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Abstract

Travel behavior and travel cost in modern urban transportation systems are impacted by many aspects including
heterogeneous traffic (private cars, freight trucks, buses, etc.) on roads, parking availability near destinations,
and travel modes available in the network, such as solo-driving, carpooling, ride-hailing, public transit, and park-
and-ride. Managing such a complex multi-modal system requires a holistic modeling framework of transporta-
tion network flow in terms of both passenger flow and vehicular flow. In this paper, we formulate and solve for
spatio-temporal passenger and vehicular flows in a general multi-modal network explicitly considering multi-class
vehicles, parking facilities, and various travel modes. Vehicular flows, namely cars, trucks, and buses, are inte-
grated into a holistic dynamic network loading (DNL) models. Travel behavior of passenger demand on modes
and routes choices is encapsulated by a multi-layer nested logit model. We formulate the multi-modal dynamic
user equilibrium (MMDUE) that can be cast into a Variational Inequality (VI) problem. A simple flow solution
performed at the origin-destination level and based on the gradient projection is derived from the KKT conditions
and shown to efficiently solve for the VI problem on large-scale networks. Numerical experiments are conducted
on a multi-modal network in the Pittsburgh region along with sensitivity analysis with respect to demand and man-
agement strategies. We show that many factors including the total passenger demand, parking prices, transit fare,
and ride-sharing impedance can effectively impact the system performance and individual user costs. Experiments
on a large-scale multi-modal network in Fresno, California also show our model and solution algorithms have
satisfactory convergence performance and computational efficiency.

Keywords: multi-modal dynamic user equilibrium, nested logit model, dynamic traffic assignment,
heterogeneous traffic simulation, public transit, parking

1. Introduction

Thanks to cutting-edge communication and sensing technologies, new transportation modes are emerging while
traditional modes are also being improved and innovated through technologies. Vehicles and rides can be shared
from end to end, such as pick up, drop off, and parking. Transportation becomes unprecedentedly ubiquitous,
low cost and diversified nowadays, especially in densely populated metropolitan areas. People frequently take5

public transit (subway, regular bus, first/last mile feeder transit, paratransit, etc.), carpool, or use the ride-hailing
services like taxis, Uber and Lyft, in addition to driving in a private car. To make modal choices, travelers make
trade-offs among traffic congestion, convenience, parking fare, parking cruising time, and expenditures to pay for
travel. From the system perspective, the co-existence of all these travel modes leads to diversified and complex
systems that enable more instruments to alleviate traffic congestion and improve users’ quality of life, provided10

that the comprehensive system of systems can be designed, modeled and operated effectively. In this research, we
formulate and solve for spatio-temporal passenger and vehicular flows in a general multi-modal network explicitly
considering multi-class vehicles (private cars, freight trucks, buses, etc.), parking facilities and various travel modes
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including solo-driving, carpooling, ride-hailing, bus transit, railway transit, parking, and park-n-ride. The intention
is to develop a general mathematical formulation to comprehensively model the entire transportation system that15

would allow the flexibility of modeling any subset of vehicles, passengers and modes. Insights are provided to
better understand the interaction and linkage among each component of the transportation system and to ultimately
facilitate optimal decision making on holistic system planning and operation.

In general, given the transportation network supply and Origin-Destination (OD) demand, a dynamic traffic
assignment (DTA) allocates the spatio-temporal flow of both vehicles and passengers on the network with a pre-20

determined behavioral model (oftentimes the choices of routes, departure time and modes). In a multi-modal
transportation network that integrates roadways, public transit, and parking, multi-modal DTA yields the perfor-
mance of each mode of transportation systems in terms of spatio-temporal flow. Over the last few decades, DTA
with a single travel mode of solo-driving has been studied intensively. Travelers’ behavior in choosing different
traffic modes altogether, such as the public transit, carpooling, park-and-ride (PnR), as well as travelers’ behavior25

related to parking, were not the focus of the conventional DTA problem. On the other hand, simulation-based DTA
on large-scale networks requires dynamic network loading (DNL) models to obtain travel costs/time. Most of
existing DNL models assume homogeneous traffic flow in the unit of standard passenger cars, e.g., a single-class
cell transmission model (Daganzo 1994). Multiple vehicle classes, such as buses, trucks and standard passenger
cars, can be explicitly modeled in DNL, but are usually not explicitly considered when augmenting the DNL with30

behavior models in a DTA model. Another challenge for DTA is how to make the best use of the spatio-temporal
data for different travel modes to best understand travel patterns and connections across those modes and to val-
idate DTA models. In this paper, we proposed a general formulation of multi-modal dynamic user equilibrium
(MMDUE) problem considering both the travelers’ behavior across multiple modes and heterogeneous traffic flow
in multi-modal networks. This general framework that holistically models many components of a transportation35

system would enable further validation by emerging real-world data collected from roadway, public transit, and
parking systems. Though this paper does not focus on validation using real-world data, we show that the holistic
model holds great promises to quantify ripple effects of disruption to any part of a transportation network, and thus
is able to provide policy/managerial insights.

In the literature, although the private driving mode was studied the most, the multi-modal network modeling40

still received adequate attention in the past, mostly in static network settings. Early in the 1970s, Wigan & Bam-
ford (1973) and Florian (1977) studied traffic network equilibrium modeling with the consideration of traveling
by cars and buses. Florian (1977) combined demand functions for each mode of travel, route choice equilibrium
conditions, transit network models and the interactions of different classes of vehicles on the links on an integrated
network simultaneously. Abdulaal & LeBlanc (1979) presented a combined modal split and assignment model45

which allows choosing traveling modes and routes simultaneously, with its extension (Leblanc & Abdulaal 1982)
to multi-class users where trip distribution, modal split, and traffic assignment are all combined simultaneously.
Similarly, a number of other works also advanced the formulation, analysis, and algorithms of multi-modal net-
work equilibrium problems (Dafermos 1982, Florian & Spiess 1983, Lam & Huang 1992). These studies often
considered two or three traffic modes (mostly private car, public transit) and represented travel time/cost as a single50

link-based cost function due to the nature of a static network.
In addition to the aforementioned studies considering “plain” mode of travel, there are also plenty of studies

in which the “composite” or “combined” mode is explicitly presented, for example, the park-and-ride or bus/ride-
hailing access to metro. Florian & Los (1979) proposed a model for determining the intermediate OD matrices
from trip origins to parking lots and from parking lots to final destinations for park-and-ride travelers using Linden-55

wold rapid transit line in Philadelphia. Fernández et al. (1994) gave a classic steady-state assignment model that
combines the binary mode choice and passenger flow assignment. They assumed that the probability of choosing
a traffic mode follows a logit model. Lo et al. (2003) studied the modeling of transfers in multi-modal networks,
which involves “combined mode” trips. It explicitly considered the number and types of transfers, and it also ac-
commodated a non-linear fare structure, which was extended by Lo et al. (2004). In Garcia & Marin (2005), users’60

mode choice and transfer location choice are governed by a nested logit model, and the static user equilibrium is
formulated as a variational inequality (VI) problem, which is solved by a disaggregate simplicial decomposition
algorithm. These studies are not conducted in the “dynamic” network setting, hence the dynamic evolution of
demand and congestion was not considered.

More recently, Abdelghany & Mahmassani (2001) proposed a simulation-based DTA model with several travel65

modes including private cars, buses, metro-subway, and carpooling. A medium-sized network experiment was pre-

2



sented with no parking facility and parking cruising behavior explicitly modeled in the simulation. This work was
extended in Zhou et al. (2008) to be applied to a large-scale multi-modal network from the Baltimore-Washington
corridor, but parking behaviors and heterogeneous traffic (cars, trucks, buses, etc.) are still not considered. Zhang,
Nair, Mahmassani, Miller-Hooks, Arcot, Kuo, Dong & Lu (2008) studied the dynamic freight assignment problem70

on a large-scale inter-modal network in Europe. In this study, they used a dynamic micro-assignment method
to make a joint mode, path, service, and carrier choice. Verbas et al. (2015) studied the dynamic assignment-
simulation methods in large-scale urban multi-modal transit networks, with the assumption that link travel times
of transit vehicles are independent of traffic network conditions. In Zheng & Geroliminis (2016) and Zheng et al.
(2016), the modeling and optimization of multi-modal networks with parking space limitation and dynamic park-75

ing pricing were studied based on the macroscopic fundamental diagram (MFD). Chiabaut (2015) extended MFD
to passenger based MFD which combines several modes. Meschini et al. (2007) proposed a bi-modal DTA model
with private cars and public transit, and solved for equilibrium solutions using a macroscopic flow model without
a DNL process. Liu & Geroliminis (2017) presented a multi-region multi-modal transportation system model that
enables travelers to update their travel patterns on a day-to-day basis, based on which an adaptive parking pricing80

strategy can be proposed to effectively reduce the total social cost. Other modeling approaches including activity-
based model are also intensively studied for the past decade, for example, MATSIM (Axhausen et al. 2008, Horni
et al. 2016) is an agent-based simulation tool for multi-modal transportation networks. However, it requires a large
amount of survey data about urban residents’ daily activities and schedules to build the activity chains of residents
as the input of the model, which is usually costly to obtain. In MATSIM, the DUE is solved by iteratively re-85

planning each individual’s daily activity chains, which makes it hard to calibrate the model and validate the results
for large-scale networks. The reasons are: 1) individuals daily activity data are hard to acquire; 2) calibrating an
activity-based model in the network level using large-scale activity data and traffic data (e.g. counts/speeds) are
very challenging. The computational challenge for large-scale network is another issue. Simulation and traffic
analysis platforms, e.g., VISUM-VISSIM (PTV 2018), can also provide realistic multi-modal traffic simulation90

features. However, the DUE can only be solved for private traffic in VISUM without public transportation and
parking behavior. Other open-source DTA tools like DTALite (Zhou & Taylor 2014), DTALite-S (Tong et al.
2019), etc. also consider multi-modal traffic including driving and public transportation, but other travel modes
and parking behavior are not explicitly modeled. To our best knowledge, research gap exists where large-scale
multi-modal DTA explicitly integrates passenger flow and vehicular flow, and holistically considers heterogeneous95

traffic flow on roads, traveler’s parking behaviors, and various travel modes including solo-driving, carpooling,
ride-hailing, bus transit, railway transit, and park-and-ride. Complications are to integrate realistic behavioral
models as well as network flow models in such a general and complex multi-modal network, and to solve such a
complex network model efficiently and effectively that can be calibrated with large-scale transportation data.

In this paper, we establish a general multi-modal dynamic user equilibrium (MMDUE). It is capable of mod-100

eling four travel modes, driving (including solo-driving and carpooling), ride-hailing, public transit (including
railway with its own right-of-way and buses that share the roadway with private vehicles), and park-and-ride. It
is also capable of modeling travelers’ parking behavior (including parking lot choice and parking cruising time).
Travelers choose their travel modes and routes with respect to their generalized travel costs of all options made
available to them. A multi-modal DNL model simulates multi-class vehicles (cars, trucks, and buses) to estimate105

travel costs by mode and by route. MMDUE is then solved in the multi-modal multi-class network using a newly
developed gradient projection algorithm that possesses a simple form and is efficient for large networks. System
performance and features of passenger/vehicular flow can then be assessed for decision making.

This research makes the following major contributions to the literature:

• It establishes a combined multi-modal transportation network consisting of an auto network, a railway net-110

work, a bus network, and parking facilities. This combined network allows modeling of vehicular and
passenger flow, composite modes through paths in the network, as well as link and path-based generalized
travel cost for passengers.

• It explicitly considers parking choices over time. Choices of parking near destination and park-and-ride
stations are dependent on parking prices and parking cruising time.115

• It proposes a new MMDUE formulation across all possible modes, such as solo-driving, carpooling, ride-
hailing, bus transit, railway transit, and park-and-ride. Mode choices are governed through a multi-layer
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nested logit model. A novel VI formulation and its equivalence to the MMDUE is provided and shown.

• The multi-modal DNL process is capable of modeling the propagation of mixed traffic flow including cars,
trucks, and buses.120

• It solves the VI formulation for MMDUE with a new projection based solution algorithm. The algorithm is
performed at the O-D level, and thus can be efficient in terms of computational time and storage. It shows
decent convergence performance compared to existing algorithms.

• The proposed model and algorithm can help understand the comprehensive interaction and linkage among
each component of complex transportation systems. The case study demonstrates how to quantify such a125

“ripple effect” to the comprehensive system induced by interventions on demand, supply, and management
strategies.

The content of this paper is arranged as follows. Section 2 first introduces the combined multi-modal trans-
portation network and illustrates the difference between passenger/vehicle path, flow, and demand with an illustra-
tive example. Section 3 describes the mode choice model of travelers in the general multi-modal traffic systems and130

formulates the MMDUE problem as a discrete VI problem. Then section 4 describes the mesoscopic multi-modal
DNL model used in the simulation and how to use simulation for estimation of travel costs. Section 5 provides the
algorithm to solve the VI problem, hence to obtain the user equilibrium state of the multi-modal system. In sec-
tion 6, we show the performance of our model and algorithm on two multi-modal networks of Pittsburgh, PA and
Fresno, CA, with roadway driving, public transit, and parking. The convergence property and equilibrium solution135

are thoroughly analyzed. Multiple sensitivity analyses are also performed to show the properties and stability of
the multi-modal traffic system. Section 7 concludes this paper. The main notations used in this paper are listed in
Table A.4 in Appendix A.

2. A Combined Multi-modal Transportation Network

This paper first establishes a combined multi-modal transportation network consisting of an auto network, a140

railway network, a virtual bus network and parking facilities. Buses share the same roadway network as cars, and
therefore a virtual bus network is created by combining a copy of part of the roadway network and bus stations
(as shown in Figure 1). A physical stop (PS) is a bus stop where bus passengers board/alight the buses, and it can
be associated with multiple routes. On the other hand, a virtual stop (VS) connects a PS to a particular route, and
it does not physically exist. The link between any two VSes describes the movement of a bus between the two145

corresponding PSes on a particular route. While a bus follows a fixed route in the virtual bus network, its travel
cost/time is modeled by the DNL model with multiple classes of vehicles, e.g. private cars, trucks, and buses,
in the auto network. The railway transit routes have their own right-of-way and therefore are separated from the
auto network. Similar to bus transit, we also used physical railway station (PR) and virtual railway station (VR)
and the boarding/alighting links to model the passenger waiting at stations, boarding and alighting from railway150

trains. Also, there are two types of parking facilities considered in the network, park-and-ride stations, and near-
destination parking lots/spaces. If travelers commute from the suburban area to the central business district (CBD),
they have choices of parking their cars at one of those park-and-ride stations along the corridor and then take the
transit to the destination, which is represented by the parking (P) nodes in Figure 1 and it requires an additional
transfer time between the driving mode and transit mode. Or if they choose to drive all the way to the CBD,155

then they need to park near their destinations and usually pay for high parking fees. Another choice is to use the
ride-hailing service, which requires a ride fee but exempts from time finding a parking space as well as paying
the parking fee. In this multi-modal network, walking links are also explicitly modeled to represent walking from
origin to bus stops and train stations, from the parking area to bus stops and train stations, transfer among bus stops
and train stations, and from parking areas, bus stops and train stations to the final destination.160

Note in this multi-modal network, the path, flow and demand of passengers are different from those of vehicles.
A passenger path is retrieved on the multi-modal network with the auto network, virtual bus network, railway
network and parking facilities all combined. Thus, between any origin and destination (OD) there could be multiple
paths under different travel modes. But for a vehicle path, railway train and buses follow the fixed paths, while a
private car’s path is just a portion of a passenger’s path on the auto network (e.g. the driving portion of a park-n-ride165

4



path). The vehicle demand between any OD is dependent on the passenger demand as well as their mode choices.
Different classes of vehicles are generated and loaded on the network and they can also carry different numbers of
passengers. Example 1 shows the difference between passenger and vehicle flow.

PS2

Line 1

Line 2
Virtual
Bus
Network
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Network
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VS2 VS3

VS5
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PR1 PR4

O2O1

PR2 PR3
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A2 A3 A4
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P3 P4
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VR1 VR4VR2 VR3 Line A
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virtual bus link

passenger 
boarding & 
alighting link

Figure 1: A combined multi-modal transportation network: O: OD node; A: auto node; P: parking node; PS: physical bus stop; VS: virtual bus
stop; PR: physical railway station; VR: virtual railway station.

Example 1 (Passenger/vehicle path, flow and demand). In this example, we illustrate the differences between
passenger/vehicle flow. In Figure 1, we study the passenger demand qO1O2

t for OD pair (O1,O2) at time t. Suppose170

qO1O2
t = 10, we consider three passenger paths at time t as follows:

• Two passenger carpool, O1 → A1 → A2 → A3 → A4 → P5 → O2, passenger flow 6

• Park-and-ride, O1 → A1 → P1 → PS 2 → VS 2 → VS 3 → VS 4 → PS 4 → O2, passenger flow 3

• Railway, O1 → PR1 → VR1 → VR2 → VR3 → VR4 → PR4 → O2, passenger flow 1

For example, O1 → A1, Ai → Ai+1, i = 1, 2, 3 and A1 → P1 refer to the link travel by car, P1 → PS 2 refers175

to walking from the parking lot to bus station, PS 2 → VS 2 refers to bus boarding, VS i → VS i+1, i = 1, 2, 3 refer
to the link travel by bus, VS 4 to PS 4 refers to bus alighting and PS 4 → O2 refers to walking from bus stop to
destination. Similarly, VRi → VRi+1, i = 1, 2, 3 refer to the railway travel.

We formulate the corresponding vehicle flow as follows:

• Car (two passenger carpool), O1 → A1 → A2 → A3 → A4 → O2, vehicle flow 6/2 = 3180

• Car (park-and-ride), O1 → A1 → P1, vehicle flow 3

• Bus (Line 1), this vehicle path is pre-determined by the public transit operator, and the vehicle flow is
independent of passenger flow, but relates to the bus schedule

In this study, vehicular flow is explicitly simulated on the auto network, for estimating the dynamic network
conditions including the traffic states on links and at intersections, as well as the parking occupancy in parking185

facilities. Passenger flow is not loaded on the network but is fulfilled by the vehicle loading process under the
constraint of network demand and supply. In detail, given passenger OD demand, their mode choice and route
choice models yield the passenger path/flow based on initial network conditions. We then calculate the vehicle
flow from passenger path/flow and their mode choices, and load vehicles on the network and update the network
conditions. The mode and route choices can be updated based on new network conditions, so do the passenger190

flow and vehicle flow. This procedure goes on until the equilibrium state is achieved. The whole process is shown
in Figure 2.
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Figure 2: The whole process for solving MMDUE in this study.

3. Mode Choice and Network Equilibrium

3.1. A nested-logit mode choice model

In this research, mode choices are determined by a nested logit model shown in Figure 3. For any O-D pair, in195

the upper level, travelers choose to drive, use ride-hailing service, take the transit or use a combined mode (park-
and-ride). For travelers who choose to drive, they have the choices of either driving alone or carpool with others
in the lower decision level. For travelers who choose to use ride-hailing service, they have the choices of either
ride-hailing all the way to the destination or ride-hailing to any railway station and then transfer to the railway
mode. If travelers choose public transit, then they can take the bus, railway train or transfer between both bus and200

railway mode. If they choose a combined mode, then there are four choices in their lower decision level including
solo-driving + bus, solo-driving + railway, carpooling + bus, carpooling + railway.

Trip

Driving

Solo-driving

Carpooling

𝒎𝒎

𝒈𝒈(𝒎𝒎)

Park-and-ride

SD + Bus

CP + Bus

SD + Railway

CP + Railway

Ride-hailing

RH only

RH + Railway

Transit

Bus

Railway

Transfer

Figure 3: The two-layer mode choices (“SD” = “solo-driving”, “CP” = “carpooling”, “RH” = “ride-hailing”)

Following the work of Arnott et al. (1990) and Qian & Zhang (2011), we define the generalized traveling cost
for each travel mode. We use the subscripts 1, 2, 3 and 4 to represent the transit mode, driving mode, ride-hailing
mode and park-and-ride mode, respectively. Let crs

m,k,t, m ∈ {1, 2, 3, 4} denote the generalized travel cost of a205

traveler from r to s using travel mode m departing at time t and taking the path k, ∀k ∈ Prs
m , where Prs

m denote the
path set for mode m from r to s. A transit passenger is subject to the following generalized travel cost crs

1,k,t,

crs
1,k,t = αwrs

k,t + max[γ(t + wrs
k,t − t∗), β(t∗ − t − wrs

k,t)] + δrs
k + σrs

k,t, ∀k ∈ Prs
1 (1)

where:

• wrs
k,t denotes the actual travel time through path k at time t from r to s, note in this case the actual travel time

wrs
k,t is the summation of possible transit waiting time, bus/railway travel time and all possible walking time,210

including from origin to transit station, transfer among transit stations, and from transit station to destination,
during this trip.

• t∗ is the standard work starting time. α is the unit cost of travel time. γ and β are the unit cost of time for
arriving late and arriving early, respectively. This second term is known as the schedule delay cost.
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• δrs
k represents the transit fare of transit route k from r to s.215

• σrs
k,t is the possible perceived inconvenience cost of the transit mode associated with the crowding of transit

route k from r to s.

As indicated by previous models of dynamic transit network, e.g. Liu & Zhou (2016), the vehicle carrying
capacity of public transportation could be an important constraint that affects travelers’ choice of using public
transportation under certain circumstances, for example when the public transit vehicle is highly crowded and the220

service is unreliable. We can explicitly or implicitly model the vehicle capacity during the dynamic public transit
loading. The vehicle capacity can be strictly enforced by maintaining a passenger flow queue at each physical
transit stop and adding passenger flow to transit vehicles only if the in-vehicle flow does not exceed the capacity.
In addition, the capacity constraints can be implicitly incorporated in the perceived inconvenience cost σrs

k,t. For
different public transit lines the inconvenience costs can be estimated based on the historical data of crowding225

level, on-time performance, etc. Transit lines with high crowding level and poor on-time performance will cause
larger perceived inconvenience cost σrs

k,t.
Similarly, if we assume carpooling is only available for travelers with same origins and destinations, then the

pick-up and drop-off travel time can be ignored. Then the generalized travel cost of driving departing at time t and
taking the path k is,230

crs
2,k,t = αwrs

k,t + max[γ(t + wrs
k,t − t∗), β(t∗ − t − wrs

k,t)] +
pi

n
+ ∆rs

k,t(n) + ξ, ∀k ∈ Prs
2 (2)

Where:

• pi is the parking fee at parking area i, here parking area i is on the path k.

• n is the number of pooled travelers, and n = 1 means solo-driving. ∆rs
k,t(n) represents the carpooling

impedance cost through path k at time t from r to s with total n riders, ∆rs
k,t(1) = 0.

• ξ is an indicator of accessibility to a private car. If the traveler owns a car or has access to a private car then235

ξ = 0, otherwise it should be a large constant.

• For achieving a higher model fidelity, the fuel costs and vehicle depreciation can also be included to the cost
function. Here we omit these costs to simplify the calculation in numerical experiments.

The generalized travel cost of using ride-hailing service departing at time t and taking the path k is,

crs
3,k,t = αwrs

k,t + max[γ(t + wrs
k,t − t∗), β(t∗ − t − wrs

k,t)] + ρrs
k,t, ∀k ∈ Prs

3 (3)

Where ρrs
k,t is the ride fee of the ride-hailing service through path k at time t from r to s. Here wrs

k,t should also240

include waiting time for pick up in addition to the car travel time.
The generalized travel cost of park-and-ride departing at time t and taking the path k is,

crs
4,k,t = αwrs

k,t + max[γ(t + wrs
k,t − t∗), β(t∗ − t − wrs

k,t)] +
pi

n
+ ∆rs

k,t(n) + δrs
k + σrs

k,t + ξ, ∀k ∈ Prs
4 (4)

A reasonable assumption is that parking is much cheaper at park-and-ride stations than near CBD. As a result,
people usually park in the suburb and transfer to public transit to get to CBD. Note in this case the actual travel
cost wrs

k,t is the summation of driving time, possible parking cruising time, walking time from parking lot to bus245

station, bus travel time and possible walking time from the station to the destination. We will discuss how to use
dynamic network loading for computing wrs

k,t in Section 4.

3.2. Multi-modal dynamic user equilibrium (MMDUE)

The MMDUE with a nested logit mode choice model can be further formulated as a variational inequality (VI)
problem. In particular, for formulating and solving the MMDUE in a more applicable way, the OD demand for250

each time interval t is assumed to be fixed, so there is no departure time choice in this paper. However, it is easy to
extend MMDUE to accommodate departure time choice by relaxing the feasibility set.
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Consider a single-level logit model applied in the dynamic multi-modal transportation network. The UE con-
dition of the whole network reads, ∀r, s, t,m,

crs
m,k,t− µrs

m,t = 0 if ∀k ∈ Prs
m , f rs

m,k,t > 0
crs

m,k,t− µrs
m,t ≥ 0 if ∀k ∈ Prs

m , f rs
m,k,t = 0

hrs
m,t

qrs
t

= e−(αm+β1µ
rs
m,t )∑

m′ e
−(αm′ +β1µ

rs
m′ ,t

)

(5)

where µrs
m,t is the equilibrium cost of travel mode m from r to s departing at time t. f rs

m,k,t is the flow of path255

k in mode m from r to s departing at time t. The flow of mode m between O-D pair rs departing at time t is
hrs

m,t =
∑

k∈Prs
m,t

f rs
m,k,t. The total flow between O-D pair rs departing at time t is qrs

t =
∑

m∈{1,2,3,4} hrs
m,t. The αm and β1

are parameters in the logit model.
Let f be the vector of all path flows. The MMDUE can be cast into a VI problem VI(Λ1,Ω1) as follows (see

proof in Section 3.3.1).260

Find f∗ such that Λ1(f∗)T · (f − f∗) ≥ 0, ∀f ∈ Ω1
where Λ1(f) = {Λrs

k,t(f)}

Λrs
k,t(f) = crs

m,k,t(f) +
αm+ln hrs

m,t

β1

Ω1 = {f|
∑

k f rs
m,k,t = qrs

t }

(6)

For a more general case where we have two levels of mode choices (a nested logit), let g(m) denote the second
level mode choices under first level mode choice m, and define the c, µ, P, f , q as same as the first-layer MMDUE.
The two-layer MMDUE condition reads, ∀r, s, t,m, g(m),

crs
m,g(m),k,t− µrs

m,g(m),t = 0 if ∀k ∈ Prs
m,g(m), f rs

m,g(m),k,t > 0
crs

m,g(m),k,t− µrs
m,g(m),t ≥ 0 if ∀k ∈ Prs

m,g(m), f rs
m,g(m),k,t = 0

hrs
m,t

qrs
t

= e−(αm+β1µ
rs
m,t )∑

m′ e
−(αm′ +β1µ

rs
m′ ,t

)

hrs
m,g(m),t

hrs
m,t

= e
−(αm

g(m)+βm
2 µ

rs
m,g(m),t )∑

g′∈G(m) e
−(αm

g′
+βm

2 µ
rs
m,g′ ,t

)

µrs
m,t = − 1

βm
2

ln
(∑

g′∈G(m) e−(αm
g′+β

m
2 µ

rs
m,g′ ,t)

)
(7)

where G(m) is the set of all second level mode choices under mode m. The αm
g(m) and βm

2 are also parameters
in the logit model. Note the last formula in (7) defines the relationship between the first level mode equilibrium265

cost µrs
m,t and the two levels mode equilibrium costs µrs

m,g(m),t,∀g(m) ∈ G(m). In this case, the µrs
m,t is defined as an

average over µrs
m,g(m),t,∀g(m) ∈ G(m). The flow of mode {m, g(m)} between O-D pair rs departing at time t is:

hrs
m,g(m),t =

∑
k∈Prs

m,g(m)
f rs
m,g(m),k,t

hrs
m,t =

∑
g(m)∈G(m)

∑
k∈Prs

m,g(m)
f rs
m,g(m),k,t =

∑
g(m)∈G(m) hrs

m,g(m),t
(8)

It can also be cast into a VI problem VI(Λ2,Ω2) as follows (see proof in Section 3.3.2).

Find f∗ such that Λ2(f∗)T · (f − f∗) ≥ 0, ∀f ∈ Ω2
where Λ2(f) = {Λrs

m,g(m),k,t(f)}

Λrs
m,g(m),k,t(f) = crs

m,g(m),k,t(f) +
αm+ln hrs

m,t

β1
−

ln hrs
m,t

βm
2

+
αm

g(m)+ln hrs
m,g(m),t

βm
2

Ω2 = {f|
∑

m
∑

g(m)
∑

k f rs
m,g(m),k,t = qrs

t }

(9)

3.3. Proof of VI formulations equivalent to MMDUE
Proposition 3.3 (Nagurney 2009): Let F : Rn 7→ Rn and Rn

+ denote the nonnegative orthant in Rn. The following270

complementarity problem:

Find x∗ ≥ 0 such that Λ(x∗) ≥ 0 and Λ(x∗)T x∗ = 0 (10)

and VI(Λ,Rn
+) have precisely the same solutions, if any.

We are going to use the Proposition 3.3 to prove the equivalence between the MMDUE and the VI problems
formulated in Section 3.2.
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3.3.1. Single-layer mode choice275

Proof. From the UE conditions (5):

e−(αm+β1µ
rs
m,t) =

hrs
m,t

∑
m′ e

−(αm′ +β1µ
rs
m′ ,t

)

qrs
t

µrs
m,t = 1

β1

(
−

(
ln(hrs

m,t) + ln
(∑

m′ e−(αm′+β1µ
rs
m′ ,t)

)
− ln(qrs

t )
)
− αm

) (11)

Then we have crs
m,k,t − µ

rs
m,t = crs

m,k,t +
αm+ln(hrs

m,t)
β1

+ C(rs, t) ,where C(rs, t) = 1
β1

ln
(

1
qrs

t

∑
m′ e−(αm′+β1µ

rs
m′ ,t)

)
.

Suppose,
Λ1 = {Λrs

k,t(f)}, Λrs
k,t(f) = crs

m,k,t(f) +
αm+ln hrs

m,t

β1

Λ̃1 = {Λ̃rs
k,t(f)}, Λ̃rs

k,t(f) = crs
m,k,t(f) +

αm+ln hrs
m,t

β1
+ C(rs, t)

∀f ∈ Ω1, Ω1 = {f|
∑

k f rs
m,k,t = qrs

t }

(12)

Let the vector C = {C(rs, t)}, since C(rs, t) is identical for all paths of all modes between any fixed OD pair rs
and departing time t, then CT (f − f∗) is 0, thus,280

Λ1(f∗)T (f − f∗) = (Λ1(f∗) + C)T (f − f∗) = Λ̃1(f∗)T (f − f∗) (13)

Therefore, VI(Λ1,Ω1) is equivalent to VI(Λ̃1,Ω1). Applying the DUE condition with equations above, we
have Λ̃1(f∗)T f∗ = 0. By Proposition 3.3 we know the DUE is equivalent to VI(Λ̃1,Ω1), hence it is also equivalent
to VI(Λ1,Ω1).

3.3.2. Two-layer mode choice
Proof. Similar to the proof of single-layer case in Section 3.3.1, from UE conditions (7) we have,285

µrs
m,g(m),t =

−αm
g(m)−ln hrs

m,g(m),t

βm
2

+
ln hrs

m,t

βm
2
−

ln
(∑

g′∈G(m) e
−(αm

g′
+βm

2 µ
rs
m,g′ ,t

)
)

βm
2

(14)

Also from UE conditions (7) we have µrs
m,t = − 1

βm
2

ln
(∑

g′∈G(m) e−(αm
g′+β

m
2 µ

rs
m,g′ ,t)

)
, then,

crs
m,g(m),k,t − µ

rs
m,g(m),t = crs

m,g(m),k,t +
αm

g(m)+ln hrs
m,g(m),t

βm
2

−
ln hrs

m,t

βm
2
− µrs

m,t (15)

From one-layer mode choice case, we have µrs
m,t = −

αm+ln(hrs
m,t)

β1
− C(rs, t), then,

crs
m,g(m),k,t − µ

rs
m,g(m),t = crs

m,g(m),k,t +
αm

g(m)+ln hrs
m,g(m),t

βm
2

−
ln hrs

m,t

βm
2

+
αm+ln(hrs

m,t)
β1

+ C(rs, t) (16)

Suppose,

Λ2 = {Λrs
m,g(m),k,t(f)}, Λrs

m,g(m),k,t(f) = crs
m,g(m),k,t(f) +

αm+ln hrs
m,t

β1
−

ln hrs
m,t

βm
2

+
αm

g(m)+ln hrs
m,g(m),t

βm
2

Λ̃2 = {Λ̃rs
m,g(m),k,t(f)}, Λ̃rs

m,g(m),k,t(f) = crs
m,g(m),k,t(f) +

αm+ln hrs
m,t

β1
−

ln hrs
m,t

βm
2

+
αm

g(m)+ln hrs
m,g(m),t

βm
2

+ C(rs, t)
∀f ∈ Ω2, Ω2 = {f|

∑
m
∑

g(m)
∑

k f rs
m,g(m),k,t = qrs

t }

(17)

Similar to the proof of single-layer case in Section 3.3.1, since C(rs, t) is identical for all paths of all modes
between any fixed OD pair rs and departing time t, then VI(Λ2,Ω2) is equivalent to VI(Λ̃2,Ω2). Applying the DUE290

condition to the equations above, we have Λ̃2(f∗)T f∗ = 0. By Proposition 3.3 we know the DUE is equivalent to
VI(Λ̃2,Ω2), hence it is also equivalent to VI(Λ2,Ω2).
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3.4. Existence and uniqueness of the solution to MMDUE

We have proved the equivalence between MMDUE and its VI formulations in Section 3.3. So the existence
and uniqueness of the solution to MMDUE is equivalent to the existence and uniqueness of the solution to the VI295

problems. In Nagurney (2009), the conditions for existence and uniqueness of solution to a general VI problem
VI(Λ,Ω) is provided and proved, see Proposition 3.4. It is proved using Brouwer’s Fixed Point Theorem.

Proposition 3.4: If Ω is a compact convex set and Λ(x), x ∈ Ω is continuous on Ω, then the variational
inequality problem VI(Λ,Ω) admits at least one solution x∗. If Λ(x) is strictly monotone on Ω. Then the solution
is unique, if one exists.300

Given Ω1,Ω2 are both polyhedral, they are both compact convex sets. So the existence of solution depends on
the continuity of Λ1(f),Λ2(f) on f. From (6)(9) we know in Λ1,Λ2 all other terms apart from c(f) are continuous
with respect to f. In c(f), the only term associated with f is wrs

k,t based on the definition in (1-4), which is the
actual travel time including car/bus/railway travel time, walking time, transfer time and parking cruising time
calculated by the DNL model. In this research, we assumed the walking time is independent of path flow f.305

Though the transfer time and the parking cruising time are dependent on f in our model, here we simplify them to
be independent of f only to work with the solution existence. With this simplification, the existence of a solution
solely depend on the continuity of car/bus/railway travel time on the path flow f.

In the DNL process, railway travel time is almost constant according to the pre-determined railway schedule,
car/bus travel time can be computed from different network traffic flow models. The continuity of exit-flow model310

was established by Wie et al. (1995) and point-queue model by Huang & Lam (2002), but for more complicated
models like the cell transmission model (Daganzo 1995) and link queue model (Jin 2012), the continuity remains
an open question. Under our MMDUE setting, the existence of the solution to the VI problem hence the MMDUE
is extremely hard to prove rigorously, due to the complicated structure of our simulation model with cell-based
traffic flow model, the possibility of link spill-back, and the different route choice behaviors and flow dynamics of315

multi-class vehicles. Since this is not the focus of this research, here we assume the VI problems VI(Λ1,Ω1) and
VI(Λ2,Ω2) both admit at least one solution. However, the strict monotonicity of Λ1(f) on Ω1 does not stand for
general cases, according to Proposition 3.4 the solution is not unique if one exists.

Even though the existence of the solution to MMDUE has not yet be proven rigorously, from a pragmatic stand-
point, it is still necessary and advantageous to use this general framework of formulating and solving large-scale320

multi-modal network equilibrium with multi-class vehicles. Figure 4 is an abstraction of the MMDUE framework
proposed in this paper at a higher level comparing to Figure 2. At the “Simulation” phase, the path travel costs
are generated using multi-modal dynamic network loading, while at the “Updating” phase, the travelers’ mode and
route choices hence the network flow are updated using a gradient projection method that efficiently and effectively
leads to convergence. We introduce the Simulation phase in Section 4 and the Updating phase in Section 5.325

Mode/route
choices

Path travel 
costs

Simulation phase:
multi-modal dynamic network loading

Updating phase:
closed-form gradient projections

Figure 4: The high-level abstraction of the whole MMDUE framework.

Note for formulating and solving the MMDUE in a more applicable way, the OD demand for each time interval
t is fixed, so there is no departure time choice in this paper. However, it is straightforward to extend MMDUE to
accommodate departure time choice by relaxing the feasibility set Ω, e.g. relax Ω1 to Ω1 = {f|

∑
k,t f rs

m,k,t = qrs =∑
t qrs

t }. In the next section, a DNL model for computing the dynamic travel time wrs
k,t and hence crs

m,k,t and crs
m,g(m),k,t

is introduced. Then the solution algorithm to the VI problems VI(Λ1,Ω1),VI(Λ2,Ω2) is provided in Section 5.330

4. Multi-modal Network Flow Simulation and Travel Time Estimation

The estimation of the travel time of each mode and path in the network is achieved by a mesoscopic DNL
model. For example, as shown in Figure 5, the travel time of driving consists of car travel time from home to CBD
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parking area, parking cruising time in the parking area and possibly a walking time from the parking area to the
destination. In the park-and-ride mode, the travel time consists of car travel time, parking cruising time, transfer335

time (bus waiting time), bus travel time and walking time from the bus stop to the destination. For all travel modes,
the definitions of wrs

k,t in equation (1-4) are as follows:

Driving: wrs
k,t = wrs

k,t(car travel) + wrs
k,t′ (parking cruising) + wrs

k,t′′ (walking)
Ride-hailing: wrs

k,t = wrs
k,t(waiting) + wrs

k,t′ (car travel)
Transit: wrs

k,t = wrs
k,t(walking) + wrs

k,t′ (transfer/waiting) + wrs
k,t′′ (bus/railway travel) + wrs

k,t′′′ (walking)
Park-and-ride: wrs

k,t = wrs
k,t(car travel) + wrs

k,t′ (transfer/waiting) + wrs
k,t′′ (bus/railway travel) + wrs

k,t′′′ (walking)
(18)

Here t < t′ < t′′ < t′′′ represents the start time of a trip component along a trip chain, such as “car travel”,
“walking” or “bus travel”, respectively. One component of a trip would start right after the end of the immediate
past component.340

O

D

P1

P2

O: Origin (residential)
D: Destination (CBD)
P1: Park and ride parking
P2: CBD parking

Driving
Transit (bus)
Walking

car travel time

parking cruising time
transfer time

bus travel time walking time

parking cruising time

Figure 5: An example of driving mode and park-and-ride mode: breakdown of the actual travel time.

4.1. Car/bus/railway travel time

The railway transit has its own infrastructure, and hence the railway travel time is assumed to be independent
of other modes. Its travel time follows the planned schedule and is not affected by the path flows f on the auto
network. However, most cars and buses share the same auto network to form mixed traffic. In this research,
the DNL model considers, on the auto network, heterogeneous vehicular flow propagation through links/nodes,345

including light-duty vehicles and heavy-duty vehicles like buses and trucks. An example fundamental diagram of
class 1: passenger cars and class 2: buses and trucks are shown in Figure 6. Class 1 vehicles have larger free-flow
speed, maximum flow rate as well as jam density.

For modeling the heterogeneous vehicle flow on links, we adopted a multi-class traffic flow model proposed in
Qian et al. (2017), which can model the flow dynamics consisting of multiple classes of vehicles with distinct flow350

characteristics. It pragmatically generalizes the cell transmission model (Daganzo 1994, Lebacque 1996) to multi-
class heterogeneous vehicle flow. It includes the concept “physical space split” for each class, which is the fraction
of physical space that each vehicle class occupies and uses to progress. Then the “perceived equivalent density”
of each class is calculated, representing the equivalent density perceived by some vehicle class, if converting
all other class vehicles to this class based on the space they occupied. At each loading time interval, vehicles355

move through cells following the relations between upstream demand and downstream supply computed using
the “physical space split” and “perceived equivalent density”, as well as the fundamental diagram of each class.
The main feature of this multi-class flow model is that it encapsulates three mixed flow regimes: one class can
overtake the other class under free flow, overtaking occurs restrictively under semi-congestion, and no overtaking
can occur under congestion. Details can be found in Qian et al. (2017) and Pi et al. (2019), comparing FASTLANE360

by Van Lint et al. (2008).
Here we present a node model for vehicular flow evolution through junctions. For a junction j, we used a

relaxed version of the general node model introduced by Nie (2006). Denote the set of all upstream links by A→ j,
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Density 𝝆𝝆

𝝆𝝆𝟐𝟐
𝑱𝑱 𝝆𝝆𝟏𝟏

𝑱𝑱𝝆𝝆𝟏𝟏𝒄𝒄 𝝆𝝆𝟐𝟐𝒄𝒄

𝒒𝒒𝟏𝟏𝒄𝒄

𝒒𝒒𝟐𝟐𝒄𝒄

𝒖𝒖𝟏𝟏𝑭𝑭 𝒖𝒖𝟐𝟐𝑭𝑭

Flow rate 𝒒𝒒

Figure 6: Fundamental diagrams of class 1: passenger cars and class 2: buses and trucks. uF : free-flow speed, qc: lane capacity, ρJ : jam
density.

and the set of all downstream links by A j→. Also denote the turning proportion from any upstream link a ∈ A→ j to
any downstream link b ∈ A j→ at time t by ψa→b(t), where

∑
b∈A j→

ψa→b = 1, ∀a ∈ A→ j. The flux from any upstream365

link a ∈ A→ j to downstream link b ∈ A j→ is qa→b:

qa→b = min
{
da(t)ψa→b, sb(t) da(t)ψa→b∑

α∈A→ j dα(t)ψα→b

}
(19)

where, for any link a, the link demand da(t) and supply sa(t) can also be computed for deciding the number of
vehicles to be moved through the junctions.

Signalized junctions could also be applied to the network if data about signal timings are available. For large-
scale mesoscopic simulation, the uncontrolled junction model (19) above usually works well enough for the esti-370

mation of travel states. It is also important to note that our model can successfully include the effect of queuing
and spill-back in the dynamic network loading. The implementation of the above link and node models are shown
in Figure 7, where the arrows represent how we move different classes of vehicles within the links and among
different links through the nodes.

… … 
… … 
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(a) Link Model

(b) Node Model

𝟏 cells on link 𝟐 last cell on link

𝟑 incoming array 𝟒 finished array

𝟓 car array 𝟔 bus/truck array

𝟕 upstream and downstream nodes

Figure 7: Implementation of link and node models.

As shown in Figure 7, the link model ensures first-in-first-out (FIFO) for each vehicle class separately, so the375

car and bus travel time can be computed using their respective cumulative curves. Cumulative curves are built
by continuously counting and adding up the number of arriving and departing vehicles in each time interval. For
each link i, there are one arrival and one departure curves for passenger cars A1,i(t) and D1,i(t), and similarly for
buses/trucks A2,i(t) and D2,i(t). So the car and bus travel time departing at t from r to s along path k, if k consists
of a link sequence {a1, a2, ..., an}, can be computed as follows:380

wrs
k,t(car travel) = D−1

1,an

(
A1,an

(
D−1

1,an−1

(
· · ·D−1

1,a1

(
A1,a1 (t)

))))
− t

wrs
k,t(bus travel) = D−1

2,an

(
A2,an

(
D−1

2,an−1

(
· · ·D−1

2,a1

(
A2,a1 (t)

))))
− t

(20)
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4.2. Parking cruising time

From day to day, parking cruising time is usually expected to depend on the expected parking occupancy in
the targeted area. A typically expected parking space searching time function is approximately flat under low or
medium occupancy but increases drastically when the occupancy is high and goes toward infinity when the parking
area is full. Denote the parking occupancy of parking area i at time t by ei(t). If we assume all vehicles park in the385

parking area closest to their destinations, then ei(t) is determined by the network loading process, namely adding
the number of vehicles arriving and subtracting the number of vehicles leaving. For studying the whole morning
commute period, it is assumed at t = 0 the occupancy is zero, that is ei(0) = 0 for all parking area i. A generic
cruising time function is (Axhausen et al. 1994, Qian & Rajagopal 2014): wrs

k,t(parking cruising) = F(ei(t)) =
εi

1−ei(t)/Ei
where the parking area i is on path k, and the εi is the average parking time of a parking area when it390

is empty. Ei is the total capacity of the parking area. The parking occupancy ei(t) can be simulated through the
multi-modal dynamic network loading process. It can also be estimated using historical parking data (Yang & Qian
2017) or predicted using real-time multi-source of traffic data using statistical and machine learning models (Yang
et al. 2019).

In our numerical examples, the parking area represents an aggregation of both on-street/off-street parking395

spaces near the destination. Parking cruising time is included as part of the travel time in the generalized travel
cost. The on-street cruising for parking and its impact to through traffic are currently not modeled in this specific
DNL and numerical examples. However, the general MMDUE framework and solution algorithms proposed later
still work for any generic dynamic simulation models. In the future, we plan to advance the study to explicitly
model on-street parking cruising.400

4.3. Travel time of other modes

The waiting time of bus/railway is simplified to a constant (e.g. historical average waiting time, or half of the
headway), which is reasonable for high-frequency bus/railway service in morning commute peak hours (Pi et al.
2018, Zhang & Qian 2018). The historical average waiting time for the transit route at each transit stop is used in
this study.405

The walking time is proportional to the walking distance. Assuming the average walking speed is v̄, then the
walking time is wrs

k,t(walking) = lrs
k,t/v̄, where lrs

k,t is the total walking distance in the route k at time t from r to s.

4.4. A comprehensive dynamic network loading (DNL) process

The DNL process runs for the whole study period (e.g. morning peak hours). The studying period was di-
vided into 5-second discrete loading intervals. During each loading interval, the steps are performed as shown in410

Algorithm [NETWORK-LOADING]. After the whole loading process is completed, we can compute the time-
dependent travel time for each link in the multi-modal network, and the generalized time/cost for paths along each
OD. Mode split, link/path flow, and routes can also be updated. We discuss the detail of solution algorithms to
MMDUE in the next section.

5. Solution to the MMDUE415

To solve the MMDUE problems (5) and (7), we formulate them as VI problems VI(Λ1, Ω1) in Equation 6
and VI(Λ2,Ω2) in Equation 9, respectively. Solution algorithms to VI problems are categorized by: heuristic,
projection-based and feasible direction algorithms. Heuristic algorithms often refer to the method of succes-
sive averages (MSA) (Sheffi 1985), which computes an all-or-nothing flow assignment based on time-dependent
minimum-cost paths and then uses this flow assignment to update the old assignments as well as the costs of paths,420

repeat iteratively until converges. The projection-based algorithm obtains a new solution at each iteration i by
solving fi+1 = ΠΩ

(
fi − τΛ(fi)

)
, where ΠΩ is the projection operator to the feasible set Ω of f (Han & Lo 2002, Lo

& Szeto 2002). Feasible direction algorithms aims to find the strict ascent direction for the Generic merit function
(GMF), θ(f) = ming∈Ω Λ(f)T (g − f). Some example algorithms include Zhu & Marcotte (1993), Nie & Zhang
(2010), Levin et al. (2015).425

In this paper, we propose a new projection-based method for solving the VI problems, which has a closed-
form representation for the path flow of each O-D pair. The new solution algorithm is more efficient than existing
projection-based methods for large-scale networks.
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Algorithm [NETWORK-LOADING]
Step 0 Initialization. Initialize an empty network, as well as cumulative curves for each link.
Step 1 Releasing. For all origin nodes, generate different classes of vehicles, e.g. cars, trucks, buses, etc.,

according to vehicle demand and path flow. Release the vehicles to downstream links. For travelers
choosing a transit mode, load them to the downstream transit network links.

Step 2 Node evolution. For all junction nodes in the auto network, move vehicles from upstream links
to downstream links following Equation (19). Update the departure curves of upstream links and
arrival curves of downstream links. For each parking nodes, store vehicles that enter and remove
vehicles that exit the parking area, and update the parking occupancy. For transit stop nodes, load
passengers on/off bus/train only if the bus/train arrives.

Step 3 Link evolution. For all auto network links, move vehicles on the links cell-by-cell following the
multi-class traffic flow model (Qian et al. 2017). If a vehicle reaches the destination nodes, delete it
from the network. For all bus network links, move the in-vehicle bus passengers as the propagation
of buses on the auto network. For all railway network links, move the railway passengers according
to the railway schedule.

Step 4 Termination check. Stop when the end of the study time period is reached. Otherwise, go to Step
1.

5.1. Closed-form gradient projection

The gradient projection methods solves the proposed VI formulation by minimizing the regularized merit430

function (RMF), presented by θτ(f) = ming∈Ω Λ(f)T (g − f) + 1
2τ ||g − f||22, where τ is a regularization weight and Ω

can be either Ω1 or Ω2 in this study. One can prove that the optimal solution to θτ(f) is the projection of f − τΛ(f)
onto Ω (Facchinei & Pang 2007), as presented in gτ(f) = ΠΩ (f − τΛ(f)) = arg ming∈Ω θτ(f).

Also by Zhu & Marcotte (1993), f − gτ(f) is a strict descent direction for either θτ(f) at f, or ||gτ − f||22 when
Λ(f) is Lipschitz continuous and monotone. Therefore, the proposed VI formulation can be solved by fi+1 = gτ(fi)435

at each iteration i. Oftentimes, the projected gradient is solved by a quadratic programming solver, while in this
paper we present a novel method that solves the projected gradient in a closed-form.

For each individual OD pair rs, we can expand the gτ(f) to a quadratic programming formulation presented in
Equation 21.

min
{grs

k,t}k∈Prs

∑
k∈Prs

(
grs

k,t − f rs
k,t + τΛrs

k,t

)2

s.t.
∑

k∈Prs
grs

k,t = qrs
t

grs
k,t ≥ 0 ∀k ∈ Prs, ∀t

(21)

where Prs = ∪mPrs
m for one-layer model and Prs = ∪m ∪g(m) Prs

m,g(m) for the nested model. Note here all routes from440

all modes are indexed together and each route has a unique route indicator k. So, we omit the mode indicator m in
the formulation above since the route indicator k implicitly include the mode choice. We can compute the gradients
of grs

k,t by solving Equation 21 in a quadratic solver. However, the dimension of grs
k,t grows exponentially with the

network size, and evaluating the gradients becomes highly time-consuming for large-scale networks. In this paper,
we propose a new method to obtain the gradients by analyzing its Karush-Kuhn-Tucker (KKT) conditions.445

The KKT conditions of the formulation (Equation 21) are as follows:

Stationarity: −2 (grs
k,t − f rs

k,t + τΛrs
k,t) = λ − µrs

k,t
Primal feasibility: grs

k,t ≥ 0,
∑

k∈Prs
grs

k,t = qrs
t

Dual feasibility: µrs
k,t ≥ 0

Complementary slackness: µrs
k,t grs

k,t = 0,∀k

(22)

where µrs
k,t and λ are the dual variables. Combining the four conditions, if µrs

k,t = 0, grs
k,t = f rs

k,t − τΛ
rs
k,t −

λ
2 , and if

µrs
k,t > 0, grs

k,t = 0. Also, by Primal feasibility we have
∑

k∈Prs
grs

k,t = qrs
t . Then λ

2 = − τ
|Prs |

∑
k∈Prs

Λrs
k,t. So for each

14



iteration we choose 0 < τ ≤ 1
maxk

(
crs

k,t−
1
|Prs |

∑
k′∈Prs crs

k′ ,t

) , the solution to the problem formulation (21) is presented by:

grs
k,t = f rs

k,t − τ

crs
k,t −

1
|Prs|

∑
k′∈Prs

crs
k′,t

 (23)

The difference between the quadratic solver and our method is that our method has an analytical form if450

we decompose the whole problem into individual OD pair. By analyzing the KKT conditions, we can get the
gradients of the decision variables without solving any optimization problem. The trick we are using is to adap-
tively choose τ in each iteration to satisfy the condition 0 < τ ≤ 1

maxk

(
crs

k,t−
1
|Prs |

∑
k′∈Prs crs

k′ ,t

) . In this paper, we choose

τ = 1
maxk

(
crs

k,t−
1
|Prs |

∑
k′∈Prs crs

k′ ,t

) for each iteration. More importantly, existing quadratic solver has to work with the path

flow of all OD pairs simultaneously which is computationally heavy, whereas our method computes the solutions455

for the flow of each OD pair separately. Clearly, our method can adapt to very large-scale networks. Therefore,
one can expect that our method is more efficient in large-scale networks. In the experiments, we also observe that
our method achieves a better convergence rate than the original quadratic solver method.

Note here the cr,s
k,t is exactly the generalized path travel cost cr,s

m,k,t we defined in section 3, with the mode
indicator m omitted since the route indicator k implicitly include the mode choice. It is calculated and updated460

from the multi-modal dynamic network loading process in every iteration of our MMDUE algorithm, see section
5.2.

5.2. Solution framework

The proposed formulation is path based. The number of paths with positive flow increases exponentially when
the network and number of modes grows. We adopt the column generation method to augment the path set at each465

iteration (Nie & Zhang 2007), and the time-dependent shortest path (TDSP) algorithm (Chabini 1998) is run on
the combined multi-modal graph to search for the shortest path across different modes. The solution framework of
the MMDUE problem (5)(7) is summarized in Algorithm [MMDUE-SOLVER].

Algorithm [MMDUE-SOLVER]
Step 0 Initialization. Initialize a path set, and initialize the path flow vector f such that the passenger

demand q is evenly distributed to each path.
Step 1 Dynamic network loading. Generate vehicular demand from the passenger flow. Run a full

[NETWORK-LOADING] process (section 4.4) with vehicular flow, and obtain the generalized
path cost for each path.

Step 2 Passenger path set augmentation. Run a time-dependent shortest path algorithm on the graph
presented in Figure 1 with the travel costs obtained in Step 1, and append the shortest path to the
path set Prs.

Step 3 Update passenger flow. Update the passenger path flow with the travel costs obtained in Step 1
using the gradient projection method presented in section 5.1.

Step 4 Convergence check. Stop when the path set Prs does not change and the change of path flow f is
less than tolerance. Otherwise, go to Step 1.

6. Numerical Experiments

We first solve the MMDUE in a simplified multi-modal network in Pittsburgh. The effectiveness and efficiency470

of the proposed gradient projection method are examined. The sensitivity analysis with respect to parameters is
thoroughly explored for policy insights. To show the convergence performance and the efficiency of our model
and algorithms on large-scale networks, we also test it on a large-scale multi-modal network of the SR-41 network
in Fresno, California.
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6.1. A simplified multi-modal network for downtown and southern Pittsburgh475

The MMDUE model is tested in the network shown in Figure 8. The network is an abstraction of the real
multi-modal network in the Pittsburgh region, covering the district of Upper St Clair, Bridgeville, Mt Lebanon,
Scott Township, Carnegie, Green Tree, Banksville, Mt Washington and Downtown Pittsburgh, with I-79, I-376,
US Route 19 and a light rail Red Line connecting the suburbs and the downtown, see Figure 8(b). The simplified
network is shown in 8(a), with five origins O1 ∼ O5, one destination D1, nine nodes (junctions), 16 links (road480

segments), three parking areas, one bus route, and one railway line. The parking area can be viewed as the
aggregation of all parking space in that area, and we only considered one bus route that represents the aggregation
of all high-frequency routes and one railway line. We also assume all travelers own or have access to a private car,
which means ξ = 0. This allows all travelers to choose any travel modes in this experiment.
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Figure 8: (a) A simplified multi-modal network for downtown and southern Pittsburgh region used in the experiments. Note the bus line
represents the aggregation of all high-frequency bus routes in this area. Nodes and links are labeled on the figure. (b) The real network map.
Origins 1 to 5 are all large residential zones. Downtown (D1) is the only destination.

We have made efforts on calibrating the traffic flows and OD demand in the Pittsburgh metropolitan area in a485

separate project (Ma & Qian 2015, Ma et al. 2019, Ma & Qian 2018), so the OD demands were employed in this
study. The total passenger demand is set as 30,000 for the morning peak hours (5 AM to 9 AM) in this area, from
all origins O1 ∼ O5 to the only destination D1. Note origins O1 ∼ O5 are all large residential districts, and the only
destination D1 is downtown Pittsburgh. All link parameters are listed in Table 1 and all modes and paths are listed
in Table 2. O2 is the bus origin and only for releasing buses to the network. O5 is the truck origin and only for490

releasing trucks to the network. All other parameters used in the experiment are listed in Table 3.

6.1.1. Convergence
We solve the MMDUE with the solution framework presented in section 5.2. Changes in the equilibrium gap

against the number of iterations using our proposed solution and quadratic solver are presented in Figure 9. All
the experiments below are conducted on a desktop with Intel Core i7-6700K CPU @ 4.00GHz × 8, 2133 MHz 2495

× 16GB RAM, 500GB SSD. We run our algorithm for 100 iterations, and the proposed method outperforms the
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Table 1: Link parameters. uF : free-flow speed, qc: lane capacity, ρJ : jam density. Subscript 1: passenger cars, 2: buses and trucks.

Link Length (mile) # of lanes uF
1 (mph) uF

2 (mph) qc
1 (veh/hour) qc

2 (veh/hour) ρJ
1 (veh/mile) ρJ

2 (veh/mile)

l1 (n1 → n2) 4.00 2 40 35 2000 1200 200 100
l2 (n1 → n5) 4.50 3 65 55 2300 1200 200 100
l3 (n3 → n2) 1.50 1 30 25 1800 1000 200 100
l4 (n2 → n3) 1.50 1 30 25 1800 1000 200 100
l5 (n4 → n3) 0.55 1 30 25 1800 1000 200 100
l6 (n3 → n4) 0.55 1 30 25 1800 1000 200 100
l7 (n5 → n4) 2.50 1 30 25 1800 1000 200 100
l8 (n4 → n5) 2.50 1 30 25 1800 1000 200 100
l9 (n2 → n6) 4.50 2 40 35 2000 1200 200 100
l10(n5 → n8) 6.00 3 65 55 2300 1200 200 100
l11 (n6 → n7) 0.50 1 30 25 1800 1000 200 100
l12 (n7 → n6) 0.50 1 30 25 1800 1000 200 100
l13 (n7 → n8) 0.50 1 30 25 1800 1000 200 100
l14 (n8 → n7) 0.50 1 30 25 1800 1000 200 100
l15 (n6 → n9) 1.50 2 40 35 2000 1200 200 100
l16 (n8 → n9) 1.50 3 65 55 2300 1200 200 100

Table 2: All modes and paths in the numerical experiment.

Path name Origin Destination Mode Sub-mode Path

Path 1 O1 D1 driving solo l101 → l2 → l10 → l16 → l105
Path 2 O1 D1 driving solo l101 → l1 → l9 → l15 → l105
Path 3 O1 D1 driving carpool l101 → l2 → l10 → l16 → l105
Path 4 O1 D1 transit railway l101 → railway line→ l105
Path 5 O1 D1 park&ride driving+bus l101 → l1 → l106 → P3 → l106 → l9 → l15 → l105
Path 6 O1 D1 park&ride driving+bus l101 → l2 → l7 → l5 → l3 → l106 → P3 → l106 → l9 → l15 → l105
Path 7 O1 D1 park&ride driving+bus l101 → l1 → l9 → l107 → P2 → l107 → l15 → l105
Path 8 O1 D1 park&ride driving+bus l101 → l2 → l10 → l14 → l12 → l107 → P2 → l107 → l15 → l105
Path 9 O3 D1 driving solo l103 → l8 → l10 → l16 → l105
Path 10 O3 D1 driving solo l103 → l5 → l3 → l9 → l15 → l105
Path 11 O3 D1 driving carpool l103 → l8 → l10 → l16 → l105
Path 12 O3 D1 transit bus l103 → l5 → l3 → l9 → l15 → l105
Path 13 O3 D1 park&ride driving+bus l103 → l5 → l3 → l106 → P3 → l106 → l9 → l15 → l105
Path 14 O4 D1 driving solo l104 → l13 → l16 → l105
Path 15 O4 D1 driving solo l104 → l12 → l15 → l105
Path 16 O4 D1 driving carpool l104 → l13 → l16 → l105
Path 17 O4 D1 park&ride driving+bus l104 → l12 → l107 → P2 → l107 → l15 → l105
Bus route O2 D1 N/A N/A l102 → l3 → l9 → l15 → l105
Through truck traffic O5 D1 N/A N/A l108 → l2 → l10 → l16 → l105

Table 3: All other model parameters.

Name Values

Morning commute model α = $6.4/hour β = $3.9/hour γ = $15.2/hour t∗ = 9AM
Logit model α1, α1

g(1)∈G(1) = 1.5 α2, α2
g(2)∈G(2) = 1.0 α4, α4

g(4)∈G(4) = 2.0 β1 = 1.0 βm∈{1,2,4}
2 = 1.0

Parking-1 (CBD) p1 = $10 ε1 = 2 min E1 = 10000
Parking-2 p2 = $3 ε2 = 1 min E2 = 20000
Parking-3 p3 = $3 ε3 = 1 min E3 = 20000
Bus δrs

k = $2.75 σrs
k,t = 0 frequency = 15 min waiting = 7.5 min

Railway δrs
k = $3.75 σrs

k,t = 0 frequency = 12 min waiting = 6.0 min full trip = 40.0 min
Carpooling ∆rs

k,t(1) = 0 ∆rs
k,t(2) = $1

Dynamic network loading unit time = 5s # of intervals = 2880 start time = 5AM end time = 9AM
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quadratic optimization method in terms of the equilibrium gap. It takes the proposed method 211s to complete 100
iterations, comparing to the 227s taken by the quadratic solver.

Figure 9: Convergence curves for both gradient projection methods.

6.1.2. Solution of network flow and mode choices
The path choice probability over the morning peak for OD pair (1, 1) and OD pair (3, 1) is presented in Fig-500

ure 10. For OD pair (1, 1), most travelers departing in 5 AM-6 AM choose carpool and railway to commute, and
more travelers select park-and-ride (PnR) after 7 AM. The generalized cost of metro is relatively low, as a result
of low railway fare. After 8 AM, taking railway will incur a high late arrival cost penalty, so the path flow of
railway decreases dramatically. Using carpool directly to CBD is another preferred choice before 8 AM since the
roads to CBD are not congested yet. After 8 AM, cruising time for parking in the CBD area increases, leading505

to a decline in the carpool probability. In contrast, the generalized park-and-ride cost is low when the CBD is
congested because of the savings on travel time and parking fee. Hence park-and-ride mode becomes the most
preferable choice after 8 AM. At 7 AM, the flow of paths 7 and 8 has a spike, possibly due to the unstable UE
solution when the cost of path 7 and 8 coincide. The stability of MMDUE can be improved in future research by
the method proposed by (Tobin & Friesz 1988, Patriksson 2004). Similar choice patterns can be observed for OD510

pair (3, 1). One observation is that there are few travelers choosing solo-driving all the way to downtown, which is
probably attributed to the high parking fee in the downtown, relatively low inconvenience cost for carpool, and the
way transit and park-and-ride are provided in this experiment.

Figure 10: Time-varying path choice for OD pair (1, 1) and (3, 1).

6.1.3. Sensitivity analysis on total demand level
We change the total demand from 75% to 125% of the O-D demand in the original problem settings, keeping515

other parameters the same. We solve the MMDUE under different demand levels and plot the average user cost for
different modes and the route choice for OD pair (1,1) in Figure 11.
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Figure 11: The influence of total demand on average cost per traveler and the path choice for OD pair (1,1).

It shows clearly the average passenger cost increases with respect to the demand level, and the influence of
demand level to the average cost is approximately “linear”. The cost of driving passengers and park-and-ride
passengers increase since the network become over-saturated, while the cost of transit passengers almost remain520

the same, as a result of constant railway cost. Also, the increasing demand will generally force travelers to avoid
driving in routes with high congestion levels. Hence for OD (1, 1), the park-and-ride flow drops on Path 8 and
increases on Path 7, as a result of more and more congested highways/freeways. Figure 11 can be used to determine
the marginal travel time/cost at different demand levels, which supports the urban planning for policymakers.

6.1.4. Sensitivity analysis on parking and bus fare525

We study the joint influence of bus fare and parking fare. We change the bus fare and parking fare by applying
a multiplier to the fare in the original settings, which ranges from 1 to 5. We solve the MMDUE under different bus
and parking fares, and plot the average cost for all travelers, driving travelers, transit travelers and park-and-ride
travelers in Figure 12.

When the bus fare increases, the average traffic cost and average park-and-ride cost increase. This is because530

the park-and-ride cost includes bus fare and park-and-ride is one of the most preferred modes for all travelers.
When the parking fare increases, the average costs of driving and park-and-ride increase substantially, because in
both modes the travelers need to pay for the parking fee. In this case, the average traffic cost also increases. One
interesting observation is that the average transit cost is relatively stable, which implies that transit cost has little
change when bus fare and parking fare is changing. One important reason is that transit passengers do not pay535

the parking fare, and another reason is that many transit passengers can switch from bus to railway. Travel cost
incurred on the railway model does not change as much regardless of parking or bus fare.

6.1.5. Influence of inconvenience (impedance) cost
In the original settings, the inconvenience (impedance) costs for carpool, transit, and park-and-ride are assumed

to be at a very low level for testing the MMDUE model and the algorithm. As a result, the driving flow is marginal540

in the MMDUE solutions, which is deviated from the real situation in the study area. In this section, we will
explore the impact of inconvenience cost on travelers’ mode choice. We set the inconvenience costs for carpool,
transit, and park-and-ride to be $5 under MMDUE. The path choice probability over the morning peak for OD
pairs (3, 1) and (4, 1) is presented in Figure 13. Generally, more travelers in O3 and O4 choose solo-driving before
7 AM, due to higher (inconvenience) costs for transit/park-and-ride. To conclude, the inconvenience costs has a545

considerable impact on travelers’ mode choice. Therefore, public transit with great accessibility effectively attracts
travelers. In future studies, a more fine-grained model should be developed to estimate the values of inconvenience
costs, for example, there should be different inconvenience costs for groups of travelers with different demographic
or traveling characteristics.
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Figure 12: Heatmap of average cost for total traffic and different modes.

6.2. A large-scale multi-modal network for SR-41, California550

To show the convergence performance and the efficiency of our model and algorithms on large-scale networks,
we also test our model and algorithms on a large-scale multi-modal network for SR-41, California. It is located at
Fresno, California, with SR-41 highway in the center, see Figure 14. It contains 2,065 links, 1,441 nodes and 7,110
OD pairs. The public transit system is operated by the Fresno Area Express (FAX). There are 16 bus routes operated
in this network, including route 1 southbound, route 9 eastbound/westbound, route 28 eastbound/westbound, route555

32 southbound, route 33 eastbound/westbound, route 34 southbound/northbound, route 35 eastbound/westbound,
route 39 eastbound/westbound, and route 41 eastbound/westbound. There is no railway traffic in this network.
There are also 199 parking lots scattered in this network, near important intersections or other locations in the city.
The travel demand for this network is in all 170,399 for the 3-hour morning peak period, obtained from previous
research Liu et al. (2006) and Zhang, Ma, Singh & Chu (2008). We also assume all travelers own or have access560

Figure 13: Time-varying path choice for OD pairs (3,1) and (4, 1) with high inconvenience costs.
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to a private car, which allows all travelers to choose any of the three travel modes including driving, park-and-ride
and bus transit. The parameters in the morning commute model and nested logit model are used the same as shown
in Table 3.

N

Figure 14: The SR41 network.

For multi-modal large-scale networks, how to generate the feasible path set for each OD pair with several
travel modes is challenging. In this study, the path set is generated for each travel mode separately. For driving,565

three shortest paths are computed on the auto network, each under one of the three traffic conditions: free-flow,
mild congestion and severe congestion. For bus transit, the paths are generated by finding the feasible bus routes
connecting the origin and destination with a total walking distance less than a threshold, namely 500m. Finally,
the paths for park-and-ride are also generated by finding the shortest paths on the combined multi-modal network,
with the total walking distance being limited to be less than the threshold. Limiting the walking distance among570

parking, bus stops and origins/destinations allows efficient searching for feasible paths. In this study, we generate
in all 8,813 paths for solo-driving and carpool travelers, 344 paths for bus transit, and 1,205 paths for park-and-
ride travelers. We use the pre-determined fixed path sets for each mode. The path set could also be generated
from the combined multi-modal network in a dynamic fashion using a column generation method, which is more
computationally intensive but may help improve the equilibrium results. We are also going to explore the influence575

of fixed/dynamic path set on the equilibrium results in our future study.

Figure 15: The convergence performance for both gradient projection methods in the SR41 network.

The convergence of both our proposed gradient projection method and the quadratic solver is presented in Fig-
ure 15. The results show our proposed method considerably outperforms the quadratic solver in both equilibrium
gap and computational time. In large-scale experiments, the dynamic network loading process and the calculation
of generalized cost for each path are computationally intensive in addition to the gradient projection. Thus, the580

overall computational efficiency could be improved significantly if we can speed up those two components in the
future. In conclusion, this experiment shows the applicability and efficiency of applying our model and solution al-
gorithms to large-scale networks that consist of thousands of links, nodes, and OD pairs, as well as a large feasible
path set.
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7. Conclusion585

This paper formulates and solves a general dynamic traffic assignment problem for multi-modal dynamic net-
works. It estimates spatio-temporal passenger and vehicular flows in a general multi-modal network that explicitly
considers parking and many conventional and emerging travel modes, including solo-driving, carpooling, ride-
hailing, bus transit, railway transit, and park-and-ride. Vehicular flows, namely cars, trucks, and buses, as well as
passenger flow, are integrated into a holistic dynamic network loading (DNL) models with heterogeneous traffic590

flow, transit, parking, and mode transfer. Travel behavior of passenger demand on modes choice is encapsulated
by a multi-layer nested logit model. We formulate a general multi-modal dynamic user equilibrium (MMDUE)
as a Variational Inequality (VI) problem. A new gradient projection method is proposed and shown to efficiently
solve the VI problem on large-scale networks.

Numerical experiments are conducted on a multi-modal network of the Pittsburgh region along with sensitivity595

analysis with respect to demand, infrastructure features, and management strategies. We show that total passenger
demand, parking prices, transit fare and ride-sharing impedance can effectively impact both system performance
and individual user costs. This indicates transportation system planning and operation require a holistic solution
across all modes. Experiments on a large-scale multi-modal network in Fresno, California also show our model
and solution method has good convergence performance and computational efficiency. The proposed theory and600

algorithms provide a possible comprehensive solution for managing such complex multi-modal transportation
networks.

The general framework of the MMDUE formulation and solution proposed in this paper is a complete inclusion
of most travel modes existed in modern urban traffic systems. However, except for few metropolitans, most cities
or towns do not have all travel modes discussed in this paper. Our MMDUE framework, in these cases, could605

be reduced to simpler cases, for example, bi-modal choices, driving with parking choices, etc. The MMDUE
framework is flexible enough for being applied to different scenarios and hence to be useful in most urban traffic
systems. We introduce some example scenarios as follows: (1) Solo-driving and carpooling: For small cities or
towns without public transit and ride-hailing service, solo-driving and carpooling are almost the only travel modes
for daily commuting if we don’t consider walking for long distance. In this case, the general framework is reduced610

to two-mode choices, solo-driving and carpooling. Travelers choose solo-driving and carpooling based on the travel
time and carpooling impedance. The network in our MMDUE framework now only consists of the auto network,
so the routing is performed on the auto network and path sets should be relatively smaller than similar scale multi-
modal networks with extra virtual bus network and railway network. The DNL model could also be simplified to
homogeneous traffic since only passenger car flow and travel time are required. (2) Driving with parking choices:615

If parking behavior is also considered, then different parking areas should be added to the network. In this case,
travelers choose solo-driving or carpooling, as well as choosing the parking location with the lowest total travel
cost. The parking costs including the parking cruising time and parking fee will both affect the traveler’s choice
heavily, unveiled by previous studies (Qian et al. 2012, Qian & Rajagopal 2014). Long parking cruising time
and high parking fee can enforce traveler to park farther and walk to their final destination. A high parking fee620

will also encourage carpooling since carpoolers can share the parking fee together. The DNL in this case should
explicitly model the parking area occupancy at each time interval for estimation of the dynamic parking cruising
time. The MMDUE solution will show not only the dynamic states of the auto network but also the dynamic
evolution of parking occupancy of each parking area. (3) Driving and transit: For cities with the public transit
system, if parking and park-and-ride are not considered, then travelers choose travel modes from driving, bus625

transit and possibly railway transit. The feasible path set for each OD should include all feasible paths under each
mode. So the path set generation and routing are always performed on the auto network, virtual bus network and
railway network all combined as shown in Figure 1. DNL model should run with multi-class vehicles on the auto
network, and different link travel time of passenger cars and buses should be computed. Based on the MMDUE
framework, the influence of new public transit routes, new stops, and other developing mass-transport classes like630

demand responsive transit and microtransit can be studied (Xu et al. 2016, 2017). The MMDUE framework can
also be used to evaluate and optimize the public transit schedules, trip frequencies, bus/train size and seat numbers
and other operational strategies.

The proposed MMDUE model serves as an underlying model to support holistic decision making for planning
and traffic management, at any spatial scale. What is not addressed in this paper is how to calibrate the parameters635

of MMDUE to best fit the real-world data acquired from conventional and emerging sensors in the multi-modal
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network. The process of model calibrating with day-to-day multi-modal data will be our research focus in the near
future. Also, the outcome of this paper serves as a general framework of large-scale multi-modal network modeling
and equilibrium analysis with the inclusion of many different travel modes, some of which are simplified like the
ride-hailing mode. In our future research, we are going to extend and apply this framework to different scenarios,640

especially the cases with shared travel modes, for example, the networks with driving and ride-hailing (Xu et al.
2019b, Xu et al. 2019a), or ride-hailing and public transit, etc. Another extension to this study is to incorporate
the uncertainties, for example, uncertainties from traveler’s cost function, uncertainties from travel demand (Pi &
Qian 2017), etc. which lead to the stochastic equilibrium. In conclusion, our framework is quite flexible for many
application scenarios and hence to be applicable for most transportation systems. As a supplementary material, the645

proposed framework is implemented in Python/C++ and open-sourced on Github1.
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Appendix A. Notation Table

The main notations used in this paper are in Table A.4. Other notations not included in the table were introduced
in the text.

Table A.4: The main notations used in this paper.

Notations Description

t index of time
r, s indices of origins and destinations, respectively
m index of first level mode choices

g(m) index of second level mode choices
k index of paths

wrs
k,t actual travel time through path k at time t from r to s, unit: second

crs
m,k,t, c

rs
m,g(m),k,t generalized travel cost of path k in mode m and in mode {m, g(m)} at time t from r to s, unit: dollar

µrs
m,t, µ

rs
m,g(m),t equilibrium travel cost of mode m and {m, g(m)} at time t from r to s, unit: dollar

Prs set of all paths from r to s
Prs

m , P
rs
m,g(m) set of paths of mode m and {m, g(m)} from r to s

f rs
m,k,t, f rs

m,g(m),k,t flow of path k in mode m and in mode {m, g(m)} at time t from r to s
hrs

m,t, h
rs
m,g(m),t total flow of mode m and {m, g(m)} at time t from r to s

qrs
t overall flow of all modes at time t from r to s
f vector of path flows

Λ1,Λ2 vectors of generalized costs
Ω1,Ω2 sets of feasible path flow assignments
δrs

k transit fare of transit route k from r to s, unit: dollar
σrs

k,t perceived inconvenience cost of the transit mode of transit route k from r to s, unit: dollar
pi parking fee at parking lot i, unit: dollar
εi average parking time of parking lot i
Ei total capacity of the parking lot i

∆rs
k,t(n) carpooling impedance cost through path k at time t from r to s with total n riders, unit: dollar
t∗ standard work starting time

α, γ, β unit cost of travel time, for arriving late and for arriving early, respectively, unit: dollar/hour
αm, αm

g(m), β1, β
m
2 parameters in the nested-logit mode choice model
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