
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Photorealism in Driving Simulations: Blending
Generative Adversarial Image Synthesis

With Rendering
Ekim Yurtsever , Member, IEEE, Dongfang Yang , Student Member, IEEE,

Ibrahim Mert Koc, Student Member, IEEE, and Keith A. Redmill , Senior Member, IEEE

Abstract— Driving simulators play a large role in developing
and testing new intelligent vehicle systems. The visual fidelity of
the simulation is critical for building vision-based algorithms and
conducting human driver experiments. Low visual fidelity breaks
immersion for human-in-the-loop driving experiments. Conven-
tional computer graphics pipelines use detailed 3D models,
meshes, textures, and rendering engines to generate 2D images
from 3D scenes. These processes are labor-intensive, and they do
not generate photorealistic imagery. Here we introduce a hybrid
generative neural graphics pipeline for improving the visual
fidelity of driving simulations. Given a 3D scene, we partially-
render only important objects of interest, such as vehicles, and
use generative adversarial processes to synthesize the background
and the rest of the image. To this end, we propose a novel image
formation strategy to form 2D semantic images from 3D scenery
consisting of simple object models without textures. These seman-
tic images are then converted into photorealistic RGB images
with a state-of-the-art Generative Adversarial Network (GAN)
trained on real-world driving scenes. This replaces repetitiveness
with randomly generated but photorealistic surfaces. Finally,
the partially-rendered and GAN synthesized images are blended
with a blending GAN. We show that the photorealism of images
generated with the proposed method is more similar to real-world
driving datasets such as Cityscapes and KITTI than conventional
approaches. This comparison is made using semantic retention
analysis and Frechet Inception Distance (FID) measurements.

Index Terms— Driving simulation, deep learning, generative
adversarial networks, image synthesis.

I. INTRODUCTION

DRIVING simulations are important for developing and
evaluating intelligent transportation systems [1]. A good

simulation environment should have accurate vehicle dynam-
ics, realistic traffic behavior, and high visual fidelity. Visual

Manuscript received 5 January 2021; revised 7 September 2021 and
2 February 2022; accepted 20 July 2022. This work was supported by the
United States Department of Transportation (Mobility21 University Trans-
portation Center) under Award 69A3551747111. Any opinions, findings,
conclusions, or recommendations expressed herein are those of the authors
and do not necessarily reflect the views of the United States Department of
Transportation. The Associate Editor for this article was N. Papanikolopoulos.
(Corresponding author: Ekim Yurtsever.)

Ekim Yurtsever, Ibrahim Mert Koc, and Keith A. Redmill are with the
Department of Electrical and Computer Engineering, The Ohio State Univer-
sity, Columbus, OH 43210 USA (e-mail: yurtsever.2@osu.edu).

Dongfang Yang is with the Department of Electrical and Computer Engi-
neering, The Ohio State University, Columbus, OH 43210 USA, and also with
Chongqing Changan Automobile Company Ltd., Chongqing 400020, China.

Digital Object Identifier 10.1109/TITS.2022.3193347

Fig. 1. The proposed framework generates photorealistic imagery for driving
simulators. First, we obtain the semantic layout of the scene through a
conventional simulation pipeline with textureless simple 3D models. Then,
this semantic layout is converted into a photorealistic RGB image using GANs
with the proposed image formation and blending strategy.

fidelity is especially crucial for validating vision-based algo-
rithms and conducting human-in-the-loop experiments. There
are numerous studies [2]–[7] that utilize a driving simulation
whose integrity greatly depends on the visual quality of the
simulation environment.

The aforementioned studies all use rendered images that
are generated by a simulation environment. However, limited
work has been done on evaluating and improving the visual
fidelity of state-of-the-art driving simulators. Here we investi-
gate a new approach: introducing generative photorealism to
virtual driving environments using deep learning. Data-centric
applications trained or fine-tuned in a photorealistic driving
simulation can be more confidently deployed to the real world.
Furthermore, automated driving systems can be tested with
photorealistic-looking dangerous scenes that are difficult to
obtain outside a simulation environment. In addition, if non-
realistic repetitive patterns can be replaced by photorealistic
scenery, the degree of immersion for human-in-the-loop sim-
ulation experiments can be increased.

1558-0016 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on October 03,2022 at 15:31:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3103-6052
https://orcid.org/0000-0001-9212-6804
https://orcid.org/0000-0003-1332-1332


2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

The fidelity of a conventional driving simulator depends on
the quality of its computer graphics pipeline, which consists of
3D models, textures, and a rendering engine. High-quality 3D
models and textures require artisanship, whereas the rendering
engine must run complicated physics calculations for the
realistic representation of lighting and shading [8]. These
processes are labor-intensive, and images obtained this way
are not photorealistic. Here we investigate alternatives for
alleviating the aforementioned costs. An overview of our
approach is shown in Figure 1.

The alternative to rendering is neural network based gen-
erative adversarial image synthesis. The advent of Generative
Adversarial Networks (GAN) [9] enabled the realization of
photo-realistic image synthesis [10]–[16]. A particular sub-
problem, conditional image synthesis [17]–[21], delves into
the more specific task of mapping a pixel-wise semantic
layout to a complying photo-realistic image. The conditional
semantic layout is the key link between the 3D scene and the
generative synthesizer in our framework. More recently, video-
to-video synthesis [22] was proposed as an alternative to image
synthesis. The temporal dimension was added to the generative
process to reduce inconsistencies between synthesized frames.

The main motivation of this work is twofold: to increase
the visual fidelity of driving simulations and reduce the
manual labor requirements for 3D mesh and texture creation.
With the use of GAN-based photorealistic image synthesizers,
background objects such as trees, mountains, and the sky can
be generated without detailed meshes or texture information.
However, conventional rendering is still needed to have full
control over important objects of interest, such as vehicles
and road markers.

In this paper, we propose to integrate generative adversarial
image synthesis into a driving simulation. For each time step,
CARLA, an open-source driving simulator [23], determines
the scene’s semantic layout with simple, textureless 3D models
that are radiant with a unique class color. It should be
noted that there is no illumination source other than the
radiant 3D objects and no reflections or ambient occlusion
are considered at this step. Then, a virtual pinhole camera
is used to form a 2D semantic image from this scene. This
image is the equivalent of a pixel-wise semantic segmentation
mask. Next, the GAN-based image synthesizer converts the
2D semantic image to a photorealistic image. Conditional
GAN (cGAN) [24] and CYcle GAN (Cy-GAN) [17] are the
main techniques for this step. Simultaneously, a few objects of
interest are partially rendered using a conventional rendering
engine [25]. This is necessary as full control over some critical
objects, such as lane markings and vehicles in a driving scene,
is only achieved with a conventional graphics pipe. Finally,
a blending GAN mixes the cGAN/Cy-GAN synthesized image
with the individually rendered objects. The proposed method
was evaluated with semantic segmentation [26], an important
driving-related perception task.

The main contributions of this work are:

• We introduce a novel driving simulation graphics pipeline
for expediting scene creation using automated synthesis
of background elements such as buildings, vegetation,

Fig. 2. We first create the semantic layout, and then use SPADE [19] with
different style encodings to generate random but photorealistic RGB back-
ground imagery. Repetitive patterns that are common in driving simulations
are memorazible by learning algorithms and break immersion for human driver
subjects. The proposed approach alleviates these shortcomings.

and sky. To the best of our knowledge, this is the
first GAN-render hybrid graphics pipeline for driving
simulations.

• Blending GAN-based image synthesis with physics-based
partial rendering.

• Replacing recurring patterns, such as repeating tree and
building models, that are common in driving simula-
tions with generative photorealistic surfaces as shown in
Figure 2. Repetitive patterns can break immersion for
human-in-the-loop simulation experiments. In addition,
machine learning algorithms trained or fine-tuned in a
repetitive environment can fail in the real world due
to overfitting. As such, the proposed approach aims at
increasing the integrity of simulation-based intelligent
transportation research.

II. RELATED WORK

A. Simulation Based Driving Studies

Human driver reaction to various driving-related stimuli
has been observed via simulation environments in numerous
studies. The simulation’s visual fidelity is critical for such
experiments, as humans are accustomed to a real-world driving
setting. Driving simulators have been used to study the driver’s
reaction during an automated driving take-over [4], to monitor
human responses to stressful driving stimuli [2], to find the
effect of inter-vehicular distances on human car following
behavior [5], and to measure the effect of acoustic cues on
situational awareness of human drivers [7]. An automated
highway driving system with human-like decision-making
capabilities has been developed via a driving simulator [6].
Another study [3] focused on human pose estimation using
simulated images and showed that data-centric algorithms
fine-tuned in these simulations could be used in real-world
scenarios.

A recent study showed that human subjects gaze with higher
variance and exhibit more diverse steering activity in driving
simulations that have better visual fidelity [27]. Higher visual

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on October 03,2022 at 15:31:39 UTC from IEEE Xplore.  Restrictions apply. 



YURTSEVER et al.: PHOTOREALISM IN DRIVING SIMULATIONS 3

fidelity is always desired in human-in-the-loop experiments
because human driving behavior deviates from real-world
behavior in unrealistic simulation environments [28]. Further-
more, data-centric methods that are trained on synthetic data
generated by conventional rendering engines fail to perform
with real-world images [29].

The number and significance of these studies underline
the importance for improving the visual fidelity in driving
simulations. New technologies can be developed more effec-
tively with a better simulator. For example, if photorealism
can be achieved, a learning-based lane-boundary detection
algorithm [30] can be trained in a simulation and deployed
in the real world.

B. Rendering

Physics-based rendering [8] has been used at the end of the
line of conventional computer graphics pipelines to form 2D
imagery from virtual 3D scenes for a long time. The most
common approaches, rasterization and ray-tracing, require a
full pipeline of detailed 3D models, their surface textures and
materials, and a physics engine such as Unreal Engine 4 [25]
to run complicated calculations for representing light and
shading. Here, we propose to partially replace this pipe with
much simpler 3D models and remove light, texture, and
material information for most of the objects in the scene.
We also show that the visual fidelity can be increased with
the proposed method.

C. Neural Rendering

Recent work [31] demonstrated that 2D image formation
could be achieved given a camera pose and light position in
a 3D scene using differentiable convolutional networks. The
key enabler here is the formulation of the discrete rasterization
problem [32]. With a differentiable rendering framework,
a neural network can be trained with backpropagation. There
is additional work [33]–[35] focusing on the different aspects
of differentiable rendering formulations and approximations.
Neural rendering is a promising technique. However, this
approach still requires detailed 3D models and is incapable
of generating texture information, which reduces the visual
fidelity of the output. In comparison, we propose to use gen-
erative models for reducing 3D model and texture complexity.

D. Generative Adversarial Image Synthesis

Generative adversarial image synthesis omits rasterization
and rendering. Physical phenomena such as lighting and reflec-
tivity are completely ignored by GAN based neural image
synthesizers [10]–[16]. Instead, the photorealism is achieved
by training the GAN with real-world data. In other words, the
network learns to generate photorealistic images by capturing
a latent probability distribution underlying real-world datasets.
This approach has one major drawback: there is no constraint
on the semantic layout of the generated 2D image. Hence,
no association with 3D scenery can be constructed. As such,
this methodology cannot be applied for our image formation
purposes.

E. Conditional Generative Adversarial Image Synthesis

On the other hand, conditional GANs [17]–[22], [36] have
been effectively used for image synthesis while retaining a
semantic constraint. Typically, this constraint is a pixel-wise
semantic segmentation mask, but other modalities such as
text [37] have also been used. One limiting factor for Con-
ditional GAN (cGAN) is the paired data requirement. The
dataset must contain semantic segmentation masks and the cor-
responding real-world images. Building such paired datasets
is labor-intensive because every real-world image needs a
corresponding semantic segmentation label assigned by a
human annotator.

F. Cycle-Consistency and Domain Adaptation

Cycle consistent GANs and unsupervised domain adapta-
tion techniques make the paired dataset requirement unecces-
sary [29], [38], [39], [39]–[42]. These works have illustrated
that high fidelity image synthesis can also be achieved with
unpaired data. Cycle-consistency is very promising and has
a huge application range. For example, CyCADA [29] can
translate an existing game-engine generated image into a
photorealistic image.

The aforementioned GAN-based image synthesis techniques
have not been integrated into driving simulation pipelines until
now. This contribution makes our proposed method novel. We
propose to use simple 3D models radiant with unique class
color-codes without textures to form a 2D semantic image.
This image is analogous to a 2D semantic segmentation mask.
Then, a state-of-the-art GAN-based image synthesizer trained
on real-world datasets is used to generate RGB imagery.
We tried both cGAN and Cy-GAN variants. Additionally,
we render certain important objects of interest, such as cars
in an urban scene, with Unreal Engine 4. Images obtained by
blending the partial-render foreground and GAN background
are more realistic. Blended images also retain the semantic
layout of the scene better.

III. PRELIMINARIES

Generative Adversarial Networks (GAN) [9] use a gener-
ator G and a discriminator D in a simultaneous adversarial
training strategy. The goal of G is to generate data x̂ that is
indistinguishable from the real data x ∈ X . During training,
G captures the probability distribution pdata which should
closely match the distribution underlying the real data. This is
achieved by training a generative mapping function G(z) that
maps an a priori noise distribution pz(z) to the data domain X .
While G tries to generate the most realistic x̂ , the discriminator
D tries to discriminate fake data x̂ from real data x . The output
of D(x) is the probability that x is real. G(z) and D(x), both
of which are neural networks, are trained simultaneously with
the following min max function:

min
G

max
D

V (D, G) = Ex∼pdata(x)

[
logD(x)

]
+Ez∼pz(z)

[
log(1 − D(G(z)))

]
. (1)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on October 03,2022 at 15:31:39 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 3. Overview of the proposed method. We introduce a novel neural graphics pipeline to form 2D image representations from virtual 3D scenes. Most of
the scene is generated with very simple 3D models without texture except for a few partially rendered objects of interest. We then blend the cGAN synthesized
image with a physics-based partial render for increasing visual fidelity and to maintain full control over the appearance of objects of interest.

IV. METHOD

A. Problem Formulation

We define a virtual 3D driving scene S with a 6-tuple
(O1, O2, P1, P2, T2, x). Where O1 = (

o1,1, o1,2, . . . , o1,n
)

is a list of object pose vectors, o ∈ R
6, and P1 =

(M1, M2, . . . , Mn) is the list of corresponding simple object
meshes. We assume P1 is radiant with unique class color-
codes. O2 is a sublist of O1 for certain objects of interest,
and it has a corresponding list of more complicated object
meshes P2. P2 is not radiant. T2 is a list of texture maps
that corresponds to P2. x ∈ R

6 is the pose vector of a virtual
camera. It should be noted that a corresponding T1 to O1 does
not exist.

We follow the formal definition of a triangular mesh given
in [43]. M := (V , Q) is a triangular mesh defined with
faces Q ⊆ {1, . . . , |V |}3 and vertices V ⊆ R

3, where
q = (q1, q2, q3) ∈ Q is a triangular face with corresponding
vertices vq1 , vq2 , and vq3 . E(Q), the edges between the
vertices, are defined by the faces implicitly.

Problem 1: Given S, we are interested in finding a mapping
function U : x → R

H×W×3 that will convert the camera pose
vector x to a photo-realistic RGB image with height H and
width W .

The overview of our solution, Hybrid Generative Neural
Graphics (HGNG) is shown in Figure 3 and Algorithm 1, and
the formal description follows.

B. Semantic Image Formation

A semantic image formation function h can be obtained
with O1, P1 and a pinhole camera model. Let m ∈ M

H×W

be a pixel-wise semantic image whose entries correspond to
the semantic classes of the scene. Then h : x → M

H×W maps
x to an integer subspace (M ⊂ Z) using the pinhole camera
model [44] given by:(

m1
m2

)
= − d

p3

(
p1
p2

)
(2)

where (p1, p2, p3) are the 3D coordinates of point p in R
3,

(m1, m2) are the corresponding pixel coordinates in m, and d
is the distance between the focal point and image formation
plane. m is an upside-down image as shown in Figure 3. m
is rotated 180◦ for the next step. For simplicity, we use the
same notation m for the rotated image in the remainder of the
paper.

Then, the problem narrows down to finding f : m →
R

H×W×3. This is the exact same goal as the well-studied [17]–
[20] conditional image synthesis problem.

C. Generative Adversarial Image Synthesis With cGANs and
Cy-GANs

We propose to use the generator networks of cGANs or
Cy-GANs to map G : m → R

H×W×3. Training is to be done
on a real-world paired dataset of RGB images and pixel-wise

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on October 03,2022 at 15:31:39 UTC from IEEE Xplore.  Restrictions apply. 



YURTSEVER et al.: PHOTOREALISM IN DRIVING SIMULATIONS 5

Algorithm 1 HGNG(O1, O2, P1, P2, T2, x)
Input:
O1, the list of object pose vectors
P1, the list of simple object meshes w/o texture.
O2, a sublist of O1, corresponds to objects of interest
P2, the list of complex object meshes.
T2, the list of texture maps that corresponds to P2, O2.
x, the pose vector of the pinhole camera
Output:
I ∈ R

H×W×3, 2D RGB image.
Main algorithm:
m = hpinhole(O1, P1, x);
Ibackground = fgenerator(m, z ∼ N);
foreach i(1, 2 . . . n) do

Iobject-of-interest
i = Lrendering(O2(i), P2(i), T2(i));

end
Iforeground = ∑n

i Iobject-of-interest
i ;

I = bgenerator-blending(Ibackground, Iforeground);

semantic masks for cGAN. On the other hand, Cy-GANs can
be trained with an unpaired dataset.

cGAN [24] extends the original GAN and can generate
realistic fake data while retaining a conditional constraint.
This is achieved by pairing the conditional constraint y with
the data x and creating a new paired dataset (x, y). This
pair can be an RGB image and pixel-wise semantic layout
pair, or an image and text pair. x and y do not have to
share the same modality. Details of cGAN can be found
in [24]. cGAN can successfully generate photo-realistic fake
data with a conditional constraint. However, the paired dataset
requirement increases the cost of this approach.

In comparison, building an unpaired X and Y is rela-
tively easy. Cycle GAN (Cy-GAN) [41] enables photo-realistic
image synthesis with unpaired data. In summary, Cy-GAN
contains two generators, G(x) and F(y), which map X → Y
and Y → X respectively. Also, two discriminators, DX and
DY , try to distinguish fake data from real data. The adversarial
losses are similar to the original GAN; the addition is the novel
cycle consistency loss. This loss prevents the mappings of G
and F from diverging from each other. The key idea of cycle
GAN is the use of two generators to create a cycle. First, G(x)
generates fake ŷ, then F(G(x)) translates the fake ŷ back to
x̂ . If the cycle is consistent, then x ≈ x̂ .

The baseline cGAN employed in this study is a SPatially-
Adaptive-(DE)-normalization (SPADE) [19] network, which
is a state-of-the-art cGAN based image synthesizer. SPADE
outperforms other image-to-image synthesizers by retain-
ing semantic information against conventional normaliza-
tion operations [19]. This is achieved through the following
de-normalization operation where the activation value at layer
i is given by:

γ i
c,y,x(m)

hi
n,c,y,x − μi

c

σ i
c

+ β i
c,y,x(m) (3)

where hi
n,c,y,x is the activation before normalization and μi

c
and σ i

c are the mean and standard deviation in channel c.
γ i

c,y,x(m) and β i
c,y,x(m) are learned variables that modulates

the normalization process. We refer the readers of the original
SPADE paper [19] for more details.

We use a SPADE network pre-trained on the Cityscapes
dataset [45] as the mapping function fs and obtain the
synthesized image with it as I = fs(m).

D. Partial Rendering

To increase visual fidelity and have full control over certain
objects of interest, we propose using physics-based rendering
to obtain partially-rendered images Ir . Besides O2, P2, T2 and
x, a light source is also needed for rendering. Here we assume
that the properties and location of the light source are fixed
and known relative to x. Then the rendering equation [8] can
be used to render objects of interest.

L0(p, ω, λ, t)

= Le(p, ω0, λ, t)

+
∫

�
fr (p, ωi , ω0λ, t)Li (p, ωi , λ, t)(ωi .n)dωi (4)

where L0(p, ω, λ, t) is the total spectral radiance, λ is wave-
length, ω0 is the outgoing light direction, ωi is the incoming
light direction, t is time and p is a point in 3D space.
Le(p, ω0, λ, t) is the emitted spectral radiance, � is a unit
hemisphere with the surface normal center n of p and it
contains all values for ωi , fr (p, ωi , ω0λ, t) is the bidirectional
reflectance function and finally Li (p, ωi , λ, t) is the spectral
radiance of the incoming wavelength.

With Equation 4, the spectral radiance of each 3D point
on a few objects of interest is obtained. Then, the partially
rendered image Ir is formed with the same pinhole camera
model introduced in Equation 2.

E. Blending

Here we propose to blend the synthesized image I with the
partially rendered image Ir to obtain a hybrid image Ih as
shown in Figure 3. The hybrid image is defined as:

Ih := b(I, Ir ) (5)

where the blending function b : (I, Ir ) → R
H x W×3 maps the

synthesized and partially rendered images to a new hybrid
RGB image. We compared three different blending functions
b in this study.

1) Alpha Blending: Taking I as the background image and
Ir as the foreground image, the alpha blended image Ih can
be obtained with:

Ih = αI + (1 − α)Ir . (6)

2) Pyramid Blending: With the gaussian pyramid mask
G R [46], La the laplacian pyramid of the foreground Ir ,
and Lb the laplacian pyramid of background I, the laplacian
blended pixel b(i, j) can be obtained with:

b(i, j) = G R(i, j)La(i, j) + (1 − G R(i, j))Lb(i, j). (7)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on October 03,2022 at 15:31:39 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 4. The proposed framework (a) converts the semantic layout of the scene into a photorealistic image by blending partially rendered foreground objects
with a GAN generated background. The conventional rendering engine [23] (c) requires detailed models and texture information while outputting unrealistic
background trees and vegetation (shown with a yellow circle). On the other hand, using only a cGAN (b) [19] approach leads to poor car shapes and
omitting road markings (shown with a red circle), while removing the need for texturing and rendering calculations. The proposed method (a) has the best of
both worlds.

Fig. 5. An illustration of semantic retention analysis. The semantic segmentation result should stay true to the initial semantic layout. (a) Full-render yields
unrealistic shadows. On the bottom right-hand side of the left-most image (shown with a yellow circle), shadows of trees cast on the sidewalk were misclassified
as a road by DeepLabV3. (b) cGAN generated vehicles do not retain their shapes perfectly (middle image, shown with a red circle). (c) Blending retains the
semantic relationship with the source layout (right-most image). This figure employs different color codes to distinguish the semantic layout formation and
semantic segmentation processes for illustration purposes.

3) GAN Blending: As a third blending option, we employed
GP-GAN [47]. The generator of GP-GAN converts a naive
copy-paste blended image to a realistic well-blended image.
Besides conditional GAN loss, GP-GAN employs an auxiliary
l2 loss to sharpen the image. The overall combined loss
function is given by:

L(x, xg) = λLl2 (x, xg) + (1 − λ)Ladv(x, xg) (8)

where L(x, xg) is the final loss, Ll2 is the l2 loss and Ladv is
the adverserial loss. λ is a hyperparameter and set to 0.999.

V. EXPERIMENTS

A. Implementation Details

We used SPADE [19] as our cGAN image synthesizer
to convert the semantic layout of the scene to a photo-
realistic background image. The network was trained on

Cityscapes [45], an urban driving dataset with paired semantic
mask and image data. CARLA [23], an open-source driving
simulator built upon Unreal Engine 4, was utilized to obtain
the semantic layout and partially rendered images. We used the
shading and lighting engine [25] of Unreal Engine 4 in our
experiments. Only vehicles and lane markings were considered
as objects of interest. For blending, we used a GP-GAN [47]
trained on the Transient Attributes Database [48]. All com-
putational experiments were conducted with an Nvidia RTX
2080.

B. Evaluation

1) Semantic Retention: Figure 5 illustrates semantic reten-
tion analysis, a common [18], [19], [21] evaluation method
for fake image synthesis. Semantic retention measures the
semantic correspondence between the conditional semantic
mask and the synthesized image. In summary, an external

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on October 03,2022 at 15:31:39 UTC from IEEE Xplore.  Restrictions apply. 



YURTSEVER et al.: PHOTOREALISM IN DRIVING SIMULATIONS 7

Fig. 6. InceptionV3 feature vector correlation matrices of real and synthetic data. The synthetic dataset that was generated with the proposed blending
approach shows a similar correlation pattern with real data. This pattern does not emerge with the only render or only GAN methods.

semantic segmentation network is used to segment the synthe-
sized image. Then, the discrepancy between the conditional
semantic layout (input of the synthesizer) and the seman-
tic mask obtained from the generated image (output of the
pre-trained external segmentation network) is calculated with
top-1 accuracy. A good synthesizer should produce photore-
alistic images while retaining the initial conditional semantic
layout. In other words, the initial semantic layout is accepted
as the ground truth, and the image synthesizer’s mask accuracy
is calculated to obtain the retention score. A higher retention
score is favorable.

In this study, we employed DeepLabV3 [26], a state-of-
the-art semantic segmentation network, to measure semantic
retention. The network was trained on Cityscapes, an urban
driving dataset [45].

2) FID: Frechet Inception Distance (FID) [49] is a com-
monly used [19], [22] performance metric for measuring visual
fidelity. In summary, a deep neural network is employed to
extract features of all images in a dataset. Then, the covariance
and mean of features obtained from synthesized and real
datasets are compared to generate a score. We do not have
any real-data corresponding to our virtual 3D scene, but FID
can still be used with unpaired data. As such, three different
real-world datasets [45], [50], [51] were utilized as the ground
truth.

An InceptionV3 [52] model that was trained on Ima-
geNet [53] was employed as the feature extractor. After
features were extracted from the synthesized images and from
real-world images from Cityscapes [45], KITTI [50], and
ADE20K [51], the FID is calculated as follows:

d2 = ||μ1 − μ2||2 + T r(C1 + C2 − 2
√

(C1C2)) (9)

where μ1, μ2 are the means of features, and C1, C2 are
the covariances obtained from datasets 1 and 2 respectively,
where the first dataset consists of real images and the second
synthesized images. The smaller the distance d2, the more
similar are the two datasets. In other words, a small FID
indicates that fake data is similar to real-world data.

The synthesized images were then compared against each
other using FID scores as shown in Table II. μ1 and C1 were
obtained from the real datasets and do not change in a column,
whereas μ2 and C2 were obtained from synthesized images
and vary with each row. A lower FID indicates high visual
fidelity.

3) Inception Score: Inception Score (IS) was initially pro-
posed to evaluate the generator performance of GANs [54].
In summary, a pre-trained image classifier is run over a GAN
generated fake dataset. The distribution of predicted classes,
along with the confidence intervals, were then compared
against a real dataset. A higher Inception Score indicates
higher image quality and diversity. IS differs from FID by
its use of actual classification results, whereas FID utilizes
latent features. Details of IS can be found in [54].

4) Comparisions and Ablations: Ablation studies were con-
ducted to demonstrate the effect of each component of the
proposed method. The ablation list is:

1) No partial-render (only vanilla cGAN or Cy-GAN)
2) No cGAN or Cy-GAN (only full render)
3) Alpha blend (cGAN or Cy-GAN + partial render)
4) Pyramid blend (cGAN or Cy-GAN + partial render)
5) GAN blend (cGAN or Cy-GAN + partial render)

where SPADE [19] was used as the vanilla cGAN and the orig-
inal Cycle-GAN [17] was employed as the vanilla Cy-GAN
variant.

We used CARLA [23] to obtain fully rendered images of
urban scenery. The semantic layout of the scene was also
imported from CARLA and used as the conditional input for
the generative adversarial image synthesizers. Only vehicles
and lane markings were considered by the partial-renders.
In this work, the image synthesis was done frame-by-frame
with a fixed random seed.

C. Results

1) Qualitative Results: The qualitative results are shown in
Figures 4, 5, and 6. These figures illustrate fully rendered,
blended, and only cGAN images. As can be seen in Figure 5,
rendered shadows are unrealistic, while only cGAN generated
vehicles cannot retain their shapes. These results underline the
importance of partial rendering of objects of interest such as
cars, vans, and lane markings. The hybrid approach combines
the accuracy of a full-render with the realism of a generative
model.

Treating foreground objects differently from background
scenery with the proposed blending technique improves the
photorealism of the final image as can be seen in Fig-
ures 4, 5, 6. The appearance of foreground objects, such as
vehicles, needs to be controllable and rendered in detail. This

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on October 03,2022 at 15:31:39 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE I

SEMANTIC RETENTION PERFORMANCE- HIGHER SCORES ARE
BETTER. OUR METHODS OUTPERFORM THE PHYSICS-BASED

RENDERING APPROACH

TABLE II

FID PERFORMANCE- LOWER SCORES ARE BETTER. OUR METHODS

OUTPERFORM THE PHYSICS-BASED COMPUTER GRAPHICS PIPELINE.
CY-R STANDS FOR CYGAN-RENDER BLEND, AND C-R STANDS

FOR CGAN-RENDER BLEND

necessitates employing conventional rendering techniques with
high-detail models and textures. However, background scener-
ies cannot be controlled at the same level of detail because they
contain a higher number of elements such as mountains, trees,
and buildings. In practice, conventional driving simulators pay
less attention to these background elements by lowering 3D
model quality and using less rendering focus. This causes
lower overall visual fidelity. In contrast, GAN-based image
synthesizers can automate background scene generation while
achieving higher visual fidelity by learning the background
compositions of real-world data. Our use of a GAN-based
image synthesizer completely removes the texture and detailed
model requirements of background scenery generation while
increasing visual fidelity. In Figure 4, the conventional render-
ing method produced unrealistic trees and vegetation (shown
with a yellow circle) around the vanishing point of the image.
At the same time, the proposed method and the only-cGAN
approach generated a more blended background scene with
vegetation at the same spot.

On the other hand, only using a GAN-based image synthe-
sizer reduces control over the appearance of objects of interest,
such as cars. This causes lower visual fidelity. In Figure 4, the
only GAN-based approach failed to generate road-markings.
In addition, the surface quality of cars (shown with a red circle)
was much lower than the full-render approach and the pro-
posed method. Figure 5 demonstrates the unrealistic shadows
of full-render and incomplete vehicle shapes of the only GAN
approach with a yellow and red circle. The proposed method
alleviates these issues. These results indicate a qualitative
validation of our hypothesis: the proposed approach, blending

Fig. 7. Inception score [54]. A high Inception score indicates better image
quality and higher diversity.

GAN-based synthesizers with conventional rendering, has the
best of both worlds.

2) Quantitative Results: Figure 6 shows Inception V3 fea-
ture vector correlations. Even though real-world images of
the Cityscapes and KITTI datasets are entirely different, they
have similar latent feature correlations. However, this pattern
does not emerge with a synthetic dataset of low visual fidelity.
The proposed blended synthetic dataset has, albeit being weak,
a similar correlation pattern. In comparison, the same pattern
does not emerge with the conventional render or pure GAN
approaches. This shows that the proposed blending approach
is a good strategy for the realistic representation of driving
scenes.

IS, FID, and semantic retention scores are given in Table I,
Table II and Figure 7. These results indicate that the proposed
hybrid blending approach consistently outperforms conven-
tional rendering and pure generative adversarial image syn-
thesis. Using detailed models with a conventional rendering
engine for objects-of-interest produces high-quality visuals.
However, building the rest of the driving scene with this
level of detail is extremely challenging. Our hybrid method
mitigates this problem by replacing the background elements
with a GAN synthesizer and blending high-quality objects of
interest renders into the scene. This blending strategy is the
main reason for achieving higher visual fidelity.

The Cityscapes dataset contains only urban driving scenes,
while ADE20K also has miscellaneous scenes. All of our
virtual 3D scenes were in an urban environment. As such, most
of the methods received better FID scores for the Cityscapes
dataset, as can be seen in Table II.

GAN blend and Alpha blend showed similar performances
as shown in Table I and Table II. However, it should be noted
that the blending GAN was not trained on an urban driving
dataset. The blending performance can possibly be increased
with a better blending dataset for training the blending GAN.

The cGAN variants performed better on average as
expected, as shown in Table I and II. The synthesized images
were both realistic and loyal to the initial semantic layout.
However, cGAN requires a paired dataset for training. The full
render is better at semantic retention than Cy-GAN variants,
but Cy-GAN variants have a higher FID score than rendering.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on October 03,2022 at 15:31:39 UTC from IEEE Xplore.  Restrictions apply. 



YURTSEVER et al.: PHOTOREALISM IN DRIVING SIMULATIONS 9

This means that Cy-GAN can generate realistic images but
fails to retain the semantic constraints.

VI. CONCLUSION

This work introduced and investigated the feasibility of
Hybrid Generative Neural Graphics (HGNG). The proposed
approach utilizes a GAN-based image synthesizer to remove
the need for rendering calculations and labor-intensive texture-
making steps for background elements while increasing pho-
torealism. In addition, our method achieves full control over
the appearance of objects of interest using partial-rendering.
Our novel image formation strategy blends the GAN-generated
background image with these partial renders and outperforms
conventional approaches. Experimental results indicate that
conventional generation of driving simulation graphics now
has a strong alternative.

In order to train the cGAN-based synthesizers, real-world
urban images and their semantic labels, i.e., a paired dataset,
are needed. Therefore, with the publication of more paired
real-world datasets, the performance of the proposed method
can be further increased. On the other hand, CyGANs remove
this paired dataset requirement with the use of cycle consis-
tency, but cyGANs do not perform as well as cGANs. As such,
without a paired dataset, the proposed system cannot outper-
form the conventional pipelines yet. However, potential future
developments in domain adaptation and cycle consistency can
greatly benefit HGNG and may remove the paired dataset
requirement in the future.

This work focused on frame-by-frame image formation
with GANs. However, computer graphics applications such as
driving simulations may require more temporally consistent
approaches. Each subsequent frame of a driving simulation
needs to be consistent with the overall sequence. The proposed
method already achieves temporal consistency for objects
of interest using partial rendering. The temporal consistency
of the GAN-generated background scene can potentially be
increased with larger urban video datasets. To this end, future
work can focus on creating better urban video datasets and
developing GAN-based video-to-video synthesis methods.

REFERENCES

[1] V. Punzo and B. Ciuffo, “Integration of driving and traffic simulation:
Issues and first solutions,” IEEE Trans. Intell. Transp. Syst., vol. 12,
no. 2, pp. 354–363, Jun. 2011.

[2] A. Lanatà et al., “How the autonomic nervous system and driving
style change with incremental stressing conditions during simulated
driving,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3, pp. 1505–1517,
Jun. 2015.

[3] D. Ludl, T. Gulde, and C. Curio, “Enhancing data-driven algorithms for
human pose estimation and action recognition through simulation,” IEEE
Trans. Intell. Transp. Syst., vol. 21, no. 9, pp. 3990–3999, Sep. 2020.

[4] S. Minhas, A. Hernandez-Sabate, S. Ehsan, and K. D. McDonald-Maier,
“Effects of non-driving related tasks during self-driving mode,” IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 2, pp. 1391–1399, Feb. 2022.

[5] M. Aramrattana, T. Larsson, C. Englund, J. Jansson, and A. Nåbo,
“A simulation study on effects of platooning gaps on drivers of con-
ventional vehicles in highway merging situations,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 4, pp. 3790–3796, Apr. 2022.

[6] W. Yang, L. Zheng, Y. Li, Y. Ren, and Z. Xiong, “Automated highway
driving decision considering driver characteristics,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 6, pp. 2350–2359, Jun. 2020.

[7] U. Ju, L. L. Chuang, and C. Wallraven, “Acoustic cues increase situa-
tional awareness in accident situations: A VR car-driving study,” IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 4, pp. 3281–3291, Apr. 2022.

[8] J. T. Kajiya, “The rendering equation,” in Proc. 13th Annu. Conf.
Comput. Graph. Interact. Techn. (SIGGRAPH), 1986, pp. 143–150.

[9] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[10] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training
for high fidelity natural image synthesis,” 2018, arXiv:1809.11096.

[11] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” Stat, vol. 1050, p. 21, May 2018.

[12] H. Zhang et al., “StackGAN: Text to photo-realistic image synthesis
with stacked generative adversarial networks,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 5907–5915.

[13] H. Zhang et al., “StackGAN++: Realistic image synthesis with stacked
generative adversarial networks,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 8, pp. 1947–1962, Aug. 2019.

[14] D. Bau et al., “Visualizing and understanding generative adversarial
networks,” 2019, arXiv:1811.10597v2.

[15] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image
translation networks,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 700–708.

[16] T. Miyato and M. Koyama, “cGANs with projection discriminator,”
2018, arXiv:1802.05637.

[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1125–1134.

[18] Q. Chen and V. Koltun, “Photographic image synthesis with cascaded
refinement networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1511–1520.

[19] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, “Semantic image syn-
thesis with spatially-adaptive normalization,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2337–2346.

[20] X. Qi, Q. Chen, J. Jia, and V. Koltun, “Semi-parametric image synthesis,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 8808–8816.

[21] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with condi-
tional GANs,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 8798–8807.

[22] T.-C. Wang et al., “Video-to-video synthesis,” in Proc. Adv. Neural Inf.
Process. Syst., 2018, pp. 1144–1156.

[23] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” 2017, arXiv:1711.03938.

[24] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
2014, arXiv:1411.1784.

[25] B. Karis and E. Games, “Real shading in unreal engine,” Proc. Physi-
cally Based Shading Theory Pract., vol. 4, no. 3, p. 1, 2013.

[26] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[27] P. M. van Leeuwen, C. G. I. Subils, A. R. Jimenez, R. Happee, and
J. C. F. de Winter, “Effects of visual fidelity on curve negotiation,
gaze behaviour and simulator discomfort,” Ergonomics, vol. 58, no. 8,
pp. 1347–1364, Aug. 2015.

[28] X. Zhao and W. A. Sarasua, “How to use driving simulators properly:
Impacts of human sensory and perceptual capabilities on visual fidelity,”
Transp. Res. C, Emerg. Technol., vol. 93, pp. 381–395, Aug. 2018.

[29] J. Hoffman et al., “Cycada: Cycle-consistent adversarial domain adap-
tation,” in Proc. 35th Int. Conf. Mach. Learn., 2018.

[30] R. Fan, X. Wang, Q. Hou, H. Liu, and T.-J. Mu, “SpinNet: Spinning
convolutional network for lane boundary detection,” Comput. Vis. Media,
vol. 5, no. 4, pp. 417–428, Dec. 2019.

[31] T. H. Nguyen-Phuoc, C. Li, S. Balaban, and Y. Yang, “RenderNet:
A deep convolutional network for differentiable rendering from 3D
shapes,” in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 7891–7901.

[32] S. Liu, W. Chen, T. Li, and H. Li, “Soft rasterizer: A differentiable
renderer for image-based 3D reasoning,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 7708–7717.

[33] I. Gkioulekas, A. Levin, and T. Zickler, “An evaluation of computational
imaging techniques for heterogeneous inverse scattering,” in Proc. Eur.
Conf. Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 685–701.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on October 03,2022 at 15:31:39 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[34] H. Kato, Y. Ushiku, and T. Harada, “Neural 3D mesh renderer,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 3907–3916.

[35] M. M. Loper and M. J. Black, “OpenDR: An approximate differentiable
renderer,” in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer,
2014, pp. 154–169.

[36] M. Wang et al., “Example-guided style-consistent image synthesis from
semantic labeling,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 1495–1504.

[37] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
“Generative adversarial text to image synthesis,” in 33rd Int. Conf. Mach.
Learn., 2016, pp. 1060–1069.

[38] W. Deng, L. Zheng, Q. Ye, G. Kang, Y. Yang, and J. Jiao, “Image-
image domain adaptation with preserved self-similarity and domain-
dissimilarity for person re-identification,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 994–1003.

[39] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan,
“Unsupervised pixel-level domain adaptation with generative adversarial
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 3722–3731.

[40] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 469–477.

[41] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223–2232.

[42] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrim-
inative domain adaptation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 7167–7176.

[43] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon Mesh
Processing. Boca Raton, FL, USA: CRC Press, 2010.

[44] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[45] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 3213–3223.

[46] T. Mertens, J. Kautz, and F. van Reeth, “Exposure fusion: A simple
and practical alternative to high dynamic range photography,” Comput.
Graph. Forum, vol. 28, no. 1, pp. 161–171, Sep. 2008.

[47] H. Wu, S. Zheng, J. Zhang, and K. Huang, “GP-GAN: Towards
realistic high-resolution image blending,” in Proc. 27th ACM Int. Conf.
Multimedia, Oct. 2019, pp. 2487–2495.

[48] P.-Y. Laffont, Z. Ren, X. Tao, C. Qian, and J. Hays, “Transient attributes
for high-level understanding and editing of outdoor scenes,” ACM Trans.
Graph., vol. 33, no. 4, pp. 1–11, Jul. 2014.

[49] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local
nash equilibrium,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 6626–6637.

[50] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
2013.

[51] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba,
“Scene parsing through ADE20K dataset,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 633–641.

[52] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[53] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[54] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training GANs,” in Proc. Adv. Neural
Inf. Process. Syst., 2016, pp. 2234–2242.

Ekim Yurtsever (Member, IEEE) received the B.S.
and M.S. degrees from Istanbul Technical University
in 2012 and 2014, respectively, and the Ph.D. degree
in information science from Nagoya University,
Japan, in 2019.

Since 2019, he has been with the Depart-
ment of Electrical and Computer Engineering, The
Ohio State University, as a Research Associate.
His research interests include artificial intelligence,
machine learning, computer vision, reinforcement
learning, intelligent transportation systems, and

automated driving systems.

Dongfang Yang (Student Member, IEEE) received
the bachelor’s degree in microelectronics from Sun
Yat-sen University, Guangzhou, China, in 2014, and
the Ph.D. degree in electrical and computer engi-
neering from The Ohio State University, Colum-
bus, OH, USA, in 2020. He has been with The
Ohio State University since 2015. He is currently a
Senior Algorithm Engineer at Changan Automobile,
Chongqing, China, and a Post-Doctoral Researcher
at Chongqing University, Chongqing. His research
interests include data analysis, machine learning,

deep learning, and control systems, with applications in behavior prediction,
decision-making, and motion planning in autonomous systems.

Ibrahim Mert Koc (Student Member, IEEE)
received the bachelor’s degree in electrical and elec-
tronics engineering from Middle East Technical Uni-
versity (METU), Ankara, Turkey, in 2018, and the
M.Sc. degree in electrical and computer engineering
from The Ohio State University in 2021. He has
been with The Ohio State University since 2018,
where he is currently a Graduate Research Asso-
ciate. His research interests include computer vision,
robotics, and machine learning with applications in
autonomous driving.

Keith A. Redmill (Senior Member, IEEE) received
the B.S.E.E. and B.A. degrees in mathematics from
Duke University, Durham, NC, USA, in 1989, and
the M.S. and Ph.D. degrees from The Ohio State
University, Columbus, OH, USA, in 1991 and 1998,
respectively. Since 1998, he has been with the
Department of Electrical and Computer Engineering,
The Ohio State University, initially as a Research
Scientist. He is currently a Research Associate Pro-
fessor. He is a coauthor of the book Autonomous
Ground Vehicles. He has significant experience

and expertise in intelligent transportation systems, intelligent vehicle control
and safety systems, sensors and sensor fusion, wireless vehicle to vehicle
communication, multiagent systems including autonomous ground and aerial
vehicles and robots, systems, and control theory, virtual environment and
dynamical systems modeling and simulator development, traffic monitoring
and data collection, and real-time embedded and electromechanical systems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: The Ohio State University. Downloaded on October 03,2022 at 15:31:39 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


