
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Domain Adaptation by Revisiting Static
Objects with a Transit Bus

Philip Neugebauer

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Domain Adaptation by Revisiting Static
Objects with a Transit Bus

Domänenanpassung durch wiederholten
Besuch Statischer Objekte durch einen

Stadtbus

Author: Philip Neugebauer
Supervisor: Prof. Dr. Angela Dai
Advisor: Dr. Christoph Mertz
Submission Date: 15.06.2023

I confirm that this master’s thesis in informatics is my own work and I have documented all
sources and material used.

Munich, 15.06.2023 Philip Neugebauer

Acknowledgments

First and foremost, I want to express my sincere gratitude towards my advisor, Dr.
Christoph Mertz and my supervisor, Professor Angela Dai, for the guidance and advice
enabling the success of this thesis, and for their immediate support for any challenge that
arose during the completion of this thesis.

I further want to thank my family for their strong support during my studies and the-
sis, supporting me by caring for me and providing advice and motivation. I also want to
thank my friends for supporting me throughout the entire time of my thesis. Especially, it’s
hard for me to express how grateful I am for having the two colleagues, and friends, that
I had in Christoph’s research group: Anurag Ghosh and Anirudha Ramesh. Their advice
both in work and life helped me to achieve a wonderful and successful time at the Carnegie
Mellon University. I further want to thank my friends Oleksandr Golovnya, Min Ting Luong,
Raoul Zebisch, Leonhard Winter, and Olivia Xu for their outstanding support.

I want to thank Navlab, the CMU Robotics Institute, and Dr. Christoph Mertz for host-
ing me for several months to do my research for this project. They generously provided me
with the large BusEdge dataset. BusEdge is a project sponsored by the Mobility21 University
Transportation Center (https://mobility21.cmu.edu/).

Lastly, I want to thank the German Academic Exchange Service (DAAD) for granting me
a scholarship in the scope of the Program "IFI – Internationale Forschungsaufenthalte für
Informatikerinnen und Informatiker - Programmlinie Masterstudierende".

Abstract

Modern Deep Learning-based Object Detection methods have made significant advancements
in the past decade. However, a common limitation of these methods is their reliance on
large amounts of labeled data. Especially for outdoor tasks, it is essential that the data
covers multiple domains, such as varying weather and lighting conditions. However, while
unlabeled data of these scenarios usually is readily available, labeled data is often scarce and
might only cover some domains.

This thesis introduces a novel method that addresses this challenge by automatically
labeling static objects in images under new domains. The approach leverages a sparse set
of labels from one domain and unlabeled images from new domains captured in similar
locations. The method works by locating a labeled object, revisiting the same object under a
different domain, and transferring the label to the new domain. Evaluation of the proposed
method utilizes data from the BusEdge system, a commuter bus equipped with cameras and
sensors which captures data along its route. A potential use case of this bus is to automatically
detect full trash cans that need to be emptied. An important conclusion of this thesis is that
detection results can be improved by incorporating additional automatically generated labels
from new domains.

Specifically, using the presented label generation method, labels of trash cans have been
generated for new domains, such as cloudy or snowy weather. To enable a comprehensive
analysis, two datasets under snowy conditions and a dataset under cloudy conditions were
labeled by hand. These datasets complement an existing hand-labeled dataset in cloudy
conditions, as well as a hand-labeled training dataset in sunny conditions. Training Object
Detection models on a combination of hand-labeled data and automatically generated data
yields remarkable improvements in detection results, compared to training on the hand-
labeled data alone. The automatically generated data led to increases of up to +4.1 Average
Precision (AP) and +6.7 AP on the two datasets representing the cloudy domain, and up to
+1AP and +3.1AP on the datasets containing snowy conditions. The code for the developed
method has been made publicly available.

iv

Kurzfassung

Moderne Deep Learning basierte Objekterkennungsmethoden haben in den letzten zehn Jah-
ren erhebliche Fortschritte gemacht. Eine häufige Einschränkung dieser Methoden ist jedoch,
dass sie auf große Mengen an mit Labeln versehenen Daten angewiesen sind. Insbesondere
für Aufgaben im Außenbereich ist es wichtig, dass die Daten mehrere Domänen abdecken,
wie z. B. unterschiedliche Wetter- und Lichtbedingungen. Während jedoch Daten ohne Label
für diese Szenarien in der Regel leicht verfügbar sind, sind Daten mit Label oft knapp und
decken nur einige Bereiche ab.

In dieser Arbeit wird eine neuartige Methode vorgestellt, die sich dieser Herausforderung
stellt, indem statische Objekte in Bildern in neuen Domänen automatisch mit Labeln versehen
werden. Der Ansatz nutzt einen kleinen Satz gelabelter Daten aus einer Domäne und Bilder
ohne Label aus neuen Domänen, die an den gleichen Orten aufgenommen wurden. Die
Methode funktioniert, indem sie ein gelabeltes Objekt lokalisiert, dasselbe Objekt in einer
anderen Domäne erneut betrachtet und die Label auf die neue Domäne überträgt. Die
Bewertung der vorgeschlagenen Methode erfolgt anhand von Daten des BusEdge Systems,
eines mit Kameras und Sensoren ausgestatteten Linienbusses, der auf seiner Strecke Daten
aufzeichnet. Ein möglicher Anwendungsfall dieses Busses ist die automatische Erkennung von
vollen Mülleimern, die geleert werden müssen. Eine wichtige Schlussfolgerung dieser Arbeit
ist, dass die Objekterkennungsergebnisse durch die Einbeziehung zusätzlicher automatisch
generierter Label aus neuen Domänen verbessert werden können.

Konkret wurden mit der vorgestellten Methode Label für Mülleimer in neuen Domänen
automatisch generiert, wie z.B. unter bewölktem Wetter oder unter verschneiten Verhältnis-
sen. Um eine umfassende Analyse zu ermöglichen, wurden zudem zwei Datensätze unter
verschneiten Bedingungen und ein Datensatz unter bewölkten Bedingungen von Hand mit
Labeln versehen. Diese Datensätze ergänzen einen bereits existierenden von Hand gelabelten
Datatensatz unter bewölkten Bedingungen und einen von Hand gelabelten Trainingsdatensatz
unter sonningen Bedingungen. Durch das Trainieren von Objekterkennungsmodellen mit
einer Kombination aus von Hand gelabelten Daten und den automatisch generierten Daten
konnten deutliche Verbesserungen erzielt werden, verglichen zu dem Training mit nur den
von Hand gelabelten Daten. Die automatisch generierten Daten führten zu einer Steigerung
der durchschnittlichen Präzision (AP) von bis zu +4,1 und +6,7 bei den beiden Datensätzen,
die den bewölkten Bereich repräsentieren, und bis zu +1AP und +3.1AP bei den Datensätzen
mit verschneiten Bedingungen. Der Code für die entwickelte Methode wurde öffentlich
zugänglich gemacht.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1 Introduction 1
1.1 Contribution . 3
1.2 Outline . 3

2 Related Works 4
2.1 Deep Learning . 4
2.2 Object Detection . 4

2.2.1 YOLO . 5
2.2.2 Two-Stage Detectors . 5
2.2.3 Transformer-Based Object Detectors . 6
2.2.4 Further Object Detectors . 7
2.2.5 Detectron2 . 7

2.3 Domain Adaptation . 7
2.3.1 Unsupervised Domain Adaptation . 8
2.3.2 Pseudo-Label based Self-Training . 11
2.3.3 Dehazing . 11

2.4 Data Acquisition . 12
2.4.1 Manual Labeling Methods . 12
2.4.2 Synthetic Data . 13

2.5 Learning Strategies . 13
2.5.1 Active Learning . 13
2.5.2 One Shot Learning . 14
2.5.3 Transfer Learning . 14

2.6 Similar Approaches . 15
2.6.1 Automatic Label Generation . 15
2.6.2 Scene Change Detection . 15

2.7 Localization and Scene Reconstruction . 16
2.7.1 Localization . 17
2.7.2 SLAM . 17
2.7.3 Visual and Visual Inertial SLAM . 17
2.7.4 SLAM Frameworks . 19

vi

Contents

2.7.5 Structure for Motion . 19
2.7.6 COLMAP . 20

3 Implementation 22
3.1 BusEdge Dataset . 22
3.2 Reconstruction Pipeline . 24

3.2.1 Input . 24
3.2.2 Image Grouping . 25
3.2.3 Sparse Reconstruction . 25

3.3 Label Generation Pipeline . 27
3.3.1 Input . 27
3.3.2 Image Grouping . 27
3.3.3 Image Matching . 27
3.3.4 Label Generation . 28

4 Evaluation 30
4.1 Generation Results . 31

4.1.1 Learnable Domains . 31
4.1.2 Analysis of Faulty Generated Labels . 38

4.2 Analysis of Label Quality . 38
4.2.1 Setup . 38
4.2.2 Label Quality without Enhancements . 42
4.2.3 Enhancement 1: Requiring a Minimum Number of Labels 43
4.2.4 Enhancement 2: Using Only the Source Camera 44
4.2.5 Influence of the Box Generation Parameters 44

4.3 Training on the Generated Data . 44
4.3.1 Training Setup . 46
4.3.2 Datasets . 47
4.3.3 Training Results . 51

5 Discussion 54
5.1 Number of Generated Labels . 54

6 Conclusion 57
6.1 Summary . 57
6.2 Outlook . 57

List of Figures 58

List of Tables 59

Acronyms 60

Bibliography 61

vii

1 Introduction

Deep Learning (DL) models have found huge popularity in recent years, particularly in
fields such as Computer Vision, Natural Language Processing, Speech Recognition, and
Recommender Systems. New models have been released at a fast pace, achieving remarkable
advancements in their respective tasks. Deep Learning describes methods that aim to solve
tasks without explicitly programming how to achieve these goals, but instead training a
model to learn to achieve the task. It involves methods that utilize interconnected layers of
mathematical functions which build a neural network to process data and make predictions,
inspired by the workings of the human brain.

Multiple learning strategies exist in Deep Learning, including Unsupervised Learning
for discovering patterns and clusters in data, Reinforcement Learning that utilizes feedback
based on actions to learn, and Supervised Learning with labeled data. The choice of learning
strategy depends on the task requirements, data availability, and other factors.

One of the major challenges in training DL models using Supervised Learning lies in
obtaining sufficient training data. Many models achieve the optimal performance only when
being provided with thousands of labels, which are typically annotated by hand. Large human
labeled datasets exist, such as the COCO Dataset [1] with more than 200,000 labeled images
and 80 classes, CIFAR-100 [2] with 60,000 labeled images and 100 classes, and ImageNet [3]
with more than a million labeled training images spanning 1,000 object classes. However,
although containing a huge number of classes, they still encompass only a fraction of the
classes that might be needed for computer vision tasks.

To address this limitation, various approaches exist to reduce the reliance on a large
number of labels for object detection. One such approach involves introducing new models
that require fewer labels. Additionally, Data Augmentation techniques enable the expansion of
the training set by performing label-preserving transformations on the existing data. Transfer
Learning allows pre-training a model on different data, leveraging knowledge gained from
one task or domain to enhance performance in a new task or domain. Domain Adaptation
techniques enable the utilization of data from one domain to adapt and generalize to a
different domain.

Moreover, training strategies like Active Learning and Semi-Supervised learning have been
devised to minimize the number of labels that need to be manually annotated [4]. These
strategies leverage algorithms that actively select the most informative samples for annotation
or utilize a combination of labeled and unlabeled data to train the model effectively.

Despite these efforts, the demand for large amounts of training data remains in many
cases. This ongoing requirement for extensive data continues to pose a significant challenge
in training deep learning models.

This thesis presents a novel method for Domain Adaptation. Domains refer to distinct

1

1 Introduction

environments from which data is sourced, such as the location, weather condition, lighting
condition, or perspective. In some instances, the available training data may be limited to just
one or a few domains. For example, data for self driving cars might be limited to a small
number of cities, but cars should be able to navigate in other places as well.

The absence of diverse training data poses difficulties when it comes to detecting objects
that have not been encountered during training. For example, street signs in different
regions may exhibit variations, or the training data might lack samples depicting objects
in snowy conditions. Consequently, the task of accurately detecting such unseen objects
becomes extremely challenging for neural networks, underlining the importance of Domain
Adaptation. As a consequence, a large number of methods for Domain Adaptation have been
introduced.

Data Augmentations play a crucial role in expanding the training data and exposing
models to diverse scenarios, including scenarios from different domains. For instance,
simulating different weather conditions allows models to learn robust representations capable
of handling various environmental factors. Additionally, transferring image styles to new
styles empowers models to adapt to different artistic renditions. Geometric transformations,
such as rotations, translations, and adjustments of perspective, enrich the dataset with diverse
spatial variations. Meanwhile, manipulating contrast and brightness levels adds flexibility to
the model’s response to variations in illumination.

Another prominent approach is Self-Training, where a model trained on one domain is
applied to unsupervised data from another domain. Predictions made with high confidence
by the model are utilized as pseudo-labels to retrain the model, gradually aligning it with the
target domain [5].

Further approaches include leveraging tracking algorithms. The method by Tang et al. [6]
tracks objects seen in images in videos to adapt from the image domain to the video domain.
The method by Walsh et al. [7] works on objects that are static within a short time period and
uses this assumption to generate further labels from different viewpoints and combines these
to create 3D label suggestions which can speed up labeling efforts for new datasets.

This thesis focuses on addressing the specific problem of achieving Domain Adaptation
for static objects. Static objects, such as buildings, landmarks, and road signs, play a crucial
role in many computer vision applications, including autonomous driving, surveillance, and
augmented reality. However, accurately detecting and recognizing static objects remains
a challenging task due to changes in the domain, such as changing weather or lighting
conditions or different perspectives. The method developed and applied in this thesis
localizes the objects and the cameras to assign objects the same label while observing these
objects under various conditions and perspectives. Using these generated labels, this thesis
improves the accuracy and robustness of object detectors across domains.

To demonstrate the proposed method, data from the BusEdge system is used, a transit bus
equipped with cameras and sensors. On its route, it captures images of trash cans, of which
most are unlabeled, and the existing labels are only from the sunny and cloudy domain.
Detecting objects on the route can be used to automatically detect overflowing trash cans,
however, Object Detection models trained for this task are reliant on the provided labels.

2

1 Introduction

Hence, this task is perfectly suited to show the potential of automatically generating data in
the large number of new domains that the bus data covers and training an object detector
on this data. This thesis demonstrates that high quality object labels can be automatically
generated and used to achieve better results in detecting trash cans in domains in which no
hand-labeled data exists.

1.1 Contribution

This thesis encompasses the following contributions:

• Development and implementation of a novel pipeline to automatically generate labels
for Supervised Machine Learning based based Object Detection.

• Development, implementation, and execution of the pipeline on data recorded by a
transit bus to generate waste bin labels for unseen weather and lighting conditions.

• Analytical and practical evaluation of the outcomes of the pipeline for waste bin label
generation. For the evaluation, three test datasets were constructed and published with
waste bin labels for the domains of snowy weather conditions at day and night, and for
cloudy conditions based on the RoadBotics dataset[8].

1.2 Outline

The thesis is structured into the following parts:

• Related Works: Chapter 2 introduces works that aim at solving challenges similar to this
thesis and illustrates how the presented work fits into the field of Domain Adaptation.
Furthermore, it presents works that can be potentially used to implement parts of the
proposed pipeline, and discusses their advantages and disadvantages.

• Implementation: Chapter 3 presents our proposed pipeline in detail and demonstrates
our implementation of it.

• Evaluation: Chapter 4 showcases and analyzes the outcomes of our thesis, encompassing
both theoretical examination and practical implementation for training DL models.

• Discussion: Chapter 5 analyzes and discusses the results of the evaluation, with a focus
on which parts of the pipeline influence the number of labels that are generated.

• Conclusion: Chapter 6 summarizes the outcomes and insights of this thesis and presents
potential improvements for the introduced method, based on the learnings from the
evaluation and discussion.

3

2 Related Works

In this section we will cover works that contain similar approaches to the presented idea. In
addition, we will give an exhaustive overview of recent works that can be used for parts of
the implementation.

2.1 Deep Learning

Deep Learning is a subarea of Machine Learning, which in turn is a subarea of Artificial
Intelligence. Artificial Intelligence describes any algorithm that mimics the behavior of a
human, such as playing a game, detecting an object in an image, or replying to text. Machine
Learning describes algorithms that work by using a set of input data on which the algorithm
learns an objective, which could be finding clusters in the data, or predicting outputs for
each datapoint that match outputs given as learning input, so called labels. A label can be
sentiment of a text, information what an image depicts, or the location of an object in an image,
to name a few examples. In the scope of this thesis, a label refers to the bounding box of an
object in an image. Machine Learing includes algorithms that can detect linear correlations in
data, such as state-vector machines or linear regression. Deep Learning combines many linear
layers connected with non-linear activation functions, which allows it to detect nonlinear
correlations in data. This allows DL to be used for use cases such as Natural Language
Processing, Image Classification or Object Detection.

In recent years, Deep Learning has seen a surge in popularity which led to many novel
DL models being released. However, these models generally achieve the best results on huge
datasets that contain thousands of labels. While approaches such as One-Shot Learning or
Few-Shot Learning exist, for example by Yu et al. [9], they are generally not suited for all use
cases, but rather for specific use cases like face recognition.

The paper "A survey on deep learning and its applications" [10] grants further insights into
the state and applications of Deep Learning.

2.2 Object Detection

Object Detection is one of the most researched areas of Computer Vision, next to Image
Classification and Image Segmentation. It describes methods that detect the location and type
of objects in images, whereas objects can be any category of entities that can be observed, such
as physical tools, animals, or humans. Object Detection is used in fields such as Autonomous
Vehicles, Medical Imaging, Environmental Monitoring, and Robotics.

4

2 Related Works

Early Object Detection methods typically focused on handcrafted features. Examples
include the Viola-Jones Algorithm [11] or Histogram of Oriented Gradients [12]. These
algorithms require significant development times for each class that is to be detected and
newer Deep Learning based methods significantly outperform these methods if provided
with enough labels. DL based Object Detection methods can be generally divided into
One-Stage Detectors, such as YOLO [13], Two-Stage Detectors, such as Faster R-CNN [14],
and Transformer based Object Detectors, such as DeTr [15].

2.2.1 YOLO

"You Only Look Once: Unified, Real-Time Object Detection" has been published by Redmon
et al. in 2015 [13] and outperformed other State of the Art (SOTA) methods. Furthermore,
as it creates bounding boxes for objects, and regresses and classifies these in only one
step, it achieves real-time performance. Further versions have been released since then, the
latest being YOLOv8 [16] which outperforms previous models in terms of performance and
accuracy.

2.2.2 Two-Stage Detectors

One of the most prominent Two-Stage Detectors is Faster R-CNN by Ren et al. Presented
in 2015, it achieved State of the Art performance at almost real-time, and builds on its
predecessors R-CNN [17] and Fast R-CNN [18]. Two-Stage detectors consist of a first stage in
which they generate Regions of Interest (RoIs) that are likely to contain objects, and a second
stage that performs Object Classification and bounding box regression on the proposed
RoIs. In the case of Faster R-CNN, the first stage is accomplished by a fully convolutional
Region Proposal Network (RPN) and the second stage uses a RoI pooling operation and Fully
Connected Layers (Convs) to output class scores for each region and regresses their bounding
boxes. The RPN produces feature maps that get reduced in scale at each layer but increase
the semantic value. The layer with the lowest resolution and highest semantic score is then
used to predict Regions of Interest.

Multiple convolutional networks can be used for the RPN, so called backbones. A common
choice for the backbone is ResNet [19], as it contains skip layers which allow to build deep
networks. Other choices include VGG [20] and MobileNet [21], which is famous for its fast
inference time that makes it fitting for mobile applications. Different versions of ResNet exist,
such as ResNet-50 and Resnet-101, whereas the number determines the number of layers
that the network contains. These versions grant different trade-offs between accuracy and
performance, as more layers allow it to achieve better accuracy at the cost of slower inference
times.

Many works build on top of Faster R-CNN. Mask R-CNN by He et al. [22] introduces a fur-
ther head that outputs a segmentation mask for each object with little overhead. Furthermore,
it introduces RoIAlign to replace the RoI pooling operation of Faster R-CNN, to remove the
harsh quantization of RoI pooling. Mask R-CNN does not only allow to perform tasks that
require a segmentation mask, but even improves the results for object detection in some cases.

5

2 Related Works

Feature Pyramid Networks (FPNs) by Lin et al. [23] can be combined with Faster R-CNN to
improve object detection at varying scales, especially for small objects. FPN works by using
not only the lowest layer produced by the RPN. Instead, it introduces upscaling based on
the semantic features and skip layers between similar sized layers to generate predictions at
varying scales.

Figure 2.1: Overview of the Mask R-CNN + FPN architecture with a ResNet-101 backbone.
Source: [24].

Good performance and popularity in the computer vision community make Mask R-CNN
with ResNet + FPN backbone, as illustrated in Figure 2.1, a good choice to use it to benchmark
our label generation method and show whether the generated labels can have a positive
impact on object detection performance. As the focus of our method is on Object Detection,
only the class boxes of the result are used, and not the segmentation mask.

2.2.3 Transformer-Based Object Detectors

Transformer Models have been introduced in 2017 by Vaswani et al. [25]. They found huge
popularity in NLP applications, but also show good performance on Computer Vision tasks.
In 2020, Carion et al. introduced the Detection Transformer (DeTr) [15]. It consists of a
Transformer on top of a Convolutional Neural Network (CNN) and achieved State of the
Art results. In 2021, Liu et al. introduced Swin [26], which again set new SOTA results on
the ImageNet-1k [3] and COCO [1] datasets, by utilizing shifting windows in combination
with a Transformer network. In the following years, newer versions of these models have
been introduced, such as Co-DETR [27], Group DETR v2 [28], and FD-SwinV2-G [29] which
improve the performance of the models.

Transformer based models have also been introduced for other Computer Vision tasks,
such as Mask2Former [30] which improved SOTA results for panoptic segmentation, instance
segmentation and semantic segmentation on the COCO dataset in 2022.

6

2 Related Works

Despite the good performance of many Transformer based models, we chose Mask R-CNN
to evaluate our results, as most other methods for Domain Adaptation also use Mask R-CNN,
and it is therefore easier to compare results.

2.2.4 Further Object Detectors

In this thesis, we cover only the most prominent object detectors. Zaidi et el. [31] give a more
holistic review of the current State of the Art detectors as of 2022. Zou et al. [32] provide a
more extensive survey of the development of Object Detection models and methods related
to Object Detection.

2.2.5 Detectron2

Detectron2 [33] is an Open Source Computer Vision Framework developed by Facebook AI
Research (FAIR). Key features of Detectron2 include:

• Extensibility: Detectron2’s modular design makes it easy to create costume networks,
for example, by providing backbone networks, feature extractors, RPNs, and more.
While it provides a number of data augmentations, loss functions, and evaluation
metrics, it is simple to use custom augmentations, loss functions, or metrics.

• State of the Art Models: Detectron2’s Model Zoo provides a collection of pre-trained
SOTA models for various Computer Vision tasks, such as Mask R-CNN. Using these
models, it is simple to use existing or custom datasets to train and benchmark models, for
example, on the COCO dataset [1] that is widely used for object detection benchmarking.

• Utility: Detectron2 provides built-in techniques that allow to speed up training and
inference times, for example, Automatic Mixed Precision significantly speeds up training
while reducing memory footprint.

• Scalability: Detetectron2 provides a number of tools to allow large scale model training
and is designed to scale well with large datasets. One feature it provides to achieve this
is multi-node multi-process distributed training.

Detectron2 is widely adopted in research projects, benchmarking, and industry. Ease of use
and importance in the field of object detection were deciding factors to choose Detectron2 to
benchmark training effectiveness with and without data generated by our presented method.

2.3 Domain Adaptation

In many Deep Learning applications, training labels are available for one or few domains
called the source domain. Meanwhile, the system is needed to work on other domains as
well, for which no, few, or only weak labels exist, the so called target domain. Models trained
on this data generally perform significantly worse in other domains than the ones for which

7

2 Related Works

many training labels exist. As a result, many methods exist that attempt to bridge the gap
from one domain to another one. Depending on the availability of labels for other domains,
different groups of methods for Domain Adaptation exist. According to Oza et al. [34], the
following groups exist:

• If there exist a small number of labels for the new domains, Domain Adaptation
via Semi-Supervised learning is possible, with algorithms such as self-training [5],
co-training [35], or generative models [36].

• If there exist weak labels, i.e., noisy labels, incomplete data, or proxy or surrogate
labels, Weakly Supervised learning can be used. An example for incomplete data for
object detection would be that only classification labels exist for an image, instead
of annotations which objects are contained and what their bounding boxes are. An
example for proxy data would be using meta data.

• If there exist no labels at all for the target domain, Unsupervised Learning methods can
be utilized.

This thesis assumes the case that there exist no labels for the target domain, and can be
therefore categorized as part of Unsupervised Learning. While the generated labels can be
seen as weak labels, Weakly Supervised learning could work on top of our method, rather
than describing the functionality of our method. The following section therefore grants an
overview over Unsupervised Domain Adaptation. The paper "A survey on semi-supervised
learning" [37] grants an overview of Semi-Supervised Learning, while the paper "Weakly
Supervised Object Localization and Detection: A Survey" [38] gives an overview of Weakly
Supervised Learning.

2.3.1 Unsupervised Domain Adaptation

According to Oza et al. [34], Unsupervised Domain Adaptation can be divided in the
following subcategories:

Domain Invariant Feature Learning

These strategies work by training the network in a way that it uses features that are less
dependant on the source domain for detection. This is achieved by translating both data from
the source and target domain into the feature space. Features that are common in both spaces
are then prioritized over features that mainly occur only in the source space. A practical
example could be to prioritize shape features over texture features when adapting from sunny
weather conditions to cloudy conditions, as this change would presumably affect color more
than shape of objects.

8

2 Related Works

Pseudo-Label based Self-Training

These strategies work by training the model on the source data and apply it on the unlabeled
target data to generate predictions. These predictions can be used as weak labels for re-training
the network. This process can be repeated to generate further pseudo-labels and re-train
the model on the growing dataset. As the generated labels can be noisy and can contain
mistakes, filtering methods for the labels are usually used, for example, only the predictions
with the highest probabilities get used. Furthermore, these methods are often combined with
methods that use assumptions, such as methods that assume temporal consistency and use
tracking to generate better labels. Finally, methods such as loss re-weighing can be used, for
example, to weigh the pseudo-labels less, as they could contain wrong labels. Notable works
of Pseudo-Label based Self-Training are presented in Section 2.3.2.

Image-to-Image Translation

These strategies work by translating images from the source domain to the target domain
to train the model on the target domain. To achieve this, typically Generative Adversarial
Networkss (GANs) or Variational Autoencoders are used. GANs consist of a Generator and
a Discriminator model. The Generator attempts to generate data from the target domain
based on the source domain that the Discriminator cannot differentiate from real data, while
the Discriminator attempts to determine whether input samples are generated samples or
real samples. Both models are trained in parallel based on the results with their respective
tasks. A practical example is Domain Adaptation from day to night images. The Generator
takes daytime images as input and generate similar looking images at nighttime, while the
Discriminator receives these generated samples as well as with real nighttime data and would
then predict whether a sample is real or generated. Finally, the trained Generator is used
to transfer labeled images from the source to the target domain, while keeping the labeled
object in the image. Using these generated samples with labels, the Object Detection model
can be trained on source domain data and generated target domain data.

Domain Randomization

These strategies work in a similar way to Image-to-Image Translation, however, instead of
adapting to one specific target domain, these methods aim to adapt to new domains in
general. Domain Randomization works by introducing perturbations to the training data of
the source domain, such as changing visual appearance, lighting conditions, object poses,
textures, backgrounds, or camera viewpoints. This can be achieved, for example, by a style
transfer network, such as the one presented by Huang et al. [39]. An example for this
strategy is to generate new data under various lighting conditions based on the training data
to achieve Domain Adaptation from daytime to nighttime. A model is then trained on the
source data and all generated data. The generated data which could include lighting from
dusk or dawn could then potentially improve results for night time detection, as it can allow
the model to better understand lighting changes in general.

9

2 Related Works

Mean Teacher Training

This strategy uses a student model that learns on a new domain and teacher model that at-
tempts to prevent the student model from learning incorrect assumptions, using a consistency
loss between predictions of both models. The general process for Mean Teacher Training is:

1. Initialization: The student model is randomly inititalized or trained using Supervised
Learning. As the teacher is updated based on the student model using Exponential
Moving Average (EMA) on the student’s parameters, it is set to the student model at
initialization.

2. Exploration: The student model learns on the target domain. This can be achieved
using the previous methods, for example, by perturbing the source data to reflect the
target domain.

3. Consistency Check: Predictions of both the student model and the teacher on unlabeled
source and target data are compared to each other, the consistency loss describes how
far these predictions diverge from each other.

4. Update: The student model is updated using both the supervised loss as well as the
consistency loss. The consistency loss reduces the students sensitivity to input variations
and therefore helps to stabilize the learning process by smoothing out the fluctuations
and noise in the student model’s parameter updates. The teacher model is updated
by using EMA, meaning that it combines the newly learned parameters of the student
model with the previous parameters of the student model.

5. Iterative Training: Steps 2. - 4. are repeated for multiple iterations, gradually refining
the student and teacher models. While the student model adapts gradually to the target
domain, the teacher model enforces consistency and guides the student model.

An example how this technique might improve stability for Domain Adaptation from
sunny to snowy weather conditions is, that the student might start associating objects with
a predominantly white color with snowy weather due to the visual patterns observed in
the target domain. This assumption may be incorrect as objects in the source domain may
also have a white color, but may not necessarily be associated with snowy weather. The
teacher has not yet learned this assumption, and would therefore not make any mistakes
based on this assumption. The consistency loss then helps the student model to correct this
assumption.

Graph Reasoning

Techniques for Graph Reasoning utilize graph networks that can capture domain specific and
domain invariant features. The method of Cai et al. [40] for Object Detection uses anchor
boxes as nodes for the graph, the value of the node being the probability vector denoting the
probability of that region belonging to one of the categories. The graph is then optimized
using three losses, while utilizing Mean Teacher Training:

10

2 Related Works

1. Region-level consistency helps to align predictions between teacher and student on a
regional level. This can be achieved by aligning the features or bounding box predictions
of similar object proposals across the domains.

2. Inter-graph consistency focuses on capturing consistency between the source and target
domains at a higher-level representation. It aims to align the global characteristics
across the domains, such as object category distribution or semantic patterns.

3. Intra-graph consistency emphasizes consistency within each domain in the student
graph. This ensures that similar object proposals within the same domain exhibit
consistent features or predictions.

Using these consistency losses, combined with student-teacher training shows improved
results for Domain Adaptation.

Many of these techniques can also be combined with each other to increase their effec-
tiveness. For example, Mean Teacher with Object Relations [40] combines Graph Reasoning with
Mean Teacher Training, while still being mutually exclusive to the other techniques.

According to this categorization, our method fits best into the category Pseudo-label based
self-training, as it generates pseudo-labels and then uses these labels to train and adapt to new
domains.

2.3.2 Pseudo-Label based Self-Training

The paper "Shifting Weights: Adapting Object Detectors from Image to Video" [6] by Tang et
al. describes a method that automatically generates labels for object detection in videos. The
method works by using a detector trained on 2D images and detecting trajectories of objects
with it in videos. These trajectories can be used to weakly label the object in each frame and
these new labels can then be used to further train the object detector.

A similar approach is used to adapt models to new domains by RoyChowdhury et al. in
the paper "Automatic Adaptation of Object Detectors to New Domains Using Self-Training"
[5]. Their method applies a trained model on a dataset that contains no labels and uses the
predictions as weak labels to re-train the model. Furthermore, their method uses estimated
trajectories to generate further labels of objects that were missed by the detector. The generated
labels can contain various weather conditions, light conditions, as well as view points, leading
to a better domain adaption of the model on a domain for which only an unlabeled dataset
exists. As the generated labels can be potentially incorrect, RoyChowdhury et al. also show
how using a knowledge distillation loss, i.e., reducing the weight of these generated labels in
training, can improve performance of the model. This approach especially helps to combine
both hard and easy examples.

2.3.3 Dehazing

In addition to general Domain Adaptation methods, methods that adapt a model to one
specific new domain promise better results for this domain. For example, various methods

11

2 Related Works

exist that tackle the challenge of dehazing, for which information about this specific problem
can enhance adaptation.

Foggy weather conditions can pose a challenge to object detection models, as the haze
reduces visibility and contrast in images. Furthermore, the haze depends on the per-pixel
distance to the camera, light sources, and other influences, making it non-uniform and
therefore non-trivial to remove. Various methods to tackle this challenge exist:

• "“Double-DIP”: Unsupervised Image Decomposition via Coupled Deep-Image-Priors"
by Gandelsman et el. [41] allows to remove haze from images by dividing the image
into multiple layers, for example, into a layer containing the haze and one that contains
the image without haze.

• "Non-Local Image Dehazing" by Berman et al. [42] assumes that scenes mainly contain
only a few hundred distinct colors. For example, two grass fields might have the
same color, therefore any observed difference might come from a difference of distance
to the camera which translates to different transmission coefficients. Therefore, the
color difference between pixels can be used to determine the distance and transmission
coefficients of each pixel.

• "Single image dehazing" by Fattal [43] formulates a refined image formation model,
that defines how surface shading and light transmission influence how the image is
captured. Using this model, the haze layer can be removed and a reliable transmission
estimate can be created.

• "Enhanced Pix2pix Dehazing Network" by Qu et al. [44] introduces a GAN and an
Enhancer model which are jointly trained. The Generator of the GAN creates a pseudo
realistic image at a coarse level of detail, guided by the Discriminator. The Enhancer
incorporates two enhancing blocks inspired by the receptive field model to refine the
generated image and reduce haze in the image.

While these methods show good results for the task of image dehazing, their application is
limited to this domain and does not allow for general Domain Adaptation.

2.4 Data Acquisition

This section presents two of the most common data acquisition methods, how they work and
their advantages and limitations.

2.4.1 Manual Labeling Methods

Traditional manual labeling works by humans performing a labeling task for all data to
create the needed labels. The tasks can be classifying an image, drawing bounding boxes
around objects in images, or drawing segmentation masks for objects in images, among others.
Having multiple annotators label the same objects can improve the accuracy of the labels and

12

2 Related Works

generally achieves a high accuracy for the tasks. However, it comes at the cost of extensive
human effort, which can be time consuming and costly.

To ease the effort in labeling, numerous methods have been presented to make the labeling
process faster, for example, by allowing to generate 3D labels with only one click in the center
[45], or by generating high recall labels [7] which human annotators can either accept or reject,
which can significantly reduce labeling time. However, despite these methods, labeling by
hand often still requires significant human effort, as datasets can contain thousands of labels.

2.4.2 Synthetic Data

It is generally possible to imitate the data, for example, by using pre-existing models or by
creating 3D models of the objects for which labels are needed. These virtual models allow
to generate data with any viewpoint, simulated weather condition, lighting, background,
and other settings, which makes them especially suitable for domain adaptation. This can
especially help with the task of Domain Adaptation. In addition, this approach is especially
useful when the data is difficult to obtain or good simulations already exist. However,
synthetic data also introduces a new domain gap between the simulation and reality. Using
additional methods to improve Domain Adaptation can help mitigate this issue and improve
the accuracy of models trained on synthetic data.

A field in which synthetic data is useful is autonomous driving, where there are many
scenarios that only occur infrequently, making it challenging to collect real-life samples.
In these cases, synthetic data generated from specialized simulators like CARLA [46] and
SYNTHIA [47], or even data from video games like GTA 5 [48], can be used. Alternatively,
there are approaches that do not require a simulator, such as "Cut, Paste and Learn" [49],
which cuts out labeled objects and pastes them into different backgrounds to generate more
training data. However, using a simulator for synthetic data generation has been shown
to produce better results [50] than the Cut, Paste and Learn approach. However, although
simulations are getting increasingly realistic, modeling the real world is a hard task, for
example, as there are many phenomena that can only be approximated due to computational
constrains and many scenarios that only rarely occur.

2.5 Learning Strategies

Some learning strategies present solutions to reduce the number of labels needed for training.
This section explains some of the most prominent strategies, their advantages and limitations.

2.5.1 Active Learning

Active Learning (AL) is a method for reducing the amount of time required for humans to
manually label datasets by iteratively improving the model’s predictions through a process
of label suggestion and human verification. In the beginning, humans generate a small set
of labels, which are used to train a model. This initial training allows the model to make
predictions, which are then checked by a human, who categorizes the labels as correct or

13

2 Related Works

wrong. Using the newly generated labels from this step, the model is retrained to improve
future predictions. By repeating this process of training the model and checking its predictions,
more and better labels can be generated over time. Additionally, the model determines which
images provide the highest training value if labeled. This leads to good results with reduced
human labeling effort.

There are some challenges when using AL, one of which is the cold start problem. In
the beginning, the model has only few reference points for training, leading to a high false
positive rate in the predictions, which in turn leads to a lot of negative samples and few
positive samples. This means that it might take many iterations until the model is able to
achieve good results. Depending on the model size, retraining the model can also require
some time, in which the human in the loop is not able to check predictions. This could lead
to some extra time requirements for humans, or could require humans to be available at
different times. Finally, the model might not learn well how to detect all kinds of object
variations, as the model might never predict any samples that look vastly different from what
is contained in the initial training data. For a more comprehensive overview of AL, the paper
„A Survey of Deep Active Learning“ [51] provides further information.

2.5.2 One Shot Learning

One Shot Learning and similar approaches like Zero Shot Learning or Few Shot Learning
have a similar goal to this project of making the most out of a sparse number of labels. The
main idea behind some One Shot Learning methods is to utilize existing labeled data that is
similar to the data that should be learned with only one image. An example is to identify
people with only one image for training, by learning features on a dataset of other humans.
For example, a model might learn important features that help to differentiate people, such
as facial landmarks, and then uses these features to identify a new face. The main drawback
of One Shot Learning is, that a dataset that is very similar to the new sample is required. In
general, such a dataset is not present. Kadam et al. [52] give a a comprehensive review of
Zero, One, and Few Shot Learning Approaches.

2.5.3 Transfer Learning

Transfer Learning has a similar approach to some One Shot Learning methods, however, it
generally assumes that the new target data has more than one image, and the source data and
target data can be further away from each other. Transfer learning learns general low level
features on a big dataset. These low level features, while generally not having any semantic
meaning to them, can be imagined as components of objects, such as edges, circles, wheels,
etc. Using a pre-trained model that learned these features, it is shown that models can adapt
faster to detect new objects. While low-level features are generally not comprehensible for
humans, an easy way to imagine this training is, that to learn any unseen object such as a
scooter, the model would use the existing learned features. For the sample of the scooter, it
would learn that it’s "two wheels connected by a horizontal edge, with a second vertical edge
attached to one of the wheels", instead of starting to learn how to detect edges and wheels.

14

2 Related Works

While Transfer Learning can greatly improve accuracy and speed up training, it requires
the existence of a huge dataset for pre-training that is similar to the target data, and the
training can take tremendous amounts of time. While there exist such pre-trained models
readily available, these models have been trained only on few different datasets and might
therefore not be well suited for all tasks. Furthermore, a small dataset with target data is
required, that might not always be available.

In this thesis, we choose to use Transfer Learning, due to the simplicity of the strategy, the
availability of models that have been pre-trained on street level data, and as these models
perform well on the given task. A further overview over the state of Transfer Learning is
given by Zhuang et al. [53].

2.6 Similar Approaches

In this section, methods that have a different goal than this thesis, but have a similar approach,
are presented. As these methods contain similar components, they can be insightful for this
thesis.

2.6.1 Automatic Label Generation

The method presented in the paper "Leveraging Temporal Data for Automatic Labeling of
Static Vehicles" by Walsh et al. [7] contains many similarities to the method presented in this
thesis. The paper describes how it is possible to generate new labels by localizing an object
in the 3D space in a sequence of images, using a 3D detector that has been pre-trained on
a labeled dataset. By localizing objects, the method is designed to improve the proposals
generated by the detector to generate high recall labels. These suggestions can help human
annotators to label a new dataset more efficiently. This thesis extends this approach to also
work across different sequences and different seasons.

2.6.2 Scene Change Detection

Scene change detection has a similar approach to this work, as it also compares the same
locations over time. Therefore, many steps of localization of the camera and scene geometry
are similar, as well handling different image viewpoints. However, an annotated dataset for
changes that can occur is usually used for change detection methods, making them unsuitable
for label generation.

The paper "Street-view change detection with deconvolutional networks" by Alcantarilla et
al. [54] describes a full pipeline for scene change detection. The pipeline consists of localizing
the camera and densely mapping the scene, as well as reprojecting new camera images
to previously seen camera poses using the dense reconstruction and performing change
detection on the 2D images. It presents and compares two different algorithms for the change
detection, named CDNet and FCN-CD that are both based on deconvolutions. The output is a
segmentation mask for all changes that occur in the scene.

15

2 Related Works

Alcantrilla et al. present and use the VL-CMU-CD dataset that they created by labeling
changes in the VL-CMU dataset [55][56]. It contains 152 RGB and depth image sequences for
change detection and 1,362 registered image pairs with manually annotated structural change
segmentation masks. Most annotated changes belong to the classes bins, signs/traffic-signs,
and vehicles.

For localization of the camera poses and creating a sparse reconstruction of the scenes,
multi-sensor fusion SLAM is used. The presented method combines 2D image feature
measurements, GPS measurements per camera, and odometry data, each with an individual
factor and an assumed underlying Gaussian noise distribution.

New sequences can be registered with the existing reconstruction across different times
of day and seasons by extracting and tracking A-KAZE features [57] and then refining the
registration by matching these features using Random sampling and consensus (RANSAC)
and a three-point algorithm [58]. Afterwards, global Bundle Adjustment is performed to
bring the camera poses and sparse 3D reconstruction into a common reference frame.

Alcantrilla et al. build a dense 3D reconstruction by first computing DAISY descriptors [59]
and SEEDS superpixels [60] and then estimating a plane for each superpixel using RANSAC
on which they perform optimization. The results get refined using the method described in
"Fast Global Image Smoothing Based on Weighted Least Squares" by Min et al. [61]. This
process is repeated on different scales with the previous results being propagated to the next
level.

Using the 3D reconstruction and localization, 2D images can be reprojected to new poses.
This allows to generate image pairs that are from exactly the same pose. On these image pairs,
change detection can be performed in 2D space, for which the paper presents two methods
CDNet and FCN-CD.

CDNet [54] is a Convolutional Neural Network based on Deconvolutional Networks with
the main idea to stack contraction and expansion blocks with 1.4 million parameters. It has a
good trade-off between size and performance and its small size makes it suitable for mobile
applications.

FCN-CD [54] is a CNN based on Deconvolutional Networks as well, especially based on
Fully Convolutional Networks [62]. It achieves higher precision than CDNet. However, it has
134.5 million parameters, making it almost 10 times larger than the CDNet and therefore it is
more prone to overfitting and requires more memory.

2.7 Localization and Scene Reconstruction

An important part of this thesis is localizing the cameras of the images from the source and
target distributions and to create a reconstruction of the scenes surrounding the objects for
which labels are to be classified. In this section, we explore methods that are suitable for this
task and discuss their benefits and drawbacks.

16

2 Related Works

2.7.1 Localization

A number of methods exist that focus on localization [63, 64]. Ding et al. [63] shows that it
is advantageous to first build a map using additional Lidar data in order to subsequently
perform localization using camera only. However, to keep the presented method simple,
only one algorithm will be used to compute both the location of the vehicle and to create a
reconstruction.

2.7.2 SLAM

Simulatanous Localization and Mapping (SLAM) is a technique that uses sensor data to both
localize the position of the sensor suite and map the surrounding area. It is usually used in
robotics and autonomous driving, as most SLAM methods are designed to run in realtime.
Most implementations require ordered camera streams. There are different subcategories for
SLAM, depending on the sensors they require. While many implementations utilize Lidar
sensor data, Visual SLAM only requires cameras and Visual-Inertial SLAM uses cameras and
odometry data. In addition, there are approaches to combine GPS with SLAM, such as [65].
While utilizing Lidar can improve results in many cases, many setups do not contain one, as
current Lidar systems are expensive. As a consequence, we aim to build a method that does
not require a Lidar sensor. Consequently, the following sections focus on presenting methods
that do not require a Lidar.

2.7.3 Visual and Visual Inertial SLAM

The survey "Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental
Benchmarking" by Servières et al. [66] grants a recent overview from 2021 over the SOTA
methods for Visual and Visual Inertial SLAM. It compares the methods Vins-Mono [67],
ROVIO [68], ORB-SLAM2 [69], DSO [70], and LSD-SLAM [71] and performs benchmarks for
these methods on the EuRoC MAV dataset and on a visual-inertial dataset that they created
specifically for urban pedestrian navigation.

Among the tested methods, the ORB-SLAM2 algorithm achieves the best results in most
categories. This makes it particularly promising for the method presented in this thesis,
which aims to map surrounding areas of labeled objects and localize the camera. ORB-SLAM2
exhibits several desirable properties in this context:

• ORB-SLAM2 demonstrates the robustness among the tested methods on the IRSTV
dataset, showing no issues related to the environment or initialization.

• It effectively handles challenges encountered in urban spaces, such as glass reflections
and pedestrian motion.

• It has the ability to detect and close loops. This is essential when revisiting the locations
of the labels.

17

2 Related Works

• Even in scenarios without loops, ORB-SLAM2 yields precise results, with a low Absolute
Positioning Error (APE) Root Mean Square Error (RMSE) of 1.1% over the traveled
distance.

• ORB-SLAM2 excels in trajectory reconstruction, which aligns well with our use case, as
live pose estimation is not required.

The alternative methods have shown drawbacks in the benchmarks by Servières et al. [66],
that make them less preferable for the given use case:

• Vins-Mono achieves good results, but ORB-SLAM2 generally surpasses its performance.
Moreover, initialization issues may arise if additional methods, such as the one proposed
by Fu et al. [72], are not utilized. While Hu et al. [73] demonstrates improved results
for Vins-Mono by optimizing the photometric parameters, it remains unclear how
Vins-Mono compares to other SLAM methods with these adaptations. Therefore, we
will rely on more established methods.

• DSO’s native implementation lacks a loop closure method and necessitates GPU accel-
eration. Although a method to include loop closure has been proposed by Gao et al.
[74], DSO is better suited for live pose estimation rather than trajectory reconstruction,
making it less compatible with our offline approach.

• LSD-SLAM heavily relies on initialization, which poses a significant challenge in
practical scenarios.

• ROVIO performs well for applications focusing on local pose estimation. However,
it lacks high accuracy in reconstructing trajectories, which is a requirement for our
method. Additionally, textureless areas can pose problems for ROVIO.

Yin et al. proposed a novel SLAM method called BioSLAM [75], which utilizes a dual-
memory mechanism inspired by the human brain’s memory replay mechanism. The dual-
memory mechanism consists of a dynamic part for learning new observations and a static
part for managing new and old memories. The introduced method works on visual and Lidar
data. The authors show that BioSLAM outperforms SOTA place recognition methods in a
number of test cases for the visual and Lidar-based implementation. However, this method
is relatively new and our test data does not include Lidar data. Therefore, we will focus
on more established methods and leave the exploration of BioSLAM’s potential to future
research.

Several papers show how SLAM methods can be improved by including further data:

• Multi-IMU: Zhang et al. show in [76] that using multiple Inertial Measurement
Units (IMUs) improves localization by noticeable margins without adding a lot of
computational cost. However, not all systems, contain multiple IMUs.

• Multi-session Maps: Bürki et al. show in [77] that it is possible to use multi-session
maps to improve localization accuracy.

18

2 Related Works

• Multi-Agent: There are several approaches that have demonstrated the effectiveness of
combining data from multiple concurrent agents to improve positioning accuracy, such
as [78], [79], and [80].

However, such data might not always be available and these methods might add additional
complexity to the proposed method.

2.7.4 SLAM Frameworks

Frameworks for SLAM can help to integrate a SLAM method and methods that work on top
of it. The framework Maplab by Schneider et al. [81] is a popular framework that grants a
lot of flexibility and provides many methods that are already implemented. The methods
include different implementations for loop closures, incorporating GPS and other priors,
dense reconstruction, and combining maps. In addition, Maplab is able to handle large-scale
environments and lifelong mapping by using map sparsification.

2.7.5 Structure for Motion

Structure for Motion (SfM) has the same goal as Visual SLAM to localize the camera positions
and reconstruct the surrounding area. However, usually different assumptions are made
for SLAM and for SfM, as both focus on different use cases. SLAM is mainly used for
Autonomous Navigation, therefore many methods consider resource constraints and assume
a logic behind the movement of the vehicle. In comparison, a typical use case for SfM is to
reconstruct a famous architecture based on crowd-sourced images. As a consequence, most
SfM implementations work on unordered images and only some methods consider resource
constraints.

Structure for motion usually works by performing the following steps:

1. Feature Extraction: In the first step, features are detected in each image which are points
or lines with a well-defined position in image space, e.g. at corners or edges. Famous
examples of feature detectors include SIFT [82], SURF [83], A-KAZE [57], and ORB [84].
Differences between detectors lie in how features are chosen. The feature points are
then used to obtain descriptors. Descriptors are feature vectors that contain information
about the local neighbourhoods of the most representative features and therefore form
a compact representation of the image that removes most of the redundant data while
keeping most of the interesting data.

2. Feature Matching: In the next step, the descriptors of each image get compared to
find matches. If images have a lot of matches, it means that they are similar and likely
means that they are showing the same objects that can be used as reference points to
localize the camera positions. The method RANSAC [85] is often used for finding the
commonality between two sets of feature points and for outlier rejection, due to its high
robustness.

19

2 Related Works

3. Computing the Fundamental, Essential and Projection Matrices: Using the computed
matched features for an image pair, the fundamental matrix can be calculated. The
fundamental matrix describes the relationship between two images that contain points
of the same scene. It can be used to compute the essential matrix. The essential matrix
captures the geometric relationship between the camera positions where the two images
were captured. Finally, it can be used to compute the projection matrix. The projection
matrix allows to transform a point in the 2D image space to a ray in the 3D world space
on which the point lies.

4. 2 View 3D Reconstruction: The projection matrix of two images can be used to get
an estimation for the 3D position of the matched points. Triangulation can be used to
further refine these estimates. One limitation of this reconstruction is, that there is an
ambiguity for the scale of the reconstruction. Without the usage of any other sensors or
knowledge, it is impossible to calculate the real size of the reconstruction.

5. Multi-View Reconstruction: There are two main approaches for registering more
than two cameras, known as incremental and global Structure from Motion methods.
Incremental SfM methods register new views to previous views one at a time, using
the same algorithm as for two views, which can lead to higher projection errors for
individual images but may be less influenced by those errors overall. In contrast, global
SfM methods register all images simultaneously, making them more susceptible to
outliers but generally more scalable and efficient.

6. Sparse Bundle Adjustment: Bundle Adjustment (BA) is a technique that can be used to
refine the localization and reconstruction results. In the case of incremental SfM, BA is
applied after each increment, while for global SfM, it is only applied once at the end of
the reconstruction process. Bundle Adjustment works by optimizing the reconstruction
error for all reconstructed 3D points. As in general the points do not perfectly line up
when seen in different images, this equation is non-linear. The involved parameters -
camera intrinsics, poses, and 3D point positions - are generally optimized iteratively.

2.7.6 COLMAP

COLMAP [86][87] is an incremental SfM and Multi-View Stereo pipeline. While it can be used
out of the box to localize the camera positions and create a sparse or dense reconstruction, it
allows to exchange different parts of the pipeline, for example, by importing features from
any feature detector. In the base configuration, it uses the SIFT [82] feature extractor and
offers different options for feature matching, such as Exhaustive Matching or Sequential
Matching. It can then create a sparse reconstruction and export it into different formats.
Finally, it can create a dense reconstruction in the form of a point cloud which it can use to
estimate a dense surface using Poisson [88] or Delaunay reconstruction. COLMAP is Open
Source, is actively supported and has a broad community.

We chose to use COLMAP for our implementation, over the other presented methods such
as SLAM methods, for it’s good accuracy, for being Open Source and actively maintained,

20

2 Related Works

and because modifications are possible. Furthermore, it is easy to implement and work with
COLMAP, as exhaustive documentation is available and it is platform independent. Finally,
its ability to work on unordered sets of images allows for a broader use of the presented
method.

21

3 Implementation

The implementation is divided into two pipelines that resemble each other: a Reconstruction
Pipeline that creates reconstructions of the labeled data and a Label Generation Pipeline that
registers unlabeled data against the reconstructions to generate new labels.

To create the reconstructions, the data is grouped based on location and COLMAP used
to create a sparse reconstruction for each group of images. The Label Generation Pipeline
consists of sampling the unsupervised data into groups similar to the reconstruction groups,
based on proximity to any of the reconstruction groups, merging the image groups into the
reconstructions, and generating labels based on the matches created in the merging process.
To demonstrate the process of the proposed method, this thesis presents how labels for waste
bins are generated, using camera data gathered from a commuter bus. A visual overview of
the implementation can be seen in Figure 3.1.

All code related to this project has been published on github1. The datasets that were
manually labeled or modified in this thesis have been uploaded to Kaggle2.

3.1 BusEdge Dataset

To showcase and evaluate our implementation, we use camera data from a metro commuter
bus that is equipped with five cameras on the outside. A similar bus is shown in Figure 3.2.
The bus is driving between Pittsburgh and Washington County, generally two times a day. It
provides a large amount of video data, combined with measurements from sensors such as a
GPS and IMU module. In addition, the bus contains an onboard computer, a RoadRecorder
9000 by Safety Vision which features an Intel Core i7-8700t 2.40GHz CPU and 5TB of storage.
This allows the system to collect and store all data until it gets collected by a person and
stored on a large server.

The BusEdge system by Ye et al. [4] allows to use the data of the bus and perform object
detection. As the bus is only equipped with a CPU, large neural networks could not be
used with real time performance. Sending over all data from the bus to a server in the
cloud would require a high bandwidth data stream which could be costly. Therefore, the
BusEdge system introduces an Edge System in which the onboard computer is used to filter
the data and send images over to a cloud server if the lightweight model running on the
onboard computer estimates a high probability that the image contains an object that should
be detected. The cloud server then analyzes these images using a large neural network for
more precise predictions. An overview of the BusEdge system can be seen in Figure 3.3.

1https://github.com/pneug/label-generation
2https://kaggle.com/datasets/3650f5a2004c51d9dc1833c7a4075951729c75e464eca0cc7253970cd15c8524

22

https://github.com/pneug/label-generation
https://kaggle.com/datasets/3650f5a2004c51d9dc1833c7a4075951729c75e464eca0cc7253970cd15c8524

3 Implementation

Figure 3.1: Overview of the Reconstruction Pipeline (top) and Label Generation Pipeline
(bottom).

1. Partially labeled images are split into groups of images that are nearby a group of labels.

2. A sparse reconstruction is created for each group of labeled objects that helps to relocate
unlabeled nearby images.

3. Images from unlabeled data get grouped based on their proximity to a group of labels,
using the GPS data.

4. Using the sparse reconstructions created in step 2. and the grouped images correspond-
ing to the sparse reconstructions, the 3D positions of feature points of the unlabeled
images are determined.

5. Using the 3D positions of feature points inside the given labels and their corresponding
position in the unlabeled images, new labels are generated.

Figure 3.2: A bus similar to the one in this images has been equipped with cameras, sensors,
and a mobile computer to capture the data used in this implementation. Source:
Rotondo et al. [89].

23

3 Implementation

Most of the data of the bus is unlabeled, making it unsuitable for object detection. Ye et
al. therefore present an active learning approach, called Auto-Detectron. This approach still
requires manual labeling, which, as the authors state, could potentially be reduced by using
self-supervised or semi-supervised methods. The method has been tested by detecting street
signs and thrash cans with a minimum of 71 labels and 40 positive labels and a maximum of
394 labels, of which 130 are positive.

Waste bin detection on the bus has been further refined by Rotondo et al. [89] and Storm et
al. [90]. Furthermore, these works classify the state of the trash can, whether it is full, empty,
or there is a garbage bag next to the trash can. The presented models achieve high precision
and recall, especially for large waste bins. However, the models are only tested on a dataset
in cloudy conditions that is similar to the used validation set. In the following, we will use
the dataset by Rotondo et al. to show that our method is able to improve waste bin detection
results, both in the cloudy domain, as well as in the snowy domain.

Figure 3.3: Overview of the BusEdge system that has been developed by Ye et al. [4]. Source:
Ye et al. [4].

3.2 Reconstruction Pipeline

The first part of our pipeline uses images of and around labeled objects to create sparse
reconstructions. The reconstructions can then be used to match new unlabeled images and
generate labels for these images.

3.2.1 Input

The pipeline presented in this thesis requires a small number of labeled images that contain a
GPS location. Furthermore, it needs a few overlapping images with different viewpoints of
the surroundings of the labels. These images are not required to be labeled.

To showcase the method, we use a dataset that contains labels for waste bins [91]. The
dataset contains 7974 images and 1563 labels. The images are from the BusEdge system. The
annotations are labeled at one frame per second (fps). As our method works on static objects,

24

3 Implementation

we reduced the dataset to contain only static waste bins. Furthermore, as we want to show
that only a small number of labels are necessary for our method, we removed most duplicate
labels for the same objects. This resulted in 307 labeled objects. The camera images had
insufficient overlap, therefore we added unlabeled data from the same source with 5fps, as
well as data of another camera of the same bus, for the same time. Specifically, we use the
partially labeled data from the forward-facing camera at the right back of the bus and the
data from the forward facing camera centrally in the front of the bus.

3.2.2 Image Grouping

To create a 3D reconstruction of the scene around an object, COLMAP is used. COLMAP
requires "a set of overlapping images of the same object, taken from different viewpoints"
[92].

The method presented in this thesis uses the time stamps of the labeled images to group
nearby labels together. If a label has been taken less than 3s apart from another label, they get
grouped together. This leads to labels of the same object and labels from the same location
getting grouped together. Instead of reconstructing the scene for each label, we instead
reconstruct it for each group to save computation time.

To allow to reconstruct the 3D geometry based on Multi-View Stereo, a set of images
of the scene are required. Using only the small number of labels per group showed to be
insufficient, therefore, further unlabeled images from the same data of which some images
are used, both from the same camera as well as from a second camera. The location and angle
between images used for reconstruction should slightly change for optimal results, therefore
our method uses the GPS data to ensure that images are only considered if the bus is moving,
which greatly reduces the number of similar images. The method takes approximately 1
image per m2. A comparison to using velocity data instead showed slightly favorable results
for using GPS data, however, this might depend on the given situation, for example, the
GPS accuracy might be lower in urban settings than in rural areas. We found that a total
number of 130 to 250 images yields good results. Taking less images might result in a worse
reconstruction, while taking more images would add extra complexity. During evaluation, it
became evident that the timestamps of the camera images and the IMU and GPU data are
not well synced, but instead have a roughly 3s time difference. This negatively influences the
sampling process, as images are sampled less uniformly and at slightly wrong locations. As
this only became apparent at a late stage during the thesis, time constraints would only allow
to repeat the second part of the method with the time delay being taken into account. An
analysis of the bus data of multiple dates revealed that the time delay of 3s is constant for all
dates, therefore the time stamps can be adjusted accordingly by shifting them by 3s.

3.2.3 Sparse Reconstruction

Next we use COLMAP to build sparse reconstructions for each sequence. This process can be
divided into three parts:

25

3 Implementation

(a) Extracted Feature Points: The red dots show SIFT
feature points that COLMAP sampled in the image.

(b) Sparse reconstruction: The reconstruction for the
scene, each point is a 3D feature point. The red
pyramids show the camera position and rotation
for each image, the resulting red lines indicate the
trajectories of the two cameras used for taking the
pictures.

(c) Mapped Feature Points: The green lines show the correspondences between feature points contained in both
images.

Figure 3.4: Reconstruction process

• Feature Extraction: In the first step, COLMAP generates feature points for each image.
The default settings are used, if not mentioned otherwise. One exception are the
parameters for the cameras: the method uses COLMAP’s OPENCV camera option
as it showed better results than the default SIMPLE_PINHOLE. As it is known that
all data is from only two cameras, the images are divided into two folders so that
COLMAP can automatically estimate the camera parameters per camera. To increase
the number of generated feature points, we set SiftExtraction.estimate_affine_shape, as well
as SiftExtraction.domain_size_pooling to true. Sample results of this process are shown in
Figure 3.4a

• Feature Matching: Next, COLMAP attempts to match the feature points of all images.
As we implemented measures to keep the number of images low, we use Exhaustive
Matching which attempts to match all images with each other and leads to the best

26

3 Implementation

reconstruction results. Other matching strategies might use additional information
like GPS data to match only some images with each other, which could potentially
lead to worse results, but could reduce the processing time needed. We use the
default parameters, except for setting SiftMatching.guided_matching to true to increase
the number of matched feature points. This process is visualized in Figure 3.4c.

• Mapping: In the final step to obtain a sparse reconstruction, COLMAP incrementally
reconstructs the scene by using Structure for Motion and the matches between the
images. To refine the results, COLMAP also uses Bundle Adjustment. To obtain
more 3D points by the algorithm, we set Mapper.tri_ignore_two_view_tracks to 0 and
Mapper.tri_min_angle to 0.5. A sample for the resulting sparse reconstruction that is
created in this step is presented in Figure 3.4b

3.3 Label Generation Pipeline

After creating the reconstructions around the given labels once, the reconstructions can be
used to generate labels given unlabeled data of the same locations. The Label Generation
Pipeline takes image data as input and outputs labels based on the given image data.

3.3.1 Input

The label Generation takes unlabeled images as input, as well as the given labels and the
reconstructions from the Reconstruction Pipeline. The given images can be unordered and
distorted.

3.3.2 Image Grouping

Image grouping works similar in the Label Generation Pipeline as in the Reconstruction
Pipeline. A difference is, that as sequence groups were already obtained in the first pipeline,
only the image sampling is performed in the second pipeline, based on GPS location. Similar
to the Reconstruction Pipeline, the method samples 1 image per m2. For most scenes, this
results in a small number of images around the target location and shows a good trade-off
between number of generated labels and processing time. However, given a specific use case,
it might make sense to change the sampling scheme. For the label Generation Pipeline, the
time delay of the camera data, and GPS and IMU data, described in section 3.2.2, has been
taken into account and the data has been synchronized.

3.3.3 Image Matching

To match the new images with the reconstructions, COLMAP is used again. The first two
steps, Feature Extraction and Feature Matching, work similar to the ones in the Reconstruction
Pipeline. For the third step, we use the Image Registration functionality by COLMAP, instead
of the Mapper, as this allows to register the newly added images against the existing model.
To refine these results, our pipeline uses COLMAP’s bundle adjustment.

27

3 Implementation

3.3.4 Label Generation

(a) Source label of (b) (b) Generated label for a new domain

Figure 3.5: New Label Generation: The offset between the median (green) of the feature
points (red) in the matched source and target image are used to position the new
bounding box around the target object. The factor between the distances of the 3D
mean points to the cameras of the source and target image is used to calculate the
size of the generated bounding box.

To generate new labels, the presented pipeline checks which of the 2D feature points of
the labeled images are inside one of the bounding boxes of the labels. If any of these points
have been matched with any images of the unlabeled data, they can be used to calculate the
position of the object in the new image.

In the first step, we collect feature points in the labeled data that coincide within the
bounding boxes of one of the labels. As the shape of the object might be less than the
bounding box, points from outside of the object could be potentially sampled. However, we
take measures in a later step to mitigate the effects of sampling a point outside of the object.

In the next step, the algorithm finds all feature points in the unlabeled data that have been
matched with the collected feature points in the labeled data. The algorithm determines the
median position of the features in the source and target images. Using the median ensures
that points on the outside of the bounding box, which might potentially lie outside of the
target object, have less impact on the resulting bounding box. The offset can be used to
determine the position of the new box. Requiring a certain number of shared feature points
has shown to lead to higher quality outputs, however, it also reduces the number of output
labels. A value of three required shared feature points has been chosen. By measuring
the mean distance of the 3D points to the camera position of the source and target image,
obtained by the reconstruction, a scale factor for the bounding box can be determined. This
process is visualized in Figure 3.5.

The source labels can potentially contain multiple labels for the same object. This can
lead to multiple labels being generated for the same object in the target image. Most Object
Detection models require that each object should be labeled exactly once. To achieve this,
these labels are combined, based on their overlap. For our dataset of static waste bins, only

28

3 Implementation

(a) Multiple bounding boxes can be created per object
if the object is visible in multiple source images.
However, object detectors generally expect one label
per object.

(b) Using a weighted mean formulation, all overlapping
objects are merged into a single box.

Figure 3.6: Reduction of overlapping generated bounding boxes.

few objects have overlapping bounding boxes if labeled correctly. Therefore, our method
combines all labels that overlap. For each group of boxes that supposedly show the same
object, the algorithm needs to decide which bounding box to use. To achieve this, the mean
of the boxes is used, weighted on the number of shared features of each box. The method has
been compared to another method of taking the box that contains the most shared features,
however, no significant difference could be observed in the results of both methods. An
example of this step is shown in Figure 3.6.

The number of generated output labels varies a lot per object, which can lead to an
imbalanced dataset. Furthermore, many of the labeled images are similar to each other,
providing little new insight to the model. A simple method to reduce similar looking images
is to only take one image per reconstructed scene and camera. However, this method also
removes some visually distinct images, resulting in less generated labels than possible. We
therefore developed a second method, called Extended Sampling, to increase the number
of sampled visually distinct images. This method takes the scene, camera, timestamp, and
source image into account. However, this method could potentially generate images that
are less distinct from each other. As this is hard to measure, and the method only generates
slightly more labels, we chose to use the first method for the implementation.

29

4 Evaluation

This chapter evaluates the results obtained from the presented Label Generation Pipeline.
The first part analyzes the quality of the generated labels and proposes methods to improve
the results and assesses their performance. The second part analyzes the practical use of the
generated labels by comparing training results with and without the generated labels.

To showcase how well the label generation works, we generated waste bin labels using the
labels of static trash cans given in the Waste Bin Detection Dataset to generate labels of the
trash cans in other domains.

Specifically, we picked data from one bus route, from Washington, PA, to Pittsburgh and
back, from each month between February 2021 to January 2022. The data is from various
times of the day to maximize differences between the data. This leads to data from various
weather conditions, lighting conditions, and exact routes. Furthermore, dynamic objects in
the scene, such as cars or pedestrians, can change the appearance of the scenes and lead to
occlusions. Information about the individual chosen data can be seen in Table 4.1.

Date Time Weather Ground Condition Lighting

18.02.2021 6:41am - 10:18am Cloudy Snowy+Wet Night+Dawn+Day
25.03.2021 2:13pm - 5:54pm Cloudy+Rainy Partially Wet Day
05.04.2021 2:47pm - 6:37pm Partially Cloudy Dry Day
18.05.2021 2:13pm - 5:59pm Sunny Dry Day
05.06.2021 12:09pm - 6:30pm Sunny Dry Day
07.07.2021 6:46am - 10:11am Partially Cloudy Dry Day
09.08.2021 6:45am - 10:21am Partially Cloudy Dry Day
15.09.2021 6:36am - 10:24am Cloudy Dry Dawn+Day
15.10.2021 6:19pm - 8:02pm Cloudy Dry Day+Dusk+Night
02.11.2021 1:13pm - 5:55pm Partially Cloudy Dry Day
15.12.2021 1:02pm - 7:49pm Cloudy Dry Day+Dusk+Night
21.01.2022 2:34pm - 5:27pm Sunny Snowy+Icy Day

Table 4.1: Metadata of the camera data that was used for label generation. Time represents
the time-span from the first to the last used image of the data, in which the bus is
near a trash can.

30

4 Evaluation

4.1 Generation Results

The generated labels show many strengths and weaknesses. A particular strength of the
Generation Pipeline is the ability to capture the same objects under a large number of
changing conditions. In the following, special cases are shown. Specifically, samples that
show diverse conditions that can be captured and samples in which no or incorrect labels are
generated will be discussed.

4.1.1 Learnable Domains

Figures 4.1 - 4.9 show samples of various domains for which our method is able to generate
labeled images. While some of these domains were expected, other domains such as blurriness
by motion revealed additional potential of the presented method.

31

4 Evaluation

(a) Source label for (b), (c), and (d) (b) Generated label with higher sun exposure

(c) Generated label with the sun coming from a different
direction

(d) Generated label with the sun impacting the visibility

(e) Generated label with shiny roads due to a low sun
angle

(f) Generated label with a reflection of a waste bin in a
window

Figure 4.1: Generated data under sunny conditions: While for these samples the domain
is the same as for for the given data, the generated labels can potentially still
allow to train for new scenarios, such as having different levels of sun intensity or
angles of the sunshine depending on the time of day and time of year. The sun
can also have influence on the image quality, i.e., a ray can overlay big portions
of the image. Finally, shiny reflections can let the scene appear differently and
can even lead to mirror-like reflections in windows, which could easily confuse a
Neural Network.

32

4 Evaluation

(a) Source label (b) The same object under cloudy conditions

Figure 4.2: Generated data under cloudy conditions: With cloudy conditions, shadows seen
in the sunny data do not show up or are only marginal and less reflections occur.

(a) Source label for (b) from dry conditions (b) Generated label with darker scene textures due to
wetness

(c) Generated label containing shiny surfaces due to
wetness

(d) Generated label with water on the lens impairing
the vision

Figure 4.3: Generated data under rainy conditions: Rain can both influence the visuals of
the scenery as well as the image quality. Wetness caused by the rain can lead to
a change in the texture of some objects, i.e., parts of the scene can have a darker
texture (b) than on dry days (a), or can be shiny (c). Furthermore, wetness of the
camera may potentially lead to obstructions of the view (d).

33

4 Evaluation

(a) Source label for (b) (b) Generated label with the lid of the waste bin appear-
ing white instead of Black

(c) Generated label with snow partially blocking the
view onto the object

(d) Generated label with roads appearing partially shiny
due to being frozen

Figure 4.4: Generated data under snowy conditions: The influence of snow can be manifold:
it can change the appearance, obstruct the view, and cause reflections of both
the target objects and surrounding objects. These changes largely differ between
days, i.e., there can be more or less snow, wind can move the snow to different
places, and streets can be frozen, wet, or dry. This leads to a huge difference in
appearance and obstructions, not only between data from sunny days and snowy
days, but also between images from different snowy days.

34

4 Evaluation

(a) Source label for (b) during the day (b) The scene from (a) during night

Figure 4.5: Change of time: Appearance can change significantly between time of day, espe-
cially between day and night. Including data by night in the training, for example,
by generating it, could therefore have significant benefits. While it is more difficult
to generate samples for these cases, as the appearance of the scene can be quite
different, the sample above shows that it is possible in favorable cases.

(a) Generated label with a light occlusion, caused by a
dynamic object

(b) Generated label with a heavy occlusion, caused by a
change of view of the camera and static objects

Figure 4.6: Generated data with occlusions: Occlusions can be hard to learn, as objects that
lead to the appearances of the occlusion can be manifold, and the level of occlusion
can differ between light and heavy occlusions.

35

4 Evaluation

(a) Source label containing three full waste bins (b) Generated label in which the waste bins are empty

Figure 4.7: Change of appearance: Causes for a change in the appearance of objects can be
manifold. Examples are degradation over time, vandalism, or natural occurring
changes such as a plant growing. For neural networks, appearance changes can
pose a major problem, especially if the training data covers only some of the
appearances that can occur. For the sample of waste bins, changes in appearance
have been observed, due to changes of weather or a change of fullness (a).

(a) Source label (b) The same object from a further distance, different
camera and different angle

Figure 4.8: Change of view: Generated data can have an unseen view onto an object. This
can reveal how an object looks like from a different angle or distance. Close up
views of an object could potentially reveal more details in the texture of the object,
while distant views can provide additional training data for this case in which it
is generally harder to detect an object.

36

4 Evaluation

(a) Source label (b) Generated label with motion blur caused by high
speed of the bus

Figure 4.9: Change of speed: Motion Blur can occur when a camera moves at a high speed or
has a long exposure time, or if an object moves at a high speed. It usually blurs the
moving object along the axis of movement, or the entire image according to the
movement of the camera. There are solutions to simulate motion blur and learn
how to recover the unblurred image [93]. However, as unblurring images is of
ill-posed nature, using real training data might have benefits over using synthetic
data or approaches to unblur the images.

37

4 Evaluation

4.1.2 Analysis of Faulty Generated Labels

The box generation does not produce optimal results in all cases, due to various causes. The
assumptions may not be fulfilled, for example, an object might not be static, but individual
parts of the generation pipeline can fail as well. This section analyzes the failures that can
occur, and which parts are prone or less prone to errors. This will provide insights on how to
improve the pipeline to achieve better results in the future.

In many cases of failure, the results from the method are imprecise and the generated
bounding box only roughly fits the target object. It is difficult to determine the exact cause
for these cases, but generally it seems to be caused by the 3D position of the Feature Points of
the reconstruction being imprecise, as shown in Figure 4.10 (a) and (b). Another, less often
occurring cause is that the Feature Points used to locate the target object lie next to the object
or on an occlusion, shown in Figure 4.12 (a) and (b).

Another group of wrong labels are False Negatives, cases in which a target object has not
been labeled. Figure 4.11 shows the two most common reasons for this: the label generation
method could only locate some of the source labels, or the source image contains only some
of the objects contained in the target image. Most of these cases can be avoided with the
methods presented in Section 4.2.

Lastly, False Positives can occur, labels that don’t contain a target object. While these cases
only rarely occur, it is still important to be aware that these cases are possible. Causes for
these cases include that the staticness assumption does not hold, the target object is entirely
occluded, or that the scene reconstruction is majorly wrong. Such samples are shown in
Figure 4.12 (c) and (d), Figure 4.12 (e) and (f), and Figure 4.10 (c) and (d).

4.2 Analysis of Label Quality

This section analyzes the results of the presented method. Furthermore, it presents approaches
to improve the quality of the generated labels and evaluates the effectiveness of these
approaches. Finally, we assess the impact of varying parameters of the pipeline, such as the
required number of shared feature points between source and target labels.

4.2.1 Setup

For this evaluation, we use the generated data from the unlabeled bus data from 18.02.2021
and 21.01.2022, as these days feature snowy conditions and therefore grant insights into an
important and difficult switch in domain from sunny to snowy conditions. To evaluate the
correctness of the automatically generated labels in the snowy domain, labels have been
drawn by hand for each image for which a label has been automatically generated. This
was a challenging task, as in many cases, it is hard for a human to determine the labels, as
objects can be small and resolution low. Furthermore, there are cases in which it is ambiguous
whether an object should be labeled, as objects can be far in the distance, or almost completely
occluded, and are therefore only barely visible. Even for a human, it proved to be beneficial
to observe the scene during varying conditions, similar to the label generation method, to

38

4 Evaluation

(a) Source label for (b). (b) Generated label from (a). Although the Feature
Points in the source and target image look visu-
ally and geometrically different, COLMAP matched
these points with each other, leading to an imprecise
label. This is the prevalent cause of imprecise labels.

(c) Source label for (d). (d) Generated label from (c). The scenes in the source
and target image look similar and are in proximity
to each other. As a result, the reconstruction by
COLMAP has mistakenly identified both scenes as
the same. Subsequently, False Positve (FP) labels
have been generated.

Figure 4.10: Issues in the reconstruction: These issues occur due to COLMAP not recon-
structing the scene perfectly. While imprecise Feature Points commonly account
for imprecise labels, the reconstruction only seldom has major faults.

39

4 Evaluation

(a) Source label for (b), containing three labeled trash
cans.

(b) Generated label from (a). Only one of the three
trash cans that are contained in the image has been
labeled, as the label generation method only creates
a label if it can locate the trash can in the target
image with high probability. The missing labels are
marked in blue.

(c) Source label for (d), containing one labeled trash can. (d) Generated label from (c). As the source only shows
one of the two trash cans containted in the target
image, the other one is missing a label. The missing
label is marked in blue.

Figure 4.11: Multiple objects per image: Cases in which multiple objects are contained in
the target image can potentially lead to missing labels. However, Section 4.2.3
and 4.2.4 present solutions how to avoid most of these cases.

40

4 Evaluation

(a) Source label for (b). The Feature Points (red) are
not on the target object in this sample, leading to an
imprecise label.

(b) Generated label from (a). In this case, in addition to
the Feature Points lying outside of the target object,
most Feature Points have been incorrectly matched.
As a result, the generated bounding box is imprecise.

(c) Source label for (d). (d) Generated label from (c). The trash can that can be
seen in the source image has been removed.

(e) Source label for (f). (f) Generated label from (e). In this sample, an occlusion
leads to a False Positive.

Figure 4.12: Further samples of wrong labels: While these cases only rarely occur and are
generally filtered out by requiring multiple shared feature points, it is interesting
to note that in theory, these cases can occur.

41

4 Evaluation

determine the location of a label. Despite these challenges, the results show clear trends
among the data, revealing insights into the quality of the labels.

For classification of the generated label quality, we use the following categories per label:

• True Positive (TP): These bounding boxes sufficiently capture the object for most Object
Detection tasks.

• Low IoU: These labels only partially contain the target object, i.e., the label only has
a low Intersection over Union (IoU) with the ideal label. This categorization helps to
identify whether a target object has not been captured with a high overlap due to the
label completely missing or the generated label being to inaccurate.

• Imprecise: These labels have no overlap with any target object, but are in the vicinity of
one. Similarly to Low IoU, these labels indicate that the cause behind missing the object
lies in imprecision of the box generation method.

• False Positve (FP): These labels are not in the vicinity of any of the target objects,
indicating a major fault in the reconstruction pipeline or that an object has been
removed.

• Missing: Objects that are in the target image but no generated label exists for them are
categorized as Missing.

There are cases in which such a precise distinction might not be needed and might lead to
extra complexity in diagrams. We therefore denote the cases Low IoU, Imprecise, and Missing
as False Negatives (FNs). Furthermore, the Accuracy of a set of images with generated labels is
defined as the number of FPs divided by the total number of images.

4.2.2 Label Quality without Enhancements

Figure 4.13 presents the results of the pipeline as described in the implementation. The data
contains only few False Positives case, in which, for example, the staticness assumption was
not given. In this case, the trash can has been permanently removed. For the False Negative
cases, three main reasons have been identified:

• The generated labels were inaccurate and only loosely matched with the correct labels
or were nearby a correct label without any intersection.

• The object was not visible in the source image.

• The object was visible in the source image, but not enough features have been matched
between the source and target location, so that no label has been generated.

42

4 Evaluation

TP FP FN
0

10

20

30

40

Nu
m

be
r o

f L
ab

el
s

Missed

Imprecise

Low IoU29

3

35

(a) Results of the pipeline without modifications. The
pipeline produces more false samples than true sam-
ples, signalling the need of methods to improve the
label quality.

TP FP FN
0

10

20

30

40

Nu
m

be
r o

f L
ab

el
s

Missed
Imprecise
Low IoU

19
(- 10)

1
(- 2)

11
(- 24)

(b) Results of the pipeline with Enhancement 1, com-
pared to the pipeline without modifications. The
method increases the label quality by 18%, at the
cost of reducing the number of good labels by 34.5%.

TP FP FN
0

10

20

30

40

Nu
m

be
r o

f L
ab

el
s

Imprecise

13
(- 6)

1
(+ 0)

4
(- 7)

(c) Results of the pipeline with Enhancement 1 + 2, com-
pared to the pipeline with Enhancement 1. This
method increases the label quality by 10.9%, how-
ever, it reduces the number of good labels by 31.6%.

Figure 4.13: Classification of the generated results from the pipeline: Modifications can
improve the quality of the labels, at the cost of missing some of the correct labels.

4.2.3 Enhancement 1: Requiring a Minimum Number of Labels

The label quality can be improved by requiring that the generated image contains at least as
many annotation boxes as any of its source images. This effectively removes FN cases that
come from labels not being matched. However, it can also reduce the number of TPs. The
results are shown in Figure 4.13. While with this method 2 of the correctly labeled images
are not contained anymore, it successfully eliminates 17 of the FN cases caused by missing
matches, reducing the number of labels categorized as Missed from 20 to 3. This results in an

43

4 Evaluation

overall improvement of the accuracy for images from 43% to 61%. For most applications, label
quality is more important than label quantity, therefore we use this method as the baseline to
evaluate further methods.

4.2.4 Enhancement 2: Using Only the Source Camera

For the sample of the trash can label generation using data from a transit bus, further FN
cases can be avoided by only using data from the same camera with the same positioning
on the bus as the one used for the source labels. Using this camera, the perspectives of the
source and target images are generally closer to each other, resulting in less objects that can
be seen in the target image but not in the source image. However, samples by cameras other
than the source camera could prove especially useful in the training process, as the change
in perspective could lead to more diverse samples. Additionally, this method might not be
suitable for data from other sources, for example, when using crowd sourced images. Results
of this method can be seen in Figure 4.13. All missed cases could be avoided, and the accuracy
is increased from 61% to 72%, compared to the results when only Enhancement 1 is applied.
However, the number of TP labels is reduced by 32%, making this method only suitable in
some use cases.

4.2.5 Influence of the Box Generation Parameters

In the Implementation in Section 3.3.4, we propose to require three feature points to be shared
between an annotation from the source image and target image to generate a label. However,
this parameter can be adjusted, depending on the required level of accuracy of the labels, to
generate less but higher quality labels or more but lower quality labels. Figure 4.14 (a) shows
the effect of changing this parameter: setting it to low values generally produces more TP
labels but has a lower accuracy, while setting it to high values leads to generating less labels
but of higher quality.

Figure 4.14 (b) illustrates the influence of the method to determine the mid point of the
Feature Points on the accuracy, for different values of the parameter Required Number of Shared
Features. Using the median shows a tendency of producing better results.

Figure 4.14 (c) presents the pareto front for different values of the parameter Required
Number of Shared Features and Enhancement 1 or Enhancement 1+2. The front reveals the
optimal choices of parameters given a required quality level of the labels. For low accuracy,
Enhancement 1 with 1-4 required shared feature points achieves the best results, while for
higher accuracy Enhancement 1+2 with 3-7 required shared feature points performs best.

4.3 Training on the Generated Data

Determining the output of a deep learning model trained on a given dataset by only observing
the model and the input data is generally not possible. Therefore, this section shows the
performance achieved by training a well established model on the original hand-labeled data
and the data with automatically generated labels. These experiments can indicate whether

44

4 Evaluation

1 2 3 4 5 6 7 8 9 10
Required Number of Shared Features

0

20

40

60

80

100

Nu
m

be
r o

f L
ab

el
s p

er
 C

la
ss

ifi
ca

tio
n

Low IoU
Imprecise
Missed
False Positive
True Positive

(a) Label quality in relation to the parameter Required
Number of Shared Features. Lower values lead to more
labels being generated, while higher values increase
the accuracy.

1 2 3 4 5 6 7 8 9 10
Required Number of Shared Features

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Median
Mean

(b) The influence of the method to determine the mid
point of the Features on label quality appears to be
insignificant for the label quality.

3420 2315131186 8654431111
Number of good Labels

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

11
22

3
34

4

5

5
67

7
8

8
9
9 All cameras

Camera 5 only

(c) Pareto Front of Enhancement 1 (All cameras) and
Enhancement 1+2 (Camera 5 only), showing the front
with the best combinations of the parameter Required
Number of Shared Features (number next to the points)
and either Enhancement 1 or 1+2.

Figure 4.14: Influence of parameters of the pipeline on label quality: While the parameter
Required Number of Shared Features provides a trade-off between label quality and
number of labels, the effect of the choice of the method to determine the mid
point of the shared feature points seems to be marginal.

45

4 Evaluation

the generated data is working well for real use cases or whether the quality of the generated
data is insufficient.

4.3.1 Training Setup

We chose to use a Faster R-CNN model for comparing training on the original and the
generated data, as it is widely established in the object detection field. We used the R-50-FPN
backbone model, which is based on the MSRA’s original ResNet-50 model, combined with a
Feature Pyramid Network. This backbone is broadly used in the field of object detection and
segmentation and therefore grants good insights into the general suitability of the generated
data for training models. The model has been pre-trained for around 37 COCO epochs on the
COCO dataset[1]. The COCO dataset contains 80 classes, consisting of street and houshold
objects, animals, persons, food, and more. There is no waste bin class or similar in the COCO
labels.

For the training, Detectron2 is used, as it allows to quickly train established models, such
as the Faster R-CNN on new data in COCO format. COCO format is a json file that contains
all data needed for training, such as information about the images and their annotations. The
Model Zoo of Detectron2 provides models pre-trained on the COCO dataset. For the training,
we use Early Stopping with a validation frequency of 500 batches. Early Stopping periodically
applies inference on a validation dataset to measure whether further training achieves better
results on this unseen data or worse results due to overfitting on the training data, and stops
the training in case of overfitting. Deep Learning models overfit after a varying number
of steps, i.e., they learn features that are specific to the training data, instead of learning
general features. To reduce training time, only samples that contain at least one annotation
are used for training and validation. We set the maximum training length to a high number,
so that the training will always be stopped by Early Stopping. This resulted in an average
length of around 2000 steps. We use a batchsize of 4 and BATCH_SIZE_PER_IMAGE of 128.
For augmentations, ResizeShortestEdge and RandomFlip have been used which are the default
augmentations for Detectron2 and therefore represent typical training behavior.

Multiple metrics to measure the object detection performance of a model exist. The precision
denotes the number of TP predictions divided by the number of total predictions (i.e., True
Positives plus the False Positives): Precision = TP/(TP + FP). A predicted bounding box
is considered correct if it has the highest overlap with a ground truth bounding box. To
measure the overlap, the Intersection over Union is used. The IoU of two boxes is defined
by IoU = AreaO f Intersection/AreaO f Union; Area of Intersection is the area in which the
two boxes intersect, Area of Union is the area that is the total area covered by the two boxes
combined. The IoU is in a range between 0, no overlap between the boxes, and 1, the boxes
are identical.

Choosing different values for the threshold IoU for object detection determines which
predictions are counted as correct or incorrect: Using a high IoU, only predictions that almost
perfectly match the target label are counted. In contrast, by using a low IoU, boxes with only
a small overlap are still identified as correct.

The Recall is denoted as Recall = TP/(TP + FN) and measures how many of the target

46

4 Evaluation

objects have been correctly predicted. The Average Precision combines both Precision and
Recall, by calculating or estimating the Area under the Precision-Recall Curve. To obtain the
Precision-Recall Curve, the predictions are sorted by their confidence. The first value is then
drawn into a diagram, next the Precision and Recall of the first and second prediction are
used, etc. This generally results in a curve in which the Precision is decreasing with increased
recall values. Different definitions for the Average Precision exist, that generally calculate the
area under the Precision-Recall Curve or of a smoothed version of the curve.

This thesis uses the COCO mean Average Precision (AP) metric, as defined by the COCO
competition, to measure the performance of the model on different inputs and test sets. To
measure the Average Precision, this metric interpolates the Precision-Recall Curve and uses
101 points to estimate the area under the curve. It then calculates the mean of the Average
Precision for 10 different IoU values between 0.5 and 0.95 with a step size of 0.05. AP values
range between 0 and 100, with 100 representing perfect performance. The mean Average
Precision is less noisy than using only the Average Precision, and takes both loosely matching
predictions as well as closely fitting matches into account, but ranks close matches higher.
This metric is the primary COCO competition metric. This thesis uses the AP metric, as it is
commonly used and is well suited for most use case scenarios.

4.3.2 Datasets

To showcase the performance with and without the generated labels, various test sets are
required. As this thesis has a focus on Domain Adaptation, these datasets have been captured
under different domains. For the sample of waste bins, domains can be different weather
conditions, lighting conditions, different objects and different views. This section presents the
test datasets that are used for evaluation.

Waste Bin Detection Sunny

The work of Rotondo et al. [89] presents two novel datasets that have been created for
trash can detection. The first dataset contains images from the BusEdge system captured
predominantly in the sunny domain, with dynamic and static trash cans labeled. The second
second contains similarly labeled images in the cloudy domain. The Rotondo et al. use
the first dataset for training and divide the second dataset into a validation and test part.
For this theses, this split is used as well. As this thesis covers label generation for static
objects only, we adapted the datasets and removed all labels that contain dynamic waste bins.
Furthermore, to simulate a scenario in which labels are scarce, labels containing the same
object have been reduced to a small number for the train set. This dataset is be referred to as
the Sunny dataset, or the dataset in sunny domain, in this thesis. These modifications result
in a total of 7144 images of which 204 contain at least one instance of a trash can. A sample
of the dataset is shown in Figure 4.15

47

4 Evaluation

Figure 4.15: Sample from the Sunny dataset: A common challenge is the detection of objects
that appear small in the image, such as the trash cans on the right side of the
image.

(a) Test Set sample (b) Validation Set sample

Figure 4.16: Samples from the CloudyVal and CloudyTest datasets: Many images of the test
set (a) and validation set (b) of the Waste Bin Detection Dataset look similar to
each other, therefore generating little insights about the generalization of a model.
To generate better insights, we labeled further data with more differences.

The datasets containing only labels of static objects in the cloudy domain are further refered
to as CloudyVal and CloudyTest. A limitation of these datasets is, that both datasets are very
similar to each other, as they are from the same camera, time and in some cases similar
location. The same objects that are in the validation set can also appear in the test set with

48

4 Evaluation

only slightly different angles. Figure 4.16 shows two of these samples that mostly resemble
each other. To gain better insights into the generalization of a model, we labeled additional
data from different sources, times and weather conditions. The CloudyVal dataset contains
3438 images, of which 354 images contain a trash can. Similarly, the CloudyTest dataset
contains 3437 images, of which 338 contain a trash can.

Snowy Datasets

(a) (b)

Figure 4.17: Samples from the SnowyDay dataset: Snow can heavily impact the visuals of
the objects to be detected. In (a), a small layer of snow leads to the top of the
waste bin looking partially white instead of black, while in (b) the snow heavily
occludes part of the waste bin, which changes the visible shape of the object.

(a) (b)

Figure 4.18: Samples from the SnowyNight dataset: Night images bring numerous challenges
that are not or less present during the day. Specifically, the saturation can vary
between images, letting some images appear without colors (a), and some images
with some degree of color (b). Furthermore, the images are often more blurry
than during the day.

49

4 Evaluation

We labeled data from the bus on a snowy day that has not been used for label generation,
17.02.2021, and for which the amount of snow varies to the data used for generation. The
data comes from a different camera that points back from the right front of the bus, therefore
has a different angle to both the original and generated training data. The images are from
the bus going from Washington, PA, to Pittsburgh and back. We labeled approximately 3
images per waste-bin from different angles and distances and discarded further images of the
same objects to improve balance in the dataset. As there is a longer stop in Pittsburgh, the
first half of the data is taken during the day and the second half during night. We therefore
split the data into a Snowy-Day dataset and a Snowy-Night dataset. The Snowy-Day dataset
contains 236 object labels and 4214 images, while the Snowy-Night dataset contains 119 object
labels and 4349 images. The discrepancy of labels in both datasets is caused by the much
worse visibility during night, making it harder for a human to identify waste-bins with a high
probability.

Roadbotics based Dataset

(a) (b)

Figure 4.19: Samples from the RoadBotics based dataset: The RoadBotic based dataset brings
images from a new perspective, camera, and covers locations and objects that
are not contained in any of the training data. While some objects look similar
to the objects found in the training data, such as in (a), others can also have a
new appearance (b), making it a good test to analyze whether a model is only
remembering seen objects or can also generalize to new but similar objects.

Roadbotics published a dataset [8] that contains video data taken by a car in different cities
throughout the US. The dataset does not contain labels for waste bins. Therefore, we labeled
33 minutes of video data at 1 frame per second by hand. To keep the dataset balanced, we
again labeled only around 3 images per object and discarded all other images that contain
the same object, resulting in 83 object labels and 1377 images. We chose to take data from
Pittsburgh, so that the waste bins generally look similar, however, little or no waste bins occur
both in this test set and the initially labeled or generated training data. This dataset provides
insights into how the models perform on data taken from another vehicle and camera and

50

4 Evaluation

therefore better presents how well a model is able to generalize.

Generated Datasets

To measure the impact of using generated data to train object detectors, multiple datasets
consisting of automatically generated data have been created. For most of these datasets, only
generated data from the snowy domain is used. This is in order to measure the impact of
adding generated data from the target domain to the training. These datasets use the data
obtained by the bus on 18.02.2021 and 21.01.2022, the same data that has been used for the
evaluation in the previous section. The datasets vary in whether they contain similar images
or not and in whether they have been supervised by a human:

• Generatedsnowy: This dataset contains all labels that have been generated for the given
data in snowy domain. This means that the data is most exhaustive, containing 334
images, however, many images are visually highly similar.

• Generatedsnowy,unique: To reduce the number of visually similar images, this dataset
contains only one image per group of objects and camera. This reduces the number of
images to only 17 images, however, these images are visually highly distinct.

• Generatedsnowy,reviewed: To measure the impact of the quality of the labels, we removed
all low quality images from Generatedsnowy by hand. Furthermore, highly similar images
were removed by hand. These modifications result in this dataset with 41 generally
visible distinct images.

The forth dataset containing generated data is Generatedall domains. To create this dataset,
our pipeline has been applied to all data that has been described in Table 4.1. The source
data, and therefore the generated labels, are from a huge variety of domains.

For all automatically generated datasets, we used Enhancement 1 and five required shared
feature points.

Overview

Table 4.2 grants an overview over all hand-labeled and generated datasets used for evaluating
training performance for object detection.

4.3.3 Training Results

To measure the impact of using the generated data for training, different combinations of
hand-labeled data and generated data have been explored. Table 4.3 reveals that by only
training on the generated data, the trained model performs significantly worse on all test
datasets than training on the hand-labeled dataset from the sunny domain. This is presumably
caused by the low number of generated labels and lower quality of these labels compared to
the hand-labeled images.

51

4 Evaluation

Dataset Labeled
Objects

Images w.
Trash Cans

Total Images Domain

Sunny 307 204 7144 Sunny, Day
CloudyVal 465 354 3438 Cloudy, Day
CloudyTest 458 338 3437 Cloudy, Day
SnowyDay 236 168 4214 Snowy, Day
SnowyNight 119 101 4349 Snowy, Night
RoadBotics 83 58 1377 Cloudy, Day
Generatedsnowy 347 334 334 Snowy, Day
Generatedsnowy,unique 17 17 17 Snowy, Day
Generatedsnowy,reviewed 41 41 41 Snowy, Day
Generatedall domains 109 104 104 Multiple

Table 4.2: Overview of all datasets that have been used for training and testing.

However, when combining the hand-labeled data with the generated data, clear improve-
ments can be achieved over using only the hand-labeled data, as shown by the data in Table
4.4.

In this set of experiments, the impact of using different sets of generated data in combination
with hand-labeled data is analyzed. The following insights are revealed from the test results:

• Almost all sets of generated data improve the results on every test, showing that the
data is well suited even for general Domain Adaptation.

• Combining the hand-labeled data with the generated data from various domains
achieves the best results overall on the Cloudy dataset and the RoadBotic based dataset.
Furthermore, it outperforms the other datasets that were not reviewed by a human
on the SnowyDay dataset. This shows that in general, generating more data of any
domain can improve the results. Hence, this method is not only well suited for Domain
Adaptation, but also label generation for the same domain.

• Using the full generated data outperforms both the variant of the data in which only
visually highly distinct images were automatically selected, as well as the variant in
which low quality labels and labels that look visually similar were removed by hand.
This indicates that even though labels might look mostly similar to each other, they can
still have a positive impact on the performance of the model.

In summary, incorporating automatically generated data in the training data can substan-
tially improve the object detection results for new domains. This means that our method can
improve results without requiring manual labeling.

52

4 Evaluation

Train Dataset
Test Dataset

CloudyTest SnowyDay SnowyNight RoadBotics

Sunny 38.4 22.6 29.4 23.7
Sunny+Generatedsnowy 27.4 13.0 16.3 19.4
Sunny+Generatedsnowy,unique 4.9 5.3 6.7 9.7
Sunny+Generatedall domains 32.3 17.4 25.5 22.0

Table 4.3: Using only generated data for training: This table shows the results of training
on data generated under snowy conditions and generated from various domains,
and compares the results to training on the hand-labeled data from sunny domain.
Training only on the generated data of the target domain significantly decreases
performance, likely due to the lower number of labels. Each cell contains the
Average Precision achieved when trained on the dataset in the row and tested on
the dataset in the column, the CloudyVal dataset is used for validation. Higher AP
values are better; AP values marked in bold mark the best result on this test set
among these experiments.

Train Dataset
Test Dataset

CloudyTest SnowyDay SnowyNight RoadBotics

Sunny 38.4 22.6 29.4 23.7
Sunny+Generatedsnowy 40.5 22.6 32.5 30.2
Sunny+Generatedsnowy,unique 39.2 22.9 28.3 26.2
Sunny+Generatedsnowy,reviewed 40.2 22.5 30.7 28.3
Sunny+Generatedall domains 42.5 23.6 27.8 30.4

Table 4.4: Training on hand-labeled + generated data: This table shows the results of dif-
ferent combinations of generated data and hand-labeled data on object detection
performance. The results show that adding generated data to the hand-labeled
data improves detection performance in most cases. Each cell contains the Average
Precision achieved when trained on the dataset in the row and tested on the dataset
in the column, the CloudyVal dataset is used for validation. Higher AP values are
better; AP values marked in bold mark the best result on this test set among these
experiments.

53

5 Discussion

The evaluation in the previous section shows that the proposed method is able to generate
high quality labels for object detection. However, it also highlights various shortcomings of
the method. This chapter elucidates one of the biggest limitations, analyses its causes, and
presents potential improvements.

5.1 Number of Generated Labels

The evaluation proves that generally, higher amounts of generated data can improve the
object detection results. However, the presented implementation produces labels for only a
small fraction of the provided unlabeled images. To understand what is causing this, all parts
of the proposed pipeline need to be investigated. The following overview analyzes which
parts of the pipeline have an influence on the number of generated labels, based on the data
from the BusEdge system from 21.01.2022:

• In the first step, nearby labels are grouped together to reduce workload for later steps
and unlabeled images from similar locations are sampled. This results in a total of
112 groups, referred to as scenes. These might either contain multiple images of the
same objects or of objects in close proximity to each other. While this step in itself does
not directly influence the number of labels that get produced, it has an impact on the
performance of the later steps. Especially, inaccuracy of the GPS can lead to problems
at a later step, as well as the time difference between the clock of the GPS and IMU
sensor and the clock of the cameras. By factoring in the miss-match in the time steps,
more accurate sensor data might be obtained. Furthermore, an exploration of different
algorithms to sample nearby unlabeled images might improve the reconstruction results.
Alternative algorithms include using GPS or velocity measurements to sample images.

• The method to sample unlabeled images for label generation leads to unsatisfactory
results. It is based on the GPS range within which the source labels in the respective
scene are located. While this generates satisfactory results for scenes that contain
multiple, distributed labels, some scenes showed to have a narrow range in which the
source labels are located. For 42 scenes no nearby images have been sampled, reducing
the number of scenes for which labels can be generated to 72. Investigation revealed
that for 16 of these 42 scenes no images have been sampled due to the source scene
containing only one image, meaning that all labels lie in an area of 0m2. No images are
sampled in this case, as the current implementation samples images only inside the area
in which source labels are located. Improving the sampling mechanism, for example,

54

5 Discussion

by sampling in a wider area for these scenes, could therefore potentially increase the
number of generated labels.

• In the Image Registration step, the current implementation ignores scenes with more
than 200 images to be registered, as these scenes would considerably increase the
workload and lead to longer generation times. In the given case, this reduces the
number of scenes used for labeling by 4, to 68. Choosing a different method to sample
unlabeled images could avoid this reduction, for example, by sampling only every
second image in these cases.

• The label generation method relies on features that lie inside of a bounding box of an
object in the source image and that are observed in the target image. For the used
labeled data, no feature points lie inside of one of the source bounding boxes in 9 scenes,
meaning that they cannot assist in generating labels for any unlabeled images matched
to them. Furthermore, for the used unlabeled data from 21.01.2022, for 24 scenes, no
shared features are contained in the extended reconstruction. Only this would allow
to generate labels based on them. This can have various reasons, such as the object
not being visible in the unlabeled data or the appearance shifting too much between
domains to find similar feature points. As a result, for this data, only 35 scenes can be
used for label generation. Adapting the reconstruction process might result in more
shared features, for example, by using a different feature detector than SIFT. Using a
different method to create the labels could also potentially improve how many labels
are generated, for example, the method could directly use information from the 3D
points and 3D camera locations to generate labels.

• To obtain high quality labels, Section 4.2 presents methods and choices of parameters
to increase label quality at the cost of reducing the number of generated labels. For
example, requiring the target image to contain as many annotated objects as the source
image reduces the number of scenes used for label generation by 7 to 28. Setting the
required number of shared feature points to 3 further reduces it by 16 scenes to 12
scenes.

• Each scene can potentially produce multiple labels of different objects, with differ-
ent perspectives and at different times of day. With the method Extended Sampling
presented in Section 3.3.4, out of the 12 scenes, a total of 15 labels were generated.

Figure 5.1 shows an overview of the main causes why only a small number of the potential
labels are generated. Multiple sets of unlabeled data can be used to generate additional
labels, for example, from different days or conditions. While these labels might contain the
same objects, varying conditions between data can lead to these images having diversity
and therefore can make this data useful for model training. This can be especially useful to
generate labels from rarely occurring events.

55

5 Discussion

Figure 5.1: Number of scenes used for label generation: The initial 204 labeled images get
grouped into 112 scenes. Due to the listed reasons, only 12 of these scenes can be
used for label generation, for the data from the bus from 21.01.2022. As each scene
can contain images of multiple trash cans and from varying angles and times of
day, a total of 88 labeled images could be obtained, or 15 labeled images that are
visually highly distinct.

56

6 Conclusion

6.1 Summary

In this thesis a novel method for automatic label generation has been designed, implemented,
and tested. The focus was on automated label generation in new domains where labeled
images are unavailable. This was achieved by locating the position of objects that are labeled
in the source domain and observed in both the source and target domains. The effectiveness
of the developed method has been demonstrated using data from the BusEdge system, a
transit bus equipped with cameras, and a GPS and IMU sensor. Using a dataset that contains
static trash cans in sunny conditions, the method was applied to automatically generate labels
for new domains, such as cloudy or snowy conditions. The demonstration proves that it is
indeed possible to generate labels for new domains by revisiting labeled objects. The analysis
in Section 4.2 reveals optimal parameters to generate the highest amount of labels given a
required level of accuracy. Remarkable improvements have been shown by incorporating
these automatically generated labels into the training process of Object Detection models.
Notably, on the datasets that contain images in the cloudy domain, an increase of up to
+4.1AP was achieved on the CloudyTest set and +6.4AP on the RoadBotics based dataset. In
the snowy domain, improvements of up to +1AP were obtained on the SnowyDay dataset and
+3.1AP on the SnowyNight dataset.

These remarkable improvements highlight the potential of the presented method to benefit
many applications of Computer Vision that involve detecting static objects. Moreover, by
cropping the labeled images to focus solely on the detected objects, the method can be
extended to other areas of Computer Vision, such as Object Classification.

6.2 Outlook

The results of the evaluation show remarkable improvements when using the automatically
labeled images in the training process. However, to fully exploit the potential of the proposed
method larger datasets need to be constructed. The discussion in Section 5 shows that many
parts of the pipeline can be optimized. Optimizing these parts will allow to generate more
labels with higher diversity. Furthermore, performance optimizations such as more efficient
selection of unlabeled images might allow the pipeline to work more efficiently and reduce
computational workload. Generating more labeled data and using bigger test sets will allow
to make better statements about how much our method can improve Domain Adaptation in
different use cases. It will be especially interesting to apply this method to other domains
and objects.

57

List of Figures

3.1 Overview of the Reconstruction and Label Generation Pipeline 23
3.2 Freedom Bus . 23
3.3 Overview of the BusEdge system . 24
3.4 Reconstruction process . 26
3.5 New label generation . 28
3.6 Reduction of overlapping generated bounding boxes 29

4.1 Generated data under sunny conditions . 32
4.2 Generated data under cloudy conditions . 33
4.3 Generated data under rainy conditions . 33
4.4 Generated data under snowy conditions . 34
4.5 Domain shift between times . 35
4.6 Generated data with occlusions . 35
4.7 Sample of an appearance change . 36
4.8 sample of a change of view . 36
4.9 Sample of a change of speed . 37
4.10 Issues in the reconstruction . 39
4.11 Generation issues due to multiple objects per image 40
4.12 Further samples of wrong labels . 41
4.13 Classification of the generated results from the pipeline 43
4.14 Influence of parameters of the pipeline on label quality 45
4.15 Sunny Dataset Sample . 48
4.16 Samples from the CloudyVal and CloudyTest datasets 48
4.17 Samples from the SnowyDay dataset . 49
4.18 Samples from the SnowyNight dataset . 49
4.19 Samples from the RoadBotics based dataset . 50

5.1 Number of scenes used for label generation . 56

58

List of Tables

4.1 Metadata of the camera data used for label generation 30
4.2 Overview of all datasets that have been used for training and testing. 52
4.3 Test results: Using only generated data for training 53
4.4 Test results: Training on hand-labeled + generated data 53

59

Acronyms

AL Active Learning.

AP COCO mean Average Precision.

BA Bundle Adjustment.

CNN Convolutional Neural Network.

Conv Fully Connected Layer.

DL Deep Learning.

EMA Exponential Moving Average.

FN False Negative.

FP False Positve.

FPN Feature Pyramid Network.

GAN Generative Adversarial Networks.

IMU Inertial Measurement Unit.

IoU Intersection over Union.

RANSAC Random sampling and consensus.

RoIs Regions of Interest.

RPN Region Proposal Network.

SfM Structure for Motion.

SLAM Simulatanous Localization and Mapping.

SOTA State of the Art.

TP True Positive.

60

Bibliography

[1] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. Dollár. Microsoft COCO: Common Objects in Context.
2015. arXiv: 1405.0312 [cs.CV].

[2] A. Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. 2009.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
“ImageNet: A large-scale hierarchical image database”.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–255.
doi: 10.1109/CVPR.2009.5206848.

[4] C. Ye, J. Dolan, R. Iyengar, J. Harkes, J. Wang, E. Ziqiang, Fang, H. Turki, J. Chiang,
X. Zhang, Y.-C. Kuo, Y.-T. Lin, and C. Ofodike.
“BusEdge: Efficient Live Video Analytics for Transit Buses via Edge Computing”. In:
2021.

[5] A. RoyChowdhury, P. Chakrabarty, A. Singh, S. Jin, H. Jiang, L. Cao, and
E. Learned-Miller.
“Automatic Adaptation of Object Detectors to New Domains Using Self-Training”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2019.

[6] K. Tang, V. Ramanathan, L. Fei-fei, and D. Koller.
“Shifting Weights: Adapting Object Detectors from Image to Video”.
In: Advances in Neural Information Processing Systems.
Ed. by F. Pereira, C. Burges, L. Bottou, and K. Weinberger. Vol. 25.
Curran Associates, Inc., 2012. url: https:
//proceedings.neurips.cc/paper/2012/file/26e359e83860db1d11b6acca57d8ea88-
Paper.pdf.

[7] S. Walsh, J. Ku, A. D. Pon, and S. L. Waslander.
“Leveraging Temporal Data for Automatic Labelling of Static Vehicles”.
In: 2020 17th Conference on Computer and Robot Vision (CRV). 2020, pp. 134–141.
doi: 10.1109/CRV50864.2020.00026.

[8] RoadBotics. RoadBotics Open Data Set.
https://www.roadbotics.com/2021/03/15/roadbotics-open-data-set/.
Accessed on 23.01.2023.

[9] H. Yu, I. Mineyev, L. R. Varshney, and J. A. Evans. Learning from One and Only One Shot.
2022. arXiv: 2201.08815 [cs.CV].

61

https://arxiv.org/abs/1405.0312
https://doi.org/10.1109/CVPR.2009.5206848
https://proceedings.neurips.cc/paper/2012/file/26e359e83860db1d11b6acca57d8ea88-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/26e359e83860db1d11b6acca57d8ea88-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/26e359e83860db1d11b6acca57d8ea88-Paper.pdf
https://doi.org/10.1109/CRV50864.2020.00026
https://www.roadbotics.com/2021/03/15/roadbotics-open-data-set/
https://arxiv.org/abs/2201.08815

Bibliography

[10] S. Dong, P. Wang, and K. Abbas. “A survey on deep learning and its applications”.
In: Computer Science Review 40 (2021), p. 100379. issn: 1574-0137.
doi: https://doi.org/10.1016/j.cosrev.2021.100379.
url: https://www.sciencedirect.com/science/article/pii/S1574013721000198.

[11] P. Viola and M. Jones.
“Rapid object detection using a boosted cascade of simple features”.
In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001. Vol. 1. 2001, pp. I–I. doi: 10.1109/CVPR.2001.990517.

[12] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detection”.
In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05). Vol. 1. 2005, 886–893 vol. 1. doi: 10.1109/CVPR.2005.177.

[13] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.
“You Only Look Once: Unified, Real-Time Object Detection”.
In: CoRR abs/1506.02640 (2015). arXiv: 1506.02640.
url: http://arxiv.org/abs/1506.02640.

[14] S. Ren, K. He, R. Girshick, and J. Sun.
“Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”.
In: Proceedings of the 28th International Conference on Neural Information Processing Systems
- Volume 1. NIPS’15. Montreal, Canada: MIT Press, 2015, pp. 91–99.

[15] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko.
End-to-End Object Detection with Transformers. 2020. arXiv: 2005.12872 [cs.CV].

[16] G. Jocher, A. Chaurasia, and J. Qiu. YOLO by Ultralytics. Version 8.0.0. Jan. 2023.
url: https://github.com/ultralytics/ultralytics.

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik.
Rich feature hierarchies for accurate object detection and semantic segmentation. 2014.
arXiv: 1311.2524 [cs.CV].

[18] R. Girshick. “Fast R-CNN”.
In: 2015 IEEE International Conference on Computer Vision (ICCV). 2015, pp. 1440–1448.
doi: 10.1109/ICCV.2015.169.

[19] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”.
In: arXiv preprint arXiv:1512.03385 (2015).

[20] K. Simonyan and A. Zisserman.
Very Deep Convolutional Networks for Large-Scale Image Recognition. 2015.
arXiv: 1409.1556 [cs.CV].

[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017.
arXiv: 1704.04861 [cs.CV].

62

https://doi.org/https://doi.org/10.1016/j.cosrev.2021.100379
https://www.sciencedirect.com/science/article/pii/S1574013721000198
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2005.177
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://arxiv.org/abs/2005.12872
https://github.com/ultralytics/ultralytics
https://arxiv.org/abs/1311.2524
https://doi.org/10.1109/ICCV.2015.169
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1704.04861

Bibliography

[22] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. “Mask R-CNN”.
In: CoRR abs/1703.06870 (2017). arXiv: 1703.06870.
url: http://arxiv.org/abs/1703.06870.

[23] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie.
“Feature Pyramid Networks for Object Detection”. In: CoRR abs/1612.03144 (2016).
arXiv: 1612.03144. url: http://arxiv.org/abs/1612.03144.

[24] J. Li, R. Zhang, Y. Liu, Z. Zhang, R. Fan, and W. Liu. “The Method of Static Semantic
Map Construction Based on Instance Segmentation and Dynamic Point Elimination”.
In: Electronics 10 (Aug. 2021), p. 1883. doi: 10.3390/electronics10161883.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. “Attention is All you Need”.
In: Advances in Neural Information Processing Systems. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30.
Curran Associates, Inc., 2017. url: https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[26] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo.
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. 2021.
arXiv: 2103.14030 [cs.CV].

[27] Z. Zong, G. Song, and Y. Liu. DETRs with Collaborative Hybrid Assignments Training.
2023. arXiv: 2211.12860 [cs.CV].

[28] Q. Chen, J. Wang, C. Han, S. Zhang, Z. Li, X. Chen, J. Chen, X. Wang, S. Han, G. Zhang,
H. Feng, K. Yao, J. Han, E. Ding, and J. Wang.
Group DETR v2: Strong Object Detector with Encoder-Decoder Pretraining. 2022.
arXiv: 2211.03594 [cs.CV].

[29] Y. Wei, H. Hu, Z. Xie, Z. Zhang, Y. Cao, J. Bao, D. Chen, and B. Guo.
Contrastive Learning Rivals Masked Image Modeling in Fine-tuning via Feature Distillation.
2022. arXiv: 2205.14141 [cs.CV].

[30] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar.
Masked-attention Mask Transformer for Universal Image Segmentation. 2022.
arXiv: 2112.01527 [cs.CV].

[31] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee.
“A survey of modern deep learning based object detection models”.
In: Digital Signal Processing 126 (2022), p. 103514. issn: 1051-2004.
doi: https://doi.org/10.1016/j.dsp.2022.103514.
url: https://www.sciencedirect.com/science/article/pii/S1051200422001312.

[32] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye. “Object Detection in 20 Years: A Survey”.
In: Proceedings of the IEEE 111.3 (2023), pp. 257–276.
doi: 10.1109/JPROC.2023.3238524.

[33] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2.
https://github.com/facebookresearch/detectron2. 2019.

63

https://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
https://doi.org/10.3390/electronics10161883
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2211.12860
https://arxiv.org/abs/2211.03594
https://arxiv.org/abs/2205.14141
https://arxiv.org/abs/2112.01527
https://doi.org/https://doi.org/10.1016/j.dsp.2022.103514
https://www.sciencedirect.com/science/article/pii/S1051200422001312
https://doi.org/10.1109/JPROC.2023.3238524
https://github.com/facebookresearch/detectron2

Bibliography

[34] P. Oza, V. A. Sindagi, V. VS, and V. M. Patel.
Unsupervised Domain Adaptation of Object Detectors: A Survey. 2021.
arXiv: 2105.13502 [cs.CV].

[35] M. Chen, K. Q. Weinberger, and J. Blitzer. “Co-Training for Domain Adaptation”.
In: Advances in Neural Information Processing Systems.
Ed. by J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger. Vol. 24.
Curran Associates, Inc., 2011. url: https://proceedings.neurips.cc/paper_files/
paper/2011/file/93fb9d4b16aa750c7475b6d601c35c2c-Paper.pdf.

[36] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling.
Semi-Supervised Learning with Deep Generative Models. 2014. arXiv: 1406.5298 [cs.LG].

[37] J. E. van Engelen and H. H. Hoos. “A survey on semi-supervised learning”.
In: Machine Learning 109.2 (Feb. 2020), pp. 373–440. issn: 1573-0565.
doi: 10.1007/s10994-019-05855-6.
url: https://doi.org/10.1007/s10994-019-05855-6.

[38] D. Zhang, J. Han, G. Cheng, and M.-H. Yang.
Weakly Supervised Object Localization and Detection: A Survey. 2021.
arXiv: 2104.07918 [cs.CV].

[39] X. Huang and S. Belongie.
Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. 2017.
arXiv: 1703.06868 [cs.CV].

[40] Q. Cai, Y. Pan, C.-W. Ngo, X. Tian, L. Duan, and T. Yao.
Exploring Object Relation in Mean Teacher for Cross-Domain Detection. 2019.
arXiv: 1904.11245 [cs.CV].

[41] Y. Gandelsman, A. Shocher, and M. Irani.
““Double-DIP”: Unsupervised Image Decomposition via Coupled Deep-Image-Priors”.
In: June 2019, pp. 11018–11027. doi: 10.1109/CVPR.2019.01128.

[42] D. Berman, T. treibitz, and S. Avidan. “Non-Local Image Dehazing”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
June 2016.

[43] R. Fattal. “Single Image Dehazing”. In: ACM Trans. Graph. 27.3 (Aug. 2008), pp. 1–9.
issn: 0730-0301. doi: 10.1145/1360612.1360671.
url: https://doi.org/10.1145/1360612.1360671.

[44] Y. Qu, Y. Chen, J. Huang, and Y. Xie. “Enhanced Pix2pix Dehazing Network”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2019.

[45] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Ferrari.
Training object class detectors with click supervision. 2017.
doi: 10.48550/ARXIV.1704.06189. url: https://arxiv.org/abs/1704.06189.

64

https://arxiv.org/abs/2105.13502
https://proceedings.neurips.cc/paper_files/paper/2011/file/93fb9d4b16aa750c7475b6d601c35c2c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/93fb9d4b16aa750c7475b6d601c35c2c-Paper.pdf
https://arxiv.org/abs/1406.5298
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1007/s10994-019-05855-6
https://arxiv.org/abs/2104.07918
https://arxiv.org/abs/1703.06868
https://arxiv.org/abs/1904.11245
https://doi.org/10.1109/CVPR.2019.01128
https://doi.org/10.1145/1360612.1360671
https://doi.org/10.1145/1360612.1360671
https://doi.org/10.48550/ARXIV.1704.06189
https://arxiv.org/abs/1704.06189

Bibliography

[46] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun.
“CARLA: An Open Urban Driving Simulator”.
In: Proceedings of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16.

[47] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez.
“The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic
Segmentation of Urban Scenes”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 3234–3243. doi: 10.1109/CVPR.2016.352.

[48] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and R. Vasudevan.
Driving in the Matrix: Can Virtual Worlds Replace Human-Generated Annotations for Real
World Tasks? 2016. doi: 10.48550/ARXIV.1610.01983.
url: https://arxiv.org/abs/1610.01983.

[49] D. Dwibedi, I. Misra, and M. Hebert.
Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection. 2017.
doi: 10.48550/ARXIV.1708.01642. url: https://arxiv.org/abs/1708.01642.

[50] T. Bu, X. Zhang, C. Mertz, and J. M. Dolan.
“CARLA Simulated Data for Rare Road Object Detection”.
In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). 2021,
pp. 2794–2801. doi: 10.1109/ITSC48978.2021.9564932.

[51] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and X. Wang.
“A Survey of Deep Active Learning”. In: ACM Comput. Surv. 54.9 (Oct. 2021).
issn: 0360-0300. doi: 10.1145/3472291. url: https://doi.org/10.1145/3472291.

[52] S. Kadam and V. Vaidya.
“Review and Analysis of Zero, One and Few Shot Learning Approaches”.
In: Intelligent Systems Design and Applications.
Ed. by A. Abraham, A. K. Cherukuri, P. Melin, and N. Gandhi.
Cham: Springer International Publishing, 2020, pp. 100–112. isbn: 978-3-030-16657-1.

[53] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He.
A Comprehensive Survey on Transfer Learning. 2020. arXiv: 1911.02685 [cs.LG].

[54] P. F. Alcantarilla, S. Stent, G. Ros, R. Arroyo, and R. Gherardi.
“Street-view change detection with deconvolutional networks”.
In: Autonomous Robots 42.7 (Oct. 2018), pp. 1301–1322. issn: 1573-7527.
doi: 10.1007/s10514-018-9734-5.
url: https://doi.org/10.1007/s10514-018-9734-5.

[55] H. Badino, D. Huber, and T. Kanade. “Visual topometric localization”.
In: 2011 IEEE Intelligent Vehicles Symposium (IV). 2011, pp. 794–799.
doi: 10.1109/IVS.2011.5940504.

[56] H. Badino, D. Huber, and T. Kanade. “Real-time topometric localization”.
In: 2012 IEEE International Conference on Robotics and Automation. 2012, pp. 1635–1642.
doi: 10.1109/ICRA.2012.6224716.

65

https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.48550/ARXIV.1610.01983
https://arxiv.org/abs/1610.01983
https://doi.org/10.48550/ARXIV.1708.01642
https://arxiv.org/abs/1708.01642
https://doi.org/10.1109/ITSC48978.2021.9564932
https://doi.org/10.1145/3472291
https://doi.org/10.1145/3472291
https://arxiv.org/abs/1911.02685
https://doi.org/10.1007/s10514-018-9734-5
https://doi.org/10.1007/s10514-018-9734-5
https://doi.org/10.1109/IVS.2011.5940504
https://doi.org/10.1109/ICRA.2012.6224716

Bibliography

[57] P. Fernández Alcantarilla.
“Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces”. In:
Sept. 2013. doi: 10.5244/C.27.13.

[58] M. Kaess, K. Ni, and F. Dellaert. “Flow separation for fast and robust stereo odometry”.
In: 2009 IEEE International Conference on Robotics and Automation. 2009, pp. 3539–3544.
doi: 10.1109/ROBOT.2009.5152333.

[59] E. Tola, V. Lepetit, and P. Fua.
“DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 32.5 (2010), pp. 815–830.
doi: 10.1109/TPAMI.2009.77.

[60] M. Van den Bergh, X. Boix, G. Roig, and L. Van Gool.
“SEEDS: Superpixels Extracted Via Energy-Driven Sampling”.
In: International Journal of Computer Vision 111.3 (Feb. 2015), pp. 298–314. issn: 1573-1405.
doi: 10.1007/s11263-014-0744-2.
url: https://doi.org/10.1007/s11263-014-0744-2.

[61] D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do.
“Fast Global Image Smoothing Based on Weighted Least Squares”.
In: IEEE Transactions on Image Processing 23.12 (2014), pp. 5638–5653.
doi: 10.1109/TIP.2014.2366600.

[62] J. Long, E. Shelhamer, and T. Darrell.
“Fully convolutional networks for semantic segmentation”.
In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Los Alamitos, CA, USA: IEEE Computer Society, June 2015, pp. 3431–3440.
doi: 10.1109/CVPR.2015.7298965.
url: https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298965.

[63] X. Ding, Y. Wang, R. Xiong, D. Li, L. Tang, H. Yin, and L. Zhao.
“Persistent Stereo Visual Localization on Cross-Modal Invariant Map”.
In: IEEE Transactions on Intelligent Transportation Systems 21.11 (2020), pp. 4646–4658.
doi: 10.1109/TITS.2019.2942760.

[64] M. Zhang, Y. Chen, and M. Li. “Vision-Aided Localization For Ground Robots”.
In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019,
pp. 2455–2461. doi: 10.1109/IROS40897.2019.8968521.

[65] D. Kiss-Illés, C. Barrado, and E. Salamí.
“GPS-SLAM: An Augmentation of the ORB-SLAM Algorithm”. In: Sensors 19.22 (2019).
issn: 1424-8220. doi: 10.3390/s19224973.
url: https://www.mdpi.com/1424-8220/19/22/4973.

[66] M. Servières, V. Renaudin, A. Dupuis, and N. Antigny. “Visual and Visual-Inertial
SLAM: State of the Art, Classification, and Experimental Benchmarking”.
In: Journal of Sensors 2021 (Feb. 2021), p. 2054828. issn: 1687-725X.
doi: 10.1155/2021/2054828. url: https://doi.org/10.1155/2021/2054828.

66

https://doi.org/10.5244/C.27.13
https://doi.org/10.1109/ROBOT.2009.5152333
https://doi.org/10.1109/TPAMI.2009.77
https://doi.org/10.1007/s11263-014-0744-2
https://doi.org/10.1007/s11263-014-0744-2
https://doi.org/10.1109/TIP.2014.2366600
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/TITS.2019.2942760
https://doi.org/10.1109/IROS40897.2019.8968521
https://doi.org/10.3390/s19224973
https://www.mdpi.com/1424-8220/19/22/4973
https://doi.org/10.1155/2021/2054828
https://doi.org/10.1155/2021/2054828

Bibliography

[67] T. Qin, P. Li, and S. Shen.
“VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator”.
In: IEEE Transactions on Robotics 34.4 (2018), pp. 1004–1020.
doi: 10.1109/TRO.2018.2853729.

[68] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart.
“Robust Visual Inertial Odometry Using a Direct EKF-Based Approach”. en. In:
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);
Conference Location: Hamburg, Germany; Conference Date: September 28 - October 2,
2015. Zürich: ETH-Zürich, 2015. doi: 10.3929/ethz-a-010566547.

[69] R. Mur-Artal and J. D. Tardós. “ORB-SLAM2: An Open-Source SLAM System for
Monocular, Stereo, and RGB-D Cameras”.
In: IEEE Transactions on Robotics 33.5 (2017), pp. 1255–1262.
doi: 10.1109/TRO.2017.2705103.

[70] J. Engel, V. Koltun, and D. Cremers. Direct Sparse Odometry. 2016.
doi: 10.48550/ARXIV.1607.02565. url: https://arxiv.org/abs/1607.02565.

[71] J. Engel, T. Schöps, and D. Cremers.
“LSD-SLAM: Large-Scale Direct Monocular SLAM”. In: Computer Vision – ECCV 2014.
Ed. by D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars.
Cham: Springer International Publishing, 2014, pp. 834–849. isbn: 978-3-319-10605-2.

[72] P. Fu, S. Li, T. Yu, X. Zhu, W. Yao, and X. Chen. “An Initialization Method for
Monocular Visual-Inertial Odometry Based on Uncertainty State”.
In: 2022 4th International Conference on Communications, Information System and Computer
Engineering (CISCE). 2022, pp. 522–528. doi: 10.1109/CISCE55963.2022.9851127.

[73] L. Hu, L. Sun, Y. Wang, K. Yue, Z. Li, and Z. Yan.
“Online Photometric Calibration of Optical Flow Visual-Inertial SLAM System”.
In: 2020 12th International Conference on Communication Software and Networks (ICCSN).
2020, pp. 13–17. doi: 10.1109/ICCSN49894.2020.9139073.

[74] X. Gao, R. Wang, N. Demmel, and D. Cremers.
“LDSO: Direct Sparse Odometry with Loop Closure”.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018,
pp. 2198–2204. doi: 10.1109/IROS.2018.8593376.

[75] P. Yin, A. Abuduweili, S. Zhao, C. Liu, and S. Scherer.
BioSLAM: A Bio-inspired Lifelong Memory System for General Place Recognition. 2022.
doi: 10.48550/ARXIV.2208.14543. url: https://arxiv.org/abs/2208.14543.

[76] M. Zhang, X. Xu, Y. Chen, and M. Li. “A Lightweight and Accurate Localization
Algorithm Using Multiple Inertial Measurement Units”.
In: IEEE Robotics and Automation Letters 5.2 (2020), pp. 1508–1515.
doi: 10.1109/LRA.2020.2969146.

67

https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.3929/ethz-a-010566547
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.48550/ARXIV.1607.02565
https://arxiv.org/abs/1607.02565
https://doi.org/10.1109/CISCE55963.2022.9851127
https://doi.org/10.1109/ICCSN49894.2020.9139073
https://doi.org/10.1109/IROS.2018.8593376
https://doi.org/10.48550/ARXIV.2208.14543
https://arxiv.org/abs/2208.14543
https://doi.org/10.1109/LRA.2020.2969146

Bibliography

[77] M. Bürki, L. Schaupp, M. Dymczyk, R. Dubé, C. Cadena, R. Siegwart, and J. Nieto.
“Vizard: Reliable visual localization for autonomous vehicles in urban outdoor
environments”. In: 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2019,
pp. 1124–1130.

[78] W. Wen, X. Bai, G. Zhang, S. Chen, F. Yuan, and L.-T. Hsu.
“Multi-Agent Collaborative GNSS/Camera/INS Integration Aided by Inter-Ranging for
Vehicular Navigation in Urban Areas”. In: IEEE Access 8 (2020), pp. 124323–124338.
doi: 10.1109/ACCESS.2020.3006210.

[79] R. Dubois, A. Eudes, and V. Frémont. “Sharing visual-inertial data for collaborative
decentralized simultaneous localization and mapping”.
In: Robotics and Autonomous Systems 148 (2022), p. 103933. issn: 0921-8890.
doi: https://doi.org/10.1016/j.robot.2021.103933.
url: https://www.sciencedirect.com/science/article/pii/S0921889021002177.

[80] W. Wen, X. Bai, G. Zhang, S. Chen, F. Yuan, and L.-T. Hsu.
“Multi-Agent Collaborative GNSS/Camera/INS Integration Aided by Inter-Ranging for
Vehicular Navigation in Urban Areas”. In: IEEE Access 8 (2020), pp. 124323–124338.
doi: 10.1109/ACCESS.2020.3006210.

[81] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschenski, and
R. Siegwart. “Maplab: An Open Framework for Research in Visual-Inertial Mapping
and Localization”.
In: IEEE Robotics and Automation Letters 3.3 (July 2018), pp. 1418–1425.
doi: 10.1109/lra.2018.2800113.
url: https://doi.org/10.1109%5C%2Flra.2018.2800113.

[82] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.
In: International Journal of Computer Vision 60.2 (Nov. 2004), pp. 91–110. issn: 1573-1405.
doi: 10.1023/B:VISI.0000029664.99615.94.
url: https://doi.org/10.1023/B:VISI.0000029664.99615.94.

[83] H. Bay, T. Tuytelaars, and L. Van Gool. “SURF: Speeded Up Robust Features”.
In: Computer Vision – ECCV 2006. Ed. by A. Leonardis, H. Bischof, and A. Pinz.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 404–417.
isbn: 978-3-540-33833-8.

[84] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski.
“ORB: An efficient alternative to SIFT or SURF”.
In: 2011 International Conference on Computer Vision. 2011, pp. 2564–2571.
doi: 10.1109/ICCV.2011.6126544.

[85] M. A. Fischler and R. C. Bolles. “Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography”.
In: Readings in Computer Vision. Ed. by M. A. Fischler and O. Firschein.
San Francisco (CA): Morgan Kaufmann, 1987, pp. 726–740. isbn: 978-0-08-051581-6.

68

https://doi.org/10.1109/ACCESS.2020.3006210
https://doi.org/https://doi.org/10.1016/j.robot.2021.103933
https://www.sciencedirect.com/science/article/pii/S0921889021002177
https://doi.org/10.1109/ACCESS.2020.3006210
https://doi.org/10.1109/lra.2018.2800113
https://doi.org/10.1109%5C%2Flra.2018.2800113
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/ICCV.2011.6126544

Bibliography

doi: https://doi.org/10.1016/B978-0-08-051581-6.50070-2. url:
https://www.sciencedirect.com/science/article/pii/B9780080515816500702.

[86] J. L. Schönberger and J.-M. Frahm. “Structure-from-Motion Revisited”.
In: Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[87] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm.
“Pixelwise View Selection for Unstructured Multi-View Stereo”.
In: European Conference on Computer Vision (ECCV). 2016.

[88] M. Kazhdan and H. Hoppe. “Screened Poisson Surface Reconstruction”.
In: ACM Trans. Graph. 32.3 (July 2013). issn: 0730-0301. doi: 10.1145/2487228.2487237.
url: https://doi.org/10.1145/2487228.2487237.

[89] E. Rotondo and C. Mertz.
“Detecting and Classifying Waste Bin Garbage Levels Along Transit Bus Routes”.
In: RISS Working Journal (2021).

[90] T. Storm and C. Mertz. Detecting and Classifying Bus Stop Trash Cans. 2022.

[91] E. Rotondo and C. Mertz. Waste Bin Detection Dataset (RISS2021).
https://www.kaggle.com/datasets/elirotondo/waste-bin-detection-dataset-
riss-2021. Accessed on 23.01.2023.

[92] J. L. Schönberger. COLMAP Tutorial. https://colmap.github.io/tutorial.html.
Accessed on 01.05.2023.

[93] D. Gong, J. Yang, L. Liu, Y. Zhang, I. Reid, C. Shen, A. van den Hengel, and Q. Shi.
“From Motion Blur to Motion Flow: A Deep Learning Solution for Removing
Heterogeneous Motion Blur”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
July 2017.

69

https://doi.org/https://doi.org/10.1016/B978-0-08-051581-6.50070-2
https://www.sciencedirect.com/science/article/pii/B9780080515816500702
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/2487228.2487237
https://www.kaggle.com/datasets/elirotondo/waste-bin-detection-dataset-riss-2021
https://www.kaggle.com/datasets/elirotondo/waste-bin-detection-dataset-riss-2021
https://colmap.github.io/tutorial.html

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Contribution
	Outline

	Related Works
	Deep Learning
	Object Detection
	YOLO
	Two-Stage Detectors
	Transformer-Based Object Detectors
	Further Object Detectors
	Detectron2

	Domain Adaptation
	Unsupervised Domain Adaptation
	Pseudo-Label based Self-Training
	Dehazing

	Data Acquisition
	Manual Labeling Methods
	Synthetic Data

	Learning Strategies
	Active Learning
	One Shot Learning
	Transfer Learning

	Similar Approaches
	Automatic Label Generation
	Scene Change Detection

	Localization and Scene Reconstruction
	Localization
	SLAM
	Visual and Visual Inertial SLAM
	SLAM Frameworks
	Structure for Motion
	COLMAP

	Implementation
	BusEdge Dataset
	Reconstruction Pipeline
	Input
	Image Grouping
	Sparse Reconstruction

	Label Generation Pipeline
	Input
	Image Grouping
	Image Matching
	Label Generation

	Evaluation
	Generation Results
	Learnable Domains
	Analysis of Faulty Generated Labels

	Analysis of Label Quality
	Setup
	Label Quality without Enhancements
	Enhancement 1: Requiring a Minimum Number of Labels
	Enhancement 2: Using Only the Source Camera
	Influence of the Box Generation Parameters

	Training on the Generated Data
	Training Setup
	Datasets
	Training Results

	Discussion
	Number of Generated Labels

	Conclusion
	Summary
	Outlook

	List of Figures
	List of Tables
	Acronyms
	Bibliography

