a GRU is that
the GRU is more computationally efficient than its counterpart

LSTM [15], which is older, and its architecture is relatively
simple. The applied GRUs have 256 hidden units, which result
in a feature tensor of size [16, 256].

Attention module: An attention module [33], by selectively fo-
cusing on parts of features, is used for better memorizing sequen-
tial sources. Sequential features (e.g. the output of RNN-based
encoder) are represented as hidden states h = {hq, ha, ..., he}.
The attention weight is computed as:

exp(score(he, hy))
S, exp(score(he, b))’

where score(he, hs) = hT Wh, and Wy is a weight matrix.
Such attention weight trades off the end hidden state h, with
each previous source hidden state hs. The output vector of the
attention module is produced as

Vattention = tanh(Wc[hcy he])7

where W, is a weight matrix, and A, is the sum of all attention
weighted hidden states as h, = Zs,ah;/. The output of the
attention module in our work is a feature tensor with size [1,256].

Hybrid fusion: We applied a hybrid way of fusing the features
from different sources. The strategy is shown in Fig. 2. The
proposed architecture has two branches, one for non-visual
features and one for visual features.

The non-vision branch fuses three non-visual features (bound-
ing boxes, pose keypoints, and vehicle speed). They are hi-
erarchically fused according to their complexity and level of
abstraction. The later the fusion stage occurs, the more impact
the fused features will have on the final prediction. This is il-
lustrated in Fig. 2(a). First, sequential pedestrian pose keypoints
P; are fed to an RNN-based encoder. Second, the output of the
first stage is concatenated with 2D location trajectory L; and fed
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to a new RNN-based encoder. Finally, the output of the second
stage is concatenated with ego-vehicle speed S and fed to a final
RNN-based encoder. The output of the final encoder is then fed
to an attention block to obtain the final non-visual feature vectors
‘/71,1)i~

The vision branch fuses two visual features, consisting of local
context (enlarged pedestrian appearance around the bounding
box) and global context (semantic segmentation of important
objects in the whole scene), as shown in Fig. 2(b). Local context
C}; is encoded by first extracting spatial features from the CNN
module (as explained in the previous section) and then extracting
temporal features from the GRU module. Global context Cy is
encoded in the same way. Both local and global features are
then fed into their attention modules, and finally, concatenated
together to generate the final visual feature vectors V,;.

Lastly, as shown in Fig. 2(c), the final non-visual feature
vectors V,,,; and the final visual feature vectors V,,; are con-
catenated and fed into another attention block, followed by a
fully-connection (FC) layer to obtain the final predicted action:

A§+n = fFC(fattention(Vm;i; Vm))

IV. EXPERIMENTS
A. Dataset and Benchmark

The proposed model was evaluated using both the JAAD [1]
and PIE [4] datasets. The JAAD dataset contains two subsets,
JAAD behavioral data JAADy.,) and JAAD all data (JAAD ;).
JAADy,, contains pedestrians who are crossing (495 samples)
or are about to cross (191 samples). JAAD,;; has additional
pedestrians (2100 samples) with non-crossing actions. To create
a fair benchmark, the dataset configuration is the same as used
in [10]. It uses a data sample overlap of 0.8 and a local context
scale of 1.5.

The PIE dataset is a more comprehensive dataset compared
to the JAAD dataset. It contains 1322 non-crossing samples and
512 crossing samples. Besides, the PIE dataset covers pedes-
trians with more different appearances and scenes with more
different surroundings than those in the JAAD dataset.

The evaluation metrics use accuracy, AUC, F1 score, pre-
cision, and recall. These are the most recognized metrics and
are used by most related works. False alarm rate is another
important metric when deploying this algorithm in autonomous
driving systems. False alarms may cause unnecessary brakes
for autonomous cars, resulting in unpleasant experiences for the
passengers. The above metrics inherently include the false alarm
rate. They are more balanced metrics for evaluating a prediction
system. Most related works and benchmarks adopt this metric
system to report their results. Using this metric system, we can
fairly compare our works with others.

B. Implementation

In the experiments, the proposed model was compared
with the following methods: SingleRNN [2], SF-GRU [7] and
PCPA [10]. We adopted the benchmark implementation released
with the PCPA model [10]. This benchmark collects the im-
plementations of most pedestrian intention prediction methods.
Our model was developed based on this benchmark. We use

Aj
Cji Visual Encoder E
Cq Visual Encoder ®
Fig. 3. Illustration of Later Fusion.
S Ar;n
Li—>&
A
Pi
Cji Visual Encoder
Cq Visual Encoder ©}
Fig. 4. Illustration of Early Fusion.

a dropout of 0.5 in the attention module, L2 regularization of
0.001 in the FC layer, binary cross-entropy loss, and the Adam
optimizer [34]. For the JAAD dataset, we use learning rate =
5x 1077, epochs = 40, and batch size = 2. For the PIE dataset,
we use learning rate = 5 x 1075, epochs = 60, and batch size
= 2. 1l models were trained and tested on the same split of
the dataset, as suggested by the benchmark [10]. Note that the
JAAD dataset does not provide explicit vehicle speed. Instead,
the driver’s action is recorded as an abstract encoding of the
vehicle speed. The action contains [stopped (0), moving slow
(1), moving fast (2), decelerating (3), accelerating (4)].

C. Ablation Study

An ablation study was also conducted to compare different
strategies of fusing different features. In addition to the baseline
methods (SingleRNN [2], SF-GRU [7] and PCPA [10]) and the
proposed model (Ours), a total of 7 variants of the proposed
model (Oursl, Ours2,... Ours7, as indicated in Tables V and
VI) were trained and compared with the proposed one. First,
for the visual encoder, we tried (1) a 2D CNN combined with
RNN (VGG and GRU in our experiments) and (2) a 3D CNN as
proposed in the PCPA model. Second, we tried the models with
and without the global feature (semantic segmentation). Finally,
we tried different fusion strategies that include later fusion, early
fusion, and hierarchical fusion so that they can be compared
with the proposed hybrid fusion strategy. Later fusion (Fig. 3)
is the same as that proposed in PCPA [10]. Early fusion (Fig. 4)
concatenates non-visual features and visual features directly and
then sends them into one RNN module followed by an attention
module. Hierarchical fusion (Fig. 5) gradually fuses both visual
features and non-visual features by RNN modules in the same
manner as in Fig. 2(a), followed by an attention module.

V. RESULTS
A. Quantitative Results

Table I shows the qualitative results on the JAADy,;, dataset.
It compares the proposed model with baseline models of
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TABLE I
QUANTITATIVE RESULTS ON THE JAAD BEHAVIOR SUBSET

Models Model Variants JAAD,,;,
Visual Encoder | Global Context [ Fusion Approach [ Accuracy | AUC [ FI Score | Precision [ Recall
SingleRNN [2] VGG + GRU X 0.60 0.54 0.70 0.65 0.76
SF-GRU [7] VGG + GRU X hierarchical-fusion 0.58 0.56 0.65 0.68 0.62
PCPA [10] 3D CNN X later-fusion 0.56 0.54 0.63 0.66 0.60
Ours VGG + GRU v hybrid-fusion 0.62 0.54 0.74 0.65 0.85
TABLE II
QUANTITATIVE RESULTS ON THE JAAD ALL DATASET
Models Model Variants JAAD
Visual Encoder | Global Context | Fusion Approach [ Accuracy | AUC [ FI Score | Precision | Recall
SingleRNN [2] VGG + GRU X X 0.78 0.77 0.54 0.42 0.75
SF-GRU [7] VGG + GRU X hierarchical-fusion 0.76 0.77 0.53 0.40 0.79
PCPA [10] 3D CNN X later-fusion 0.77 0.79 0.56 0.42 0.83
Ours VGG + GRU v hybrid-fusion 0.83 0.82 0.63 0.51 0.81
TABLE III
QUANTITATIVE RESULTS ON THE PIE DATASET
Models Model Variants PIE
Visual Encoder | Global Context [ Fusion Approach [ Accuracy | AUC [ FI Score | Precision [ Recall
SingleRNN [2] VGG + GRU X X 0.83 0.78 0.69 0.72 0.67
SF-GRU [7] VGG + GRU X hierarchical-fusion 0.84 0.80 0.71 0.72 0.71
PCPA [10] 3D CNN X later-fusion 0.87 0.85 0.78 0.76 0.81
Ours VGG + GRU v hybrid-fusion 0.89 0.86 0.80 0.79 0.81
on TABLE IV

Cji Visual Encoder
Cg Visual Encoder ®

Illustration of Hierarchical Fusion.

Fig. 5.

SingleRNN [2], SF-GRU [7] and PCPA [10]. The proposed
model achieved the best scores in accuracy, F1, and recall.
F1 score is an balanced metric considering both recall and
precision. For binary classification, it is the most important
indicator of quality of the model. Our model achieved about
4% improvement in F1. In addition to F1, accuracy is another
important metric, and our model also achieved the best score.

Table II shows the qualitative results on the JAAD,;; dataset.
JAAD,;; has additional samples of non-crossing behaviors. It
is larger than JAADy.p. The data distribution is more similar
to real world scenarios. As illustrated by Table II, the proposed
method achieved the best in accuracy, AUC, F1, and precision.
Similar to the results in JAADy.},, our model achieved the best
score in terms of the two important metrics, F1 and accuracy.

Table III shows the qualitative results on the PIE dataset. On
such a comprehensive dataset, our proposed method outperforms
other methods with a considerable gap, which shows the impor-
tance and advantages of designing a hybrid fusion strategy and
utilizing global context.

Note that the results of PCPA were generated based on the
official implementation released by the PCPA author. We cannot

COMPARISON OF COMPUTATIONAL COST

Model Number of Params.
SingleRNN [2] 1,016,321
SF-GRU [7] 2,595,329
PCPA [10] 31,165,953
Ours 2,988,545

reproduce the same results as reported in the PCPA paper.
After communicating with PCPA’s authors, they confirm that
our reproduced result is normal.

We also analyzed the computational cost of the above models.
The total number of model parameters is used as an indicator of
computational cost. Table IV shows the comparison. PCPA [10]
has the highest number of model parameters as it utilizes 3D
convolution. Our model has only one-tenth of the parameters
in PCPA, but still achieved better performance. This provides
advantages in real-time deployment.

B. Qualitative Results

Fig. 6 provides qualitative results for the proposed model of
pedestrian crossing intention prediction. We mainly compared
the proposed method with the PCPA model. In the provided
examples, our method correctly predicted the crossing intention
but the PCPA failed. Taking a closer look at the examples,
the following argument is raised. Without utilizing the global
context, the task of crossing intention prediction may face the
problems of (1) unknown direction of the pedestrian (Case a in
Fig. 6), (2) occlusion (Case b in Fig. 6), and (3) poor vision (Case
¢ in Fig. 6). Global context can provide additional information
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Observation
t-0.25s

Fig. 6.

Ground truth
t+1s

Prediction
t+1s

8

PCPA: crossing

Ours: not crossing

Label: not crossing

PCPA: not crossing

Ours: crossing

PCPA: not crossing

Ours: crossing

Label: crossing

Qualitative results on the JAAD dataset produced by PCPA [10] and our proposed model (Ours). The target pedestrians in images are enclosed by orange

bounding boxes. The prediction results as well as ground truth labels are represented as red crossing or green not crossing.

Correct

(a) GT: NC | PCPA: C | Ours: NC

(b) GT: C | PCPA: NC | Ours: C

Fig. 7.
both the proposed and the PCPA model failed.

to account for the interaction between the whole scene and the
target pedestrian.

Fig. 7 provides more qualitative results to analyze the advan-
tages of the proposed model over the PCPA model as well as a
few failure cases. Fig. 7(a) and (b) show cases when the proposed
model generated correct predictions but the PCPA failed. The
main reason is that our model considers the global visual context
that contains the semantic segmentation of the drivable area.
The model can learn from this whether the pedestrian is moving
toward or on the drivable area, which is an important indicator
of pedestrian crossing intention.

Fig. 7(c) and (d) show cases when both the proposed model
and the PCPA failed. Fig. 7(c) shows an intersection scenario.
The pedestrian (yellow bounding box) has already crossed the
ego road but is near the edge of the road on the other side. This
may mislead the model to generate a prediction of crossing. The
failure in Fig. 7(d) was mainly due to the poor illumination such
that the model cannot obtain enough detailed features.

C. Results of Ablation Study

Tables V and VI show the ablation study on the JAADy,.;, and
JAAD,;; datasets, respectively. Table VII shows the ablation

Incorrect

(c) GT: NC | PCPA: C | Ours: C

(d) GT: C | PCPA: NC | Ours: NC

More qualitative results. (a) and (b) show cases of correct prediction by the proposed model for which the PCPA failed. (c) and (d) show results when

study on the PIE dataset. Different model variants are denoted
by Oursl, Ours2,..., Ours7. By comparing Ours5 with Ours4
and Oursl with the PCPA model, it shows that introducing
global context can improve the model performance. In terms of
fusion strategies, the proposed hybrid fusion strategy achieved
the best performance, as seen by comparing Ours with Ours5,
Ours6, and Ours7. If we further compare Ours4 with the PCPA
model, it shows that using a 2D CNN plus RNN instead of a 3D
CNN has a minimal impact on performance. This evidence also
demonstrates that the improvement of our proposed method is
mainly due to the new hybrid fusion strategy and global context.

D. Effect of Longer Prediction Horizon

It is claimed in some traffic studies [35] that the most suitable
prediction horizon, i.e., time-to-event (TTE), is 1-2 seconds,
because longer prediction horizon is impractical due to unpre-
dictable nature of most urban scenarios and human dynam-
ics [35]. However, to show the generalization ability, we still
evaluated the proposed model with a longer TTE prediction
horizon of 2-3 seconds. This was done by recreating the samples
with a larger number of future frames. Table VIII shows the effect
of different prediction horizons for the proposed model. It can
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TABLE V
ABLATION STUDY ON THE JAAD BEHAVIOR SUBSET

Models Model Variants JAAD,,;,
Visual Encoder | Global Context [ Fusion Approach [ Accuracy [ AUC [ FI Score | Precision [ Recall
Ours VGG + GRU v hybrid-fusion 0.62 0.54 0.74 0.65 0.85
Ablations
Ours1 3D CNN v later-fusion 0.59 0.53 0.69 0.65 0.75
Ours2 3D CNN v early-fusion 0.59 0.54 0.69 0.65 0.74
Ours3 3D CNN v hierarchical-fusion 0.57 0.48 0.70 0.62 0.81
Ours4 VGG + GRU X later-fusion 0.59 0.51 0.72 0.63 0.83
Ours5 VGG + GRU v later-fusion 0.64 0.59 0.73 0.68 0.78
Ours6 VGG + GRU v early-fusion 0.60 0.56 0.70 0.67 0.73
Ours7 VGG + GRU v hierarchical-fusion 0.54 0.50 0.64 0.63 0.65
TABLE VI
ABLATION STUDY ON THE JAAD ALL DATASET
Models Model Variants JAAD,,
Visual Encoder | Global Context | Fusion Approach | Accuracy [ AUC [ FI Score [ Precision | Recall
Ours VGG + GRU v hybrid-fusion 0.83 0.82 0.63 0.51 0.81
Ablations
Ours1 3D CNN v later-fusion 0.77 0.77 0.54 0.42 0.76
Ours2 3D CNN v early-fusion 0.77 0.74 0.51 0.41 0.69
Ours3 3D CNN v hierarchical-fusion 0.78 0.77 0.55 0.43 0.75
Ours4 VGG + GRU X later-fusion 0.75 0.79 0.54 0.40 0.85
Ours5 VGG + GRU v later-fusion 0.77 0.80 0.56 0.43 0.84
Ours6 VGG + GRU v early-fusion 0.79 0.74 0.52 0.43 0.66
Ours7 VGG + GRU v hierarchical-fusion 0.80 0.81 0.59 0.46 0.84
TABLE VII
ABLATION STUDY ON THE PIE DATASET
Models . Model Variants . PIE .
Visual Encoder | Global Context | Fusion Approach [ Accuracy [ AUC | FI Score | Precision | Recall
Ours VGG + GRU v hybrid-fusion 0.89 0.86 0.80 0.79 0.81
Ablations
Oursl 3D CNN v later-fusion 0.84 0.85 0.76 0.67 0.86
Ours2 3D CNN v early-fusion 0.85 0.85 0.76 0.68 0.87
Ours3 3D CNN v hierarchical-fusion 0.86 0.84 0.76 0.75 0.77
Ours4 VGG + GRU X later-fusion 0.85 0.85 0.76 0.69 0.84
Ours5 VGG + GRU v later-fusion 0.86 0.84 0.76 0.74 0.78
Ours6 VGG + GRU v early-fusion 0.74 0.64 0.47 0.55 0.41
Ours7 VGG + GRU v hierarchical-fusion 0.86 0.84 0.77 0.74 0.80
TABLE VIII and testing samples in a different way. The quantitative results
EFFECT OF LONGER PREDICTION HORIZON cannot be directly compared with the proposed method. We
Dataset | TTE | Ace. | AUC | F1 | Precision | Recall analy.tically compared their results with ours vyith the conditions
IAAD, T2 1 062 | 054 1 074 0.65 0.85 ?escrll?ed. The comparison can. be found in Table IX. The
eh 535 1053 | 047 1 065 0.62 0.68 ollowing works were compared:
12s 1 083 1 082 | 0.63 0.51 0.81 e Liu’s work [14] formulated the prediction task in two differ-
JAAD 23s | 0.79 | 078 | 0.57 0.46 0.76 ent perspectives of pedestrian-centric and location-centric
1-2s | 0.89 | 0.86 | 0.80 0.79 0.81 settings. In addition to the JAAD dataset, it also introduces
PIE 2-3s | 078 | 0.77 | 0.65 0.59 0.73 a specifically designed new dataset. The spatio-temporal

* The bold result indicates he best result among the models.

be seen from the table that the model performance drops on both
the JAAD and PIE datasets. This supports the claims that a TTE
of 1-2 seconds is more suitable than a TTE of 2-3 seconds.

E. Comparison of Different Prediction Task Configurations

There are some works that formulate the pedestrian intention
prediction task in a different setting. Although using the same
datasets, JAAD and PIE, they prepare the training, evaluation,

information is encoded by GCN and RNN. They reported
an accuracy of 0.77 on the JAAD dataset for predicting
exactly 1 s into the future. We use the more commonly
recognized benchmark proposed in [10] in our work. We
achieved an accuracy of 0.83 on the JAAD dataset for
future actions of 1-2 seconds. With a longer prediction
horizon and higher accuracy scores, the effectiveness of
our proposed method is validated.

e Zhang’s work [36] focuses on pedestrian’s crossing in-
tention at red-light scenario. It analyzed 4 different ma-
chine learning models, SVM, RF, GBM, and XGBoost,
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TABLE IX

COMPARISON OF DIFFERENT PEDESTRIAN INTENTION PREDICTION TASK CONFIGURATIONS

Work

Prediction Task Configuration

Results

Comparison to Ours

Liu et al. [14]

Both pedestrian-centric and location-
centric configuration

Achieved 0.77 accuracy on JAAD
dataset for action prediction at s

Achieved 0.83 accuracy on JAAD
dataset for 1-2s future action prediction

Zhang et al. [36]

Pedestrian crossing intention at red-
light scenario

Achieved 0.91 accuracy on self-created
red-light scenario dataset

Unable to directly compare as the self-
collected dataset is not accessible

Chen et al. [37]

Utlized a balanced sampling strategy,
observing 15 frames (0.5s), predicting
the action for 45 frames (1.5s)

Achieved 0.79 accuracy and 0.78 F1
score on randomly sampled testing set
(balanced) using PIE dataset

Achieved 0.89 accuracy and 0.80 F1
score on PIE dataset with the com-
monly adopted configuration in [10]

Rasouli et al. [9]

Jointly predicting pedestrian action (in-
tention), trajectory, and grid position

Achieved 0.91 accuracy with the auxil-
iary labels on PIE dataset

Achieved 0.89 accuracy with only ac-
tion (intention) labels on PIE dataset

229

that are fed with pedestrian pose features. It achieved an
accuracy of 0.91. However, the results were obtained on
a self-collected and self-labeled red-light scenario dataset.
Our proposed model cannot be directly compared with this
method due to the inability of accessing the dataset and
the different task configurations. Nevertheless, our method
achieved an accuracy of 0.89 on the PIE dataset, which is
very similar to Zhang’s results.

e Chen’s work [37] utilized a balanced sampling strategy
to extract the samples for pedestrian crossing prediction.
They use 15 frames (0.5 s) as observation to predict the
pedestrian crossing action for 45 future frames (1.5 s). A
graph convolutional autoencoder is used to embed spatio-
temporal information. It achieved 0.79 accuracy and 0.78
F1 scores on a randomly sampled testing set (balanced)
using the PIE dataset. Our model uses the commonly
adopted configuration in [10]. We achieved 0.89 accuracy
and 0.80 F1 score on the PIE dataset.

e Rasouli’s work [9] formulates the pedestrian crossing in-
tention as a sub-task of a multitask prediction framework,
i.e., jointly predicting action (intention), trajectory, and
grid position. They use a combined independent and joint
encoding strategy with a categorical interaction module
to fuse all the input channels. With the auxiliary labels,
their work achieved 0.91 accuracy on the PIE dataset. As a
comparison, our model achieved 0.89 accuracy on PIE but
with only the action (intention) labels. Without auxiliary
labels, our model still achieves comparable results. This
validates the effectiveness of our model.

VI. CONCLUSION

In this work, we proposed a novel method for vision-based
pedestrian crossing intention prediction. Our method explicitly
considers the global context as a channel representing the in-
teraction between the target pedestrian and the whole scene.
We also proposed a hybrid fusion strategy for different features
using 2D CNNs, RNNs, and attention mechanisms. Experiments
on the JAAD and PIE datasets show that the proposed method
achieves the state-of-the-art against baseline methods in the
pedestrian action prediction benchmark.

Future work can focus on improving our model’s robustness
in unexpected situations, e.g., poor vision and occlusion. Ad-
ditionally, feature fusion with more information sources can be
explored. Finally, fine-tuning the model for particular pedestrian
subsets, such as children and disabled people, can increase
overall safety and performance.
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