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ABSTRACT Point cloud registration is a core task in 3D perception, which aims to align two point clouds.
Moreover, the registration of point clouds with low overlap represents a harder challenge, where previous
methods tend to fail. Recent deep learning-based approaches attempt to overcome this issue by learning
to find overlapping regions in the whole scene. However, they still lack robustness and accuracy, and thus
might not be suitable for real-world applications. Therefore, we present a novel registration pipeline that
focuses on object-level alignment to provide a robust and accurate alignment of point clouds. By extracting
and completing the missing points of the object of interest, a rough alignment can be achieved even for point
clouds with low overlap captured from widely apart viewpoints. We provide a quantitative and qualitative
evaluation on synthetic and real-world data captured with a Kinect v2. The proposed approach outperforms
the current the current state-of-the-art methods by more than 29% w.r.t. the registration recall on the
introduced synthetic dataset. We show that the overall performance and robustness increases due to the
object-level alignment, while the baselines perform poorly as they take the entire scene into account.

INDEX TERMS Point cloud registration, sensor fusion, 3D reconstruction, deep learning.

I. INTRODUCTION
Multi-perception sensor setups with 3D depth sensors [1]
and LIDARs [2] are becoming more and more prevalent for
manufacturing. However, such multi-sensor systems require
accurate and robust extrinsic calibration to be usable. More-
over, an increasing degree of automation in industrial man-
ufacturing processes also raises a requirement for automated
(re-)calibration to keep the growing complexity in set-up and
maintenance manageable.

While being a general computer vision problem, point
cloud registration also provides a potential solution for extrin-
sic calibration of 3D sensors. The goal is to find the relative
transformation between a point cloud pair with respect to
a reference frame. Previous research was mainly based on
traditional registration methods [4]–[6], which were com-
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FIGURE 1. Right: The scene-level approach [3] focuses on the entire point
clouds for finding correspondences and fails registration. Left: Our
object-centric approach successfully registers the real-world point clouds.
The proposed method finds and roughly aligns the object-of-interest in
both point clouds. Then, this object-of-interest is used as a fulcrum point
to fine-tune the scene-level matching process.
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bined, in most research works, with specific calibration
objects [7]–[10] or markers [11]–[14]. Even though the
target-based methods offer reliable and precise calibration,
they are performed manually and require expert knowledge,
which is not satisfactory for highly automated industrial pro-
cesses. Later work [15] showed that automated and target-less
calibration is possible but still relies on an approximate initial
guess of the sensor placement. Moreover, traditional registra-
tionmethods suffer from instability and lack robustness, if the
input point clouds are captured from widely apart viewpoints
and their overlap is relatively low.

However, these methods represent a bottleneck for reach-
ing higher levels of autonomy in industrial processes where
vision systems are vital. In such cases, learning-based tech-
niques are used to overcome these issues. The tremen-
dous success of deep learning for various 3D perception
tasks [16]–[19] has resulted in the use of deep learning for
point cloud registration as well. This can be seen in a num-
ber of approaches [3], [20]–[29] that appeared in the recent
years. Despite learning-based approaches trying to mitigate
the problems of previous registration methods, they require
large amount of data, lack generalization and accuracy, and
tend to fail when the test data distribution differs from the
training data distribution.

Therefore, instead of learning low-level features on the
entire point cloud, we could simply focus on an object of
interest within the scene, as shown in figure 1. Moreover,
a valid assumption for most relevant 3D computer vision
applications is that there will always be at least one unique
object, i.e. an object of interest in the scene. For example,
vehicles in automated driving use cases, robotmanipulators in
industrial work cells, or furniture in domestic indoor scenes.
Thus, by focusing on an object-centric alignment, we can
overcome the problems of point clouds captured from differ-
ent viewpoints, point clouds with low overlap, and the need
for learning correspondences on the entire scene. Moreover,
by applying this simple yet effective hypothesis, we can use
any off-the-shelve methods and easily integrate them into our
pipeline to adapt to any given requirements.

Hence, we propose a simple and modular registration
pipeline for point cloud data to mitigate the limitations men-
tioned above. First, the object of interest is extracted from the
input point cloud pair. The extracted points partially represent
the object of interest, due to the self-occlusion of 3D sensors.
Therefore, the next step in our registration pipeline predicts
the missing points, which highly increases the similarity
between the extracted point clouds. We leverage this simi-
larity and perform a rough alignment of the completed point
clouds of the object of interest. This provides a relatively good
transformation estimation. Finally, we refine the alignment
on the entire captured scene by using the roughly estimated
transformation parameters as an initial guess.

Our main contributions can be summarized as follows:

• Anovel registration pipeline based on object-level align-
ment

• The object extraction and completion modules that
enable accurate and robust registration even for point
clouds with low overlap

• Extensive experiments on a new synthetic dataset con-
taining point clouds with low overlap captured from
widely apart viewpoints, and qualitative evaluation on
real point cloud data.

II. RELATED WORK
In this section, we provide an analysis of relevant related
research. Furthermore, we extract the limitations for each
subclass of the family of point cloud registration methods.

A. TRADITIONAL POINT CLOUD REGISTRATION
1) POINT-BASED REGISTRATION METHODS
The most known traditional optimization-based point cloud
registration method is Iterative Closest Point (ICP), which
was introduced by [30] and [31]. The core idea behind ICP
is to iteratively search for correspondences and estimate
the transformation between them, thus finding the optimal
transformation between source and target point cloud. The
main drawback of this method is that it heavily relies on a
good initial pose estimate, which in case of a bad estimate
can lead to convergence to a local-minima. To overcome
this, [32], [33] and [34] use branch-and-bound to search for
global optimal solution. Although these approaches may be
effective with bad initial estimates, they still lack in terms of
robustness in the case of point cloud pairs with low overlap.
Additionally, global registration methods come with a high
price in required computational effort, which makes them
unusable for real-time applications. Finally, [35] introduces
the estimation of the velocity of the rangefinder into the ICP
algorithm to compensate for any kind of distortion caused by
the movement of the sensor.

2) HANDCRAFTED DESCRIPTORS
Contrary to optimization-based registration techniques, hand-
crafted descriptor-based approaches [36]–[39] try to extract
relevant features from point cloud pairs, and thus find corre-
spondences between them. Their advantage over most of the
optimization-based methods is that handcrafted descriptors
don’t require an initial guess. However, some disadvantages
of these methods are sensitivity due to noise and occlu-
sions, which can result in wrong correspondences. Moreover,
handcrafted feature extraction methods underperform when
dealing with point cloud pairs with low overlap, because there
might be fewer, or even none at all, matching correspon-
dences in the two input point clouds.

B. LEARNING-BASED POINT CLOUD REGISTRATION
1) FEATURE LEARNING
The rapid advancement of data-driven deep learning
approaches enabled the usage of these techniques for point
cloud registration. Unlike the handcrafted feature extrac-
tors, feature learning approaches train deep neural networks
on large training data sets for finding correspondences.
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3DMatch [20] is one of the first feature learning point cloud
registration approaches. It leverages volumetric data repre-
sentation and 3D Convolutional Neural Networks (CNN)
to learn 3D local descriptors for finding correspondences.
The authors from [20] introduced the well-known real-world
data registration benchmark under the same name as the
method. In order to jointly capture local and global fea-
tures, Deep Closest Point (DCP) [21] employs Dynamic
Graph Convolutional Neural Network (DGCNN) [40] and
leverages Transformer [41] to learn contextual information.
Finally, an Singular Value Decomposition (SVD) module
produces the transformation matrix. A comprehensive survey
of data-driven feature learning methods can be found in [42],
including works up to 2021. More recent methods [3], [22]
and [24] try to overcome the problem of registration of point
clouds with low overlap. The approach in [22] enhances the
quality of the correspondences, in a regime with low overlap,
by using a graph-based self- and cross-attention network.
PREDATOR [3] introduces a novel overlap-attention block
that aims to focus more on the overlapping parts of point
cloud pairs. [24] proposes to solve the registration of partially
overlapping point clouds by learning overlapping masks to
register those regions.

However, the main limitations of the above-mentioned
methods are: 1) they need an immense amount of training
data, and 2) if there is a relatively large gap between the
training data and new scenes, then these methods suffer from
a significant performance drop. 3) These methods still fail
to accurately register extremely point cloud pairs with low
overlap. On the contrary, our method focuses on finding cor-
respondences on an object level. This object-centric strategy
helps to address the aforementioned drawbacks. Moreover,
our modular pipeline makes use of state-of-the-art methods
and thus leveraging its strengths.

III. PROPOSED METHOD
Our novel point cloud registration method focuses on find-
ing an object of interest in the input point cloud pairs for
accurate and precise transformation estimation. Additionally,
wemake the assumption that a unique object of interest exists,
specific for a particular use case, within any given scene.
The proposed point cloud registration pipeline is modular,
and thus enables the easy plug-and-play exchange of each
module with other off-the-shelf methods or network models.
Figure 2 shows our proposed calibration pipeline, which can
be subdivided into four main modules:

1) We first extract the object of interest in the source and
target point cloud (Sec. III-B).

2) The extracted points of the object of interest from
both point clouds represent a partial point cloud rep-
resentation and are completed within the point cloud
completion module (Sec. III-C).

3) The completed point clouds of the object of inter-
est from the input point cloud pair are roughly

aligned using Principal Component Analysis (PCA)
and ICP [30] (Sec. III-D).

4) The final step includes estimating the transforma-
tion parameters using ICP [30] (Sec. III-D). For the
so-called initial guess, the estimated transformation
parameters, from the previous step, are used.

The following subsections explain in detail the novel point
cloud registration pipeline.

A. PROBLEM STATEMENT
Lets consider two input point clouds, source P =

{p1, . . . ,pi, . . . ,pM | pi ∈ R3
} and target point cloud

Q = {q1, . . . ,qi, . . . ,qN | qi ∈ R3
}, where M = N can

be but is not necessary. Assume that the source and target
point cloud have L point matches, where 0 < L < N .
The task of point cloud registration is to estimate the rigid
transformationmatrixTQ

P , which consists of a rotationmatrix
R and translation vector t, where R ∈ SO(3) and t ∈ R3,
by minimizing the least squares error:

E(R, t) =
1
L

L∑
i=1

‖qi − (Rpi + t)‖2. (1)

The well-known ICP method tries to iteratively solve equa-
tion (1) by alternating in finding the right point matches,
i.e. correspondences, and the optimal transformation matrix.
Unfortunately, this approach is very sensitive to local optima
and it fails to converge if the initial guess is poor. Therefore,
we aim to provide a relatively well-aligned initial guess by
focusing first on the object of interest in both the source and
target point cloud.

B. OBJECT OF INTEREST EXTRACTION
As already mentioned, our approach finds first correspond-
ing points on an object-level instead of searching for cor-
respondences or features in the entire input point cloud
sets like it is done by previous methods. Thus, the first
step is to extract the object of interest point clouds PS =
{pS,1, . . . ,pS,i, . . . ,pS,J | pS,i ∈ R3

} and QS =

{qS,1, . . . ,qS,i, . . . ,qS,K | qS,i ∈ R3
} from the source P and

target point cloud Q, where PS ⊂ P , QS ⊂ Q, and J = K
can be but is not necessary. It can be described with:

PS = fe(P), (2)

QS = fe(Q) (3)

where fe is a function that extracts the points of the object of
interest from the input point cloud data. Since our approach
is modular, the function for extracting the object of interest
points can be implemented by any method which is able to
distinguish the object of interest from the background. For
example, a 3D object detection module, trained to detect the
object of interest, can be used for this task.
In our experiments, we use the DGCNN [40] semantic

segmentation network as fe from equations (2) and (3) for
extracting the object of interest points from the background.
DGCNN is a lightweight graph-based network architecture
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FIGURE 2. Our point cloud registration pipeline. The input point clouds are first passed through the object extraction module to retrieve the points from
the object of interest. Then, the point cloud completion module infers the missing points of the object of interest. Object-Level alignment is applied on
the completed object of interest point clouds. Afterward, the scene-level fine alignment module refines the point cloud registration on all the points.

leveraging edge convolution operations. The input point
cloud is converted to a graph-based structure by using k
nearest neighbours. Furthermore, their newly introduced edge
convolution operation specifically combines global informa-
tion with the local neighbourhood information. For more
details, please refer to the original work.

C. POINT CLOUD COMPLETION
The extracted points PS and QS , of the same object of
interest from both input point clouds, represent only partially
the object of interest. This is due to obvious self-occlusion
since the 3D sensor can only capture one side of an object.
Furthermore, we can assume that the two extracted point
clouds only partially overlap which is caused by different
viewpoints while capturing the input point clouds. The larger
the translational and rotational difference between the two
input point clouds is the smaller the expected overlap between
them, and thus the harder the estimation problem. To tackle
these issues we propose to predict the missing points of the
extracted object of interest point clouds with:

PC = fc(PS ), (4)

QC = fc(QS ) (5)

where fc is a function that predicts the missing points of
PS and QS . The complete point cloud representations of
the extracted object of interests is denoted with PC =

{pC,1, . . . ,pC,i, . . . ,pC,U | pC,i ∈ R3
} and QC =

{qC,1, . . . ,qC,i, . . . ,qC,V | qC,i ∈ R3
}, where U = V can

be but is not necessary, andPS ⊂ PC andQS ⊂ QC . The aim
of completing the two extracted point clouds is to get a set of
points that are similar w.r.t. their geometrical shape. We use
this similarity between the two completed point clouds of the
object of interest to roughly align them, but this is described
in more detail in the following section.
To infer missing points from partial input point clouds,

we use the PoinTr [43] network as fc from equations (4)
and (5). PoinTr is a transformer-based network architecture
for the task of point cloud completion. To process the incom-

plete point cloud a lightweight DGCNN model is employed.
However, to reduce the computational cost, the input point
cloud is hierarchically downsampled using farthest point
sampling (FPS). More details can be found in the original
research article.

D. TRANSFORMATION PARAMETER ESTIMATION
As mentioned in Sec. III-A, the ICP algorithm is prone to
errors if the initial alignment is inaccurate, which leads to
a bad transformation matrix estimation, hence a bad regis-
tration. We solve this issue by providing a relatively good
initial alignment of the input point clouds, by leveraging
the similarity of the completed point clouds of the object of
interest. We apply PCA [44], by following [45] and [46], and
find the covariance matrices,CPC ∈ R3×3 andCQC ∈ R3×3,
of both completed point clouds:

CPC =
1
U

U∑
i=1

(pC,i − p̄C )(pC,i − p̄C )T , (6)

CQC =
1
V

V∑
i=1

(qC,i − q̄C )(qC,i − q̄C )T , (7)

where the centroids of the completed point clouds, p̄C ∈ R3

and q̄C ∈ R3, are calculated with:

p̄C =
1
U

U∑
i=1

pC,i, (8)

q̄C =
1
V

V∑
i=1

qC,i. (9)

The point cloud reference system for each completed object
of interest point cloud is defined by its principal components,
i.e. feature vectors of the previously calculated covariance
matrix given with equations (6) and (7), and with the centroid
as its origin given with equations (8) and (9). By align-
ing the reference frame of the two completed point clouds,

VOLUME 10, 2022 76589



B. L. Žagar et al.: Point Cloud Registration With Object-Centric Alignment

FIGURE 3. Qualitative comparison on real point cloud data captured with a Kinect v2. The traditional baseline methods underperform because searching
for correspondences in the entire scene is prone to failure. On the other hand, only our method achieves satisfying registration due to the emphasis on
object-centric alignment.

FIGURE 4. Kuka LBR iiwa collaborative robot mounted on a worktable
inside our workcell dedicated for research purposes. We use multiple
Kinect v2 depth sensors mounted in the corners of the workcell to get full
coverage. The extrinsic calibration, i.e. point cloud registration, of the 3D
vision system is performed with our proposed method, because it
provides robust and accurate alignment due to the object-centric
approach. Additionally, for the indoor real-world scenario, we assume
that the movement of the object of interest, in our case the robot arm,
cannot cause any significant positional discrepancy in the depth sensors.
This assumption is valid because the time synchronization of multiple
connected depth sensors is usually by magnitudes faster than the
movement of any object within a scene.

retrieved from the source and target input points, and apply-
ing ICP for further refinement, we obtain an object-level
alignment TQC

PC ,rough.
Finally, we use the object-level alignment as the initial

guess for the minimization problem of equation 1 and solve it
using ICP on the entire input point clouds for finding TQ

P,fine.
Since we can provide an initial guess, which is already close
to the optimal solution, the ICP algorithm converges and finds
the optimal solution without getting stuck in local optima.

IV. EXPERIMENTS
In this section, we give a detailed description of the used
dataset and give an overview of the implementation details
and the used evaluation metrics. Then we provide an abla-
tion study showing the contribution of our object-centric

TABLE 1. Synthetic dataset details.

strategy. Finally, we compare the quantitative and qualita-
tive performance of our method to traditional baselines, i.e.
ICP [30] and [31], Fast Glogal Registration (FGR) [38],
Random Sample Consensus (RANSAC) [37] and RANSAC
followed by ICP, and, lastly, with one state-of-the-art feature
learning-based method PREDATOR [3]. Firstly, we describe
the used dataset.

A. DATASET
We assume that for most 3D computer vision applications that
require point cloud registration as a necessary preprocessing
step, a unique object of interest will be present within the
captured scene. Hence, let us consider the scenario of an
indoor industrial robotics workcell inside a manufacturing
plant. We can assume that a robot manipulator will be present
in all the captured scenes since it represents the main element
for the operation of a robot workcell. Thus, we can consider
the robot manipulator as our unique object of interest in any
given robotic workcell use case. To the best of our knowl-
edge, there are no open-source datasets that satisfy our task
description.

Therefore, we introduce a new synthetic dataset, con-
taining dense point clouds of an industrial workcell with a
Kuka LBR iiwa inside it. This dataset is generated using
Blender [47] by realistically recreating our real-world lab
robotic workcell, as can be seen in figure 4 and its real-world
3D scan taken with a Kinect v2 in figure 3, and contains
2750 scan pairs with randomly sampled robot joint states
for each scan. Additionally, the scans were taken from ran-
dom poses within the workcell with the condition that the
robot arm is inside the field of view. Our synthetic dataset
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TABLE 2. Quantitative evaluation of semantic segmentation of
DGCNN [40] on the synthetic dataset. We use the intersection over union
metric to show the point-wise semantic segmentation performance on
our synthetic dataset.

can be used to train for semantic segmentation, point cloud
completion, and point cloud registration tasks. Therefore,
we give the ground truth point-wise labels containing either
the background class or the robot arm class. In addition to
that, we provide the complete robot arm point cloud for each
scan as ground truth data, in order to be able to train a point
cloud completion network. The split into subsets for training,
validation, and testing can be seen in table 1. We follow [3]
to calculate the overlap ratio between the point cloud pairs,
which is reported in table 1 as well. The overlap ratio tells us
how many points of the perfectly aligned source and target
point cloud lie within a threshold distance. The lower the
overlap ratio between two input point clouds is, the fewer
potential correspondences exist, thus making the registration
problem harder. The mean overlap ratio of the point cloud
pairs from our introduced synthetic dataset is relatively low at
around 30%. If we compare our dataset with the well-known
3DMatch dataset [20], where only scan pairs with an overlap
> 30% are considered, we can see that our dataset represents
a harder challenge for registration.Specifically, point cloud
pairs with an overlapping region < 30% are considered to be
low overlapping [3] and thus various methods show a rapid
decrease in performance.

B. IMPLEMENTATION DETAILS
Our method is implemented in the programming language
Python using the well-known machine learning framework
PyTorch [48] and Open3D [49] for 3D data processing and
visualization. As mentioned previously, we used Blender [47]
to generate our synthetic dataset. For the object of interest
extraction module, we use the DGCNN [40], trained on our
dataset by following their recommendations regarding the
hyperparameters. We report in table 2 the performance of
DGCNN [40] on our synthetic dataset based on the Intersec-
tion over Union (IoU) metric. The point cloud completion is
obtained by using the PoinTr network [43], again following
their hyperparameter recommendations. We trained PoinTr
on our dataset, with the addition of generating the corre-
sponding ground truth, i.e. the complete robot arm point cloud
representation for each scan, with Blender. Table 3 shows the
performance of PoinTr [43] on our introduced dataset. We set
the threshold for ICP in the rough and fine alignment steps to
0.01 and 0.1, respectively. The experiments were conducted
on our workstation PC with an AMD Ryzen Threadripper
2950X (16-Core) and an NVIDIA GeForce RTX 3090 GPU.

For the traditional baselines, we use the implementation
provided in the Open3D library [49], while for the feature
learning-based method we use their publicly available open-
source implementation. For fairness, we trained the feature

TABLE 3. Quantitative evaluation of point cloud completion of
PoinTr [43] on the synthetic dataset. We use the L1 Chamfer Distance to
show the performance on our synthetic dataset.

TABLE 4. Ablation study of the proposed registration pipeline performed
on our synthetic test set. The threshold for the relative translation and
rotation error were set to 0.05m and 5 deg.

learning-based method, PREDATOR [3], on our introduced
synthetic data set by using their recommended hyperparame-
ter settings.

C. EVALUATION METRICS
We follow [3], [20], [22], and evaluate the point cloud regis-
tration performance w.r.t. the relative translation (RTE) and
rotation error (RRE) calculated by:

RTE = ‖t̂− tgt‖2, (10)

RRE = arccos
Tr(R̂Rgt )

2
, (11)

where R̂ and t̂ are the estimated, and, tgt and Rgt the ground
truth transformation parameters. Based on RTE , given with
equation (10) and RRE given with equation (11), we calculate
the mean translation (MTE) and rotation error (MRE) to eval-
uate the performance of the compared methods. Additionally,
we also calculate the registration recall rate (RR), which gives
a quantitative measure of the registration success ratio. A reg-
istration is considered successful if the relative translation
and rotation error is below a certain threshold. For our use
case, we consider the following thresholds: RTE < 0.05m
and RRE < 5◦.

D. ABLATION STUDY
We ablate our proposed registration pipeline to prove the
robustness of our object-centric alignment strategy, as shown
in table 4. The ablation study is conducted on the introduced
synthetic data set. First, we evaluate the performance of only
using the object extraction module (model A) and apply ICP
on the partial point clouds. By adding the object completion
module (model B) and applying ICP on it, we can observe
how the performance improved. By using the object extrac-
tion, object completion, and object-level alignment module
(model C), we see a clear increase in performance, but still,
the overall registration recall remains relatively low for the
selected thresholds. Model D represents all the modules
except the object completion module. Here, we intend to
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FIGURE 5. Qualitative comparisons on our synthetic dataset. The traditional methods fail because of the large viewpoint difference of the point clouds,
and due to the low overlap. Even though our method and the learning-based baseline appear to be visually identical at the scene-level, it is clear that our
method performs better for the points measured on the shelf, which can be seen in the zoomed in region. Our approach has a better registration quality
because we use an object of interest as a fulcrum point for rough alignment. This rough alignment serves as a good starting point for the fine alignment
step at the scene level and makes the search for correct correspondences easier.

emphasize the importance of the object completion module.
Additionally, model D simulates a scenario where the reg-
istration pipeline fails to correctly complete the object of
interest, which is caused by either poor point-wise extraction
of the object extractionmodule or a poor reconstruction of the
extracted points of the object completion module. However,
if we compare model D with the entire pipeline (model Full),
one can see the importance of the object completion mod-
ule, which adds to the overall robustness of the registration
pipeline by improving the registration recall by more than
66%. The robustness increases because the object completion
module minimizes the discrepancy of the geometrical shapes
between the two extracted object-of-interest point clouds
significantly. Moreover, this step enables a rough alignment
which serves as the initial guess for the fine alignment step.

E. QUANTITATIVE RESULTS
Traditional methods are not robust against point cloud pairs
with low overlap, because they can’t find enough relevant
correspondences, which results in poor performance. Only
the method, where RANSAC is used together with ICP,
manages to register a few point cloud pairs very accurately,

TABLE 5. Evaluation results on our synthetic test set. The threshold for
the relative translation and rotation error were set to 0.05m and 5 deg.

but still, due to a very low registration recall, this approach
remains unusable for real-world applications. On the other
hand, PREDATOR manages to generalize well over the
test set, showing the robustness of a learning-based method
specifically designed for point cloud pairs with low overlap.
However, our proposed method performs similar or more
accurately, w.r.t. the MTE and MRE, and is more robust in
terms of registration recall compared to the baseline methods,
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FIGURE 6. Registration recall with different translation and rotation error
thresholds on the introduced synthetic dataset. Our approach
outperforms the baselines in the low threshold region by a large margin,
because of the object-centric alignment strategy followed by a
scene-level fine alignment step.

as shown in 5. The reason for achieving such robustness is
because our method focuses first on finding an object of
interest and predicts the missing points to generate a similar
shape. On the other hand, high accuracy is obtained with
the combination of the object-level and scene alignment. The
alignment on the entire scene begins with a good initial guess,
retrieved from the object-level alignment, which guarantees
convergences to an optimal solution for most cases.

Furthermore, we evaluate the registration recall with dif-
ferent translation and rotation error thresholds, as shown in
figure 6. Comparing the results, ourmethod shows superiority
for lower threshold values, which indicates that it is highly
reliable for applications with a strict requirement on accuracy,
such as industrial robotic workcell use cases. The better
performance of our method can be attributed to the effective
strategy of our novel registration pipeline. Instead of finding
low-level correspondences in the entire scene, we first focus
on roughly aligning an object of interest to provide a good
starting point for the scene level fine alignment.

F. QUALITATIVE RESULTS
The qualitative comparison of the baseline methods and the
introduced registration approach on the synthetic test data
is shown in figure 5. As expected, the traditional methods
suffer from instability and fail to achieve satisfying align-
ment, because of the widely apart viewpoints the point clouds
were captured from, and due to the low overlap. On the
other hand, PREDATOR manages to handle such input pairs
and successfully registers them. However, by comparing the
highlighted part of PREDATOR and our method, it is clearly
visible that the learning-based baseline falls short of accu-
rately aligning the input point cloud pair. The reason for this
might be that the learning-based method probably requires
larger amount of training data in order to learn more fine-
grained correspondences.

Finally, a qualitative comparison on real-world point cloud
data, is displayed in figure 3. The scenes were captured
with two Kinect v2 which were mounted in the corners of

our workcell, as shown in figure 4. Again, the traditional
baselines fail for the same reasons to successfully register
the point clouds with low overlap. Surprisingly, the learning-
based method, PREDATOR, fails as well to align the real
point cloud pair. This is very likely due to the difference in
data distribution between the training set and the real point
cloud data. However, only our approach successfully registers
the real input point clouds, which can be attributed again
to the effective design choice of the proposed registration
pipeline, by first putting the focus on an object-level instead
of on the entire scene.

V. DISCUSSION AND FUTURE WORK
The design of our point cloud registration pipeline enables
two properties: 1) scalability and 2) simplicity. Each module
within our point cloud registration pipeline can be exchanged
with any other off-the-shelf method and adapted accord-
ingly. Therefore, our proposed method can be easily extended
for other applications where an accurate and robust reg-
istration of challenging point cloud pairs is required, e.g.
automated driving, 3D indoor mapping, multi-agent slam,
and others. Moreover, our approach opens up a number of
directions for further research. It would be interesting to see
how our object-centric alignment strategy could be used for
cross-source point cloud registration, where different densi-
ties of the input point clouds present a difficult challenge for
current methods. Finally, publicly available datasets, such as
the 3DMatch [20], lack the ground truth information about
the completed point cloud for potential objects of interest
within the scene. Therefore, to fill this gap, we believe that our
synthetic dataset will help further research in this particular
direction. Finally, the conducted experiments on synthetic
and on real-world data showcase the robustness and accuracy
of our object-centric alignment strategy.

VI. CONCLUSION
In this work, we introduced a simple and modular approach
for robust and accurate registration of point clouds with low
overlap. The main idea behind this novel registration pipeline
was to put focus on an object of interest in the input point
cloud pair and use it as a fulcrum point. Inferring the missing
points of the object of interest created a geometrically similar
shape of it in both the input point clouds, which then helped
to roughly align them. This rough alignment provided a good
and robust initial guess for the scene-level fine alignment, and
thus ensured convergence to an optimal solution. Moreover,
we showed that the introduced approach outperforms other
baselines on our synthetic dataset, and our method proved to
be robust on even noisy real-world data while the compared
baselines failed.
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