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Chapter 1

Introduction

Future transportation system is expected to be in a hybrid form instead of the basic road-
vehicle-passenger relationship that is still very common in most transportation systems.
That is to say, future transportation will cover additional scenarios and different types of
vehicles with partial or full automation. A very representative example is the first-mile
and last-mile transportation (FLT), which provides the service that cannot be achieved by
traditional transportation system because of how the geometrical structures were designed
in certain areas, for example, large squares, university campuses, and old small streets.
This type of service can be achieved by vehicles of smaller size such as golf carts, mobility
scooters, and electric wheelchairs. This is especially helpful for people with limited mo-
bility. One essential challenge of developing the systems of FLT is to make it capable of
avoiding pedestrians, as pedestrians are very common in such shared space scenarios and
the interaction between the vehicle and pedestrians is almost unavoidable.

Improving pedestrian safety has been regarded as a long-existing issue in the trans-
portation system. A recent released report of Traffic Safety Facts by NHTSA in March
2019 [39] revealed that the percentage of pedestrian fatalities was increasing from 2008
to 2017, with 12% in 2008 but 16% in 2017, and this was happening in the background
of the advanced driver-assistance systems (ADAS) being mature. This implies that the
state-of-the-art technologies for protecting pedestrians are not good enough, or not as fast
as the speed of development of other safety-related functions. Nowadays with the boost
of automated driving technologies that are trying to totally remove human drivers, the
pedestrian safety becomes increasingly important, as now it is the intelligent system on the
vehicle that interacts with pedestrians but not the human driver any more. Therefore, the
intelligent system needs to understand the behavior, or possibly the interactive and col-
lective behavior of multiple pedestrians in shared space scenarios of the FLT applications,
so that the system can effectively control the automated vehicle.

This project was conducted under the background of the Ohio State University’s ini-
tiative of a network of ”on demand automated vehicles”, a.k.a., Smart Mobile Operation:
OSU Transportation Hub (SMOOTH) [52, 16] since 2014. The SMOOTH demonstrated
using a closed circuit of automated shuttles driving within the Ohio State University
main campus and two selected stops within the outer campus. The automated shuttles
have Vehicle to Vehicle (V2V) communication and are equipped with vulnerable road user
detection technology, enabling them to function in pedestrian zones on campus. Contem-
poraneous similar projects include a European project CityMobil2 [8], which has been
setting up a pilot platform for automated road transport systems that are made up of
vehicles operating without drivers and providing service in areas of low or dispersed de-
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Figure 1.1: SMOOTH architecture and the integration of social force based vehicle-
pedestrian interaction.

mand, and the LUTZ Pathfinder Project [50] under Transport Systems Catapult in UK,
which has been developing driverless pods in public streets.

Fig. 1.1 shows the architecture of SMOOTH concept design that integrates an in-
teractive pedestrian motion model. It primarily consists a transportation hub, several
automated vehicles, and a mobile-first web-based application. The transportation hub
is responsible for vehicle scheduling, route planning, infrastructure sensor data process-
ing, communication, and web hosting. Three pilot automated vehicles of different sizes
equipped with SMOOTH techniques are a motorized wheelchair, a single-person mobil-
ity scooter, and a four-passenger golf cart. The web-based application is available to all
smart device, where users can log into their accounts and schedule an automated vehicle
for service. The vehicle-pedestrian interaction module/simulator is designed to predict
pedestrians’ behavior, which is subsequently utilized by the automated vehicle to plan its
motion and execute the control action. Specifically, the vehicle-pedestrian interaction sim-
ulator works according to the following steps. First, sensors such as LIDAR, radar, cam-
eras, ultrasonic and GPS, and communication approaches such as V2V and V2I recognize
the surrounding environment. Once the received data is processed, information including
each pedestrian’s position, velocity and potential destination can be identified and made
available to the vehicle-pedestrian interaction simulator. Although in reality, it would be
difficult to obtain such exact information due to occlusions and sensor noises. Here we
assume that all pedestrian information is available because precise pedestrian detection
is another research topic. With pedestrian information, pedestrian behaviors (possible
moving trajectories) are simulated based on current configurations of both pedestrians
and the vehicle. Using the simulation results, vehicle motion planner can determine more
reliable and efficient local reactive decisions and perform real-time local path planning,
which is a complement or an addition to global path planning. Both the global and local
path plannings constitute the high-level controller, hence vehicle control is achieved and
the corresponding action is executed.

The rest of the report will focus on the interactive pedestrian motion model, i.e.,
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modeling, simulation, and application of multi-pedestrian interaction with vehicles. We
modified the social force pedestrian motion model [22] by explicitly designing different
types of vehicle effect on pedestrian behavior [56, 59, 60], which are detailed in chapter 2.
We also established a dataset that captures the trajectories of the vehicle and pedestrians
in fundamental vehicle-crowd interaction scenarios [57], which is described in chapter 3.
Using the established dataset, the calibration of the proposed model [60] is demonstrated
in chapter 4. A framework and several specific approaches to apply the proposed model
into vehicle driving efficiency, along with several case studies [58] of vehicle-pedestrian
interaction were proposed in chapter 5. Conclusions and future works are discussed in
chapter 6.
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Chapter 2

Social Force Modeling of
Vehicle-Pedestrian Interaction

2.1 Background

The mathematical modeling of pedestrian motion began with pedestrian-pedestrian inter-
action, i.e., only the effect from surrounding pedestrians is considered. The pioneer work
was the social force model [22], which was originally designed for crowd motion/flow simu-
lation and analysis. It can reproduce typical crowd motion patterns such as lane formation
and fluctuation, as summarized in a paper reviewing fundamental phenomena of pedes-
trian crowd [46]. Later on, mathematical modelings such as dynamic programming [24],
discrete choice [2], cognitive method [37], linear trajectory avoidance [42], and heuristic
with Voronoi diagram [54] were proposed. They were somehow derived from social force
model but with more emphasis on computational efficiency and simplicity. These models
rely on verified handcrafted mathematical rules to describe the interaction. In addition to
the above rule-based models, neural network models that build on long-short term mem-
ory (LSTM) [1, 55, 20] have recently become an alternative choice of modeling pedestrian
motion. Although the application of neural network models is more about motion predic-
tion than simulation, essentially both rule-based models and neural network models share
the same feature of addressing pedestrian motion.

Now, with vehicle considered, the effect of vehicle should be somehow incorporated
into the pure pedestrian motion models. Some works proposed the modeling of vehicle
influence on individual pedestrians [15, 53, 19]. They did not specifically consider multi-
pedestrian interaction with vehicles, i.e., the effect of surrounding pedestrians was usually
neglected, and the scenarios were usually restricted to crosswalks. The general vehicle-
pedestrian interaction is more complicated than the interaction in restricted scenarios.
Social force model is one of the options that can easily incorporate the effect of vehicle.
This is because in social force model a pedestrian is regarded as a point mass agent,
and dynamics of the agent is subject to a summation of individual effects from different
sources, e.g., attraction to the destination, repulsion to surrounding pedestrians, etc. The
effect of vehicle can be designed as an additional source into the summation, which is
straightforward and effective.

Social force model has been continually improved and modified since its introduction
in [22]. The original model only considered the repulsion and attraction of surrounding
pedestrians, as well as the attraction of the destination. Later on, collision force was
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added to account for extremely crowded situations such as emergency evacuation or pil-
grimage [21]. In [61], the authors summarized and compared different specifications of the
effect of surrounding pedestrians.

Different approaches have been attempted to add vehicle influence into social force
model. Some works [3, 63, 62] modeled the vehicle influence as an additional force added
on the pedestrian dynamics. The additional force not only considered the relative positions
and velocities of the vehicle as in the effect of surrounding pedestrians, other vehicle
features such as size, shape, and restriction on motion were also considered. To address
the complexity introduced by vehicle influence, multi-layer models that contain social
force were proposed [44, 3, 62, 26, 48, 41]. Social force was embedded into a layer usually
referred to as behavioral layer. Above the behavioral layer, there is another layer mainly
responsible for finding a global route or intermediate destinations that can guide the
pedestrian motion. The social force of the behavioral layer is only responsible for adjusting
local motion. For example, in [48], the proposed model consists of 3 different layers that are
primarily responsible for scene context effect, local motion of the agents, and road conflicts,
respectively. Vehicle influence does not only exist in the layer of social force, but part of
the influence is also described in other layers in combination with specific approaches, for
example, conflict resolving via ’shadow’ method in [3], game theory in [48, 26], and long
range and short range conflicts in [44, 41].

Our work, however, applied a single layer social force model. Instead of accounting for
the complexity introduced by the interaction of different types of road users, the proposed
model focuses on the effect of the vehicle itself inside the social force model. Moreover, the
model aims to describe fundamental interaction scenarios of multi-pedestrian interaction
with vehicle; hence the model doesn’t consider any scene information, which is the main
reason and the basis of applying multi-layer models.

The proposed social force model mathematically describes the pedestrian motion that
is primarily affected by multiple surrounding pedestrians and a low speed vehicle. The
model introduced a general vehicle-pedestrian interaction design that was validated by
fundamental interaction scenarios of multiple pedestrians coming from different directions
and interacting with the vehicle (front, back, and lateral interaction).

In the project, the proposed social model went through three versions. The major
difference among these versions is the design of vehicle effect, with the first version being
a simple elliptic effect [56], the second version using three-area effect [59], and the third
and the latest version considering anisotropy [60]. Minor changes of the model such as the
constraints of the speed/acceleration also exist in different version. This report will focus
on the latest version of the proposed social force model, while the the design of the first
two versions are summarized.

2.2 Problem Formulation

The fundamental problem is to design a social force based mathematical model that de-
scribes pedestrian motion in mixed traffic scenarios, primarily considering the effect of
surrounding pedestrians and vehicles. The model should be able to generate future mo-
tion of the ego pedestrian based on the immediate status of the pedestrian. That is,
given the current states of all interacting agents (positions and velocities of all surround-
ing pedestrians and vehicles), the associated model should output the next step’s position
and velocity of the ego pedestrian. With each individual pedestrian assigned with a model,
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trajectories of all pedestrians can be generated by iteratively applying the models. The
generated trajectories are also referred to as the predicted motion of the pedestrians.

Since multi-pedestrian interaction with a low speed vehicle is primarily considered in
this work, the interaction scenarios are defined such that there are at least 5 pedestrians
and the vehicle speed should be less than 4m/s. The pedestrian number and the vehicle
speed were empirically determined, which may vary in other circumstances. Multiple
pedestrians are also referred to as crowd in this work. The low speed vehicle applies in
most shared space scenarios, in which pedestrians and vehicles are mixed together to share
the right of the road/space and the vehicle usually pays more attention to the pedestrians.
The space layout is assumed to be empty, hence no scene information. This configuration
releases the vehicle from being restricted in lanes so that a variety of vehicle maneuvers
are available.

Mathematically, if we define, at time t, the state (position and velocity) of pedestrian
i at as ~xit = (xit, y

i
t, v

i
x,t, v

i
y,t)

T , the state (position, speed, and orientation) of vehicle as ~xvt ,
the model can be expressed as:

~xit+1 = fi
(
~xit, {~x

j 6=i
t }, ~xvt

)
(2.1)

This work does not focus on the generation of vehicle motion; hence the vehicle state
{xvt , ∀t} is assumed to be known all the time. It is either directly obtained from the tra-
jectory dataset or intentionally synthesized. When intentionally synthesized, a kinematic
bicycle model with a pure pursuit steering controller and a PID speed controller is applied
to generate realistic vehicle motion.

2.3 Pedestrian Motion Modeling

2.3.1 Fundamental Functions

Some fundamental functions are described in this subsection, because they serve as essen-
tial components in the proposed social force pedestrian motion model. They are anisotropy
functions and decaying functions. Anisotropy functions are used to describe different effect
of the interacting agents from different directions. For example, a pedestrian right in front
of the ego pedestrian obviously has bigger influence than a pedestrian on the left or right
side of the ego pedestrian. Decaying functions are used to describe the different effect of
different interaction distances. For example, a vehicle that is very far away from the ego
pedestrian has merely no influence, while a vehicle that is very close to the ego pedestrian
surely has large influence. Both types of functions have different specifications, which are
selected based on the specific requirement of each component of the model.

Anisotropy Functions

Anisotropy functions take input as the angle between the ego pedestrian’s walking direction
and the direction to the target agent that is interacting with the ego pedestrian. The
output of anisotropy function is a scalar ranging from 0 to 1, representing how the influence
attenuates as the angle increases.

Three different types of anisotropies (linear, sinusoidal, and exponential) are used in
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Figure 2.1: Illustration of different anisotropies. Columns from left to right: linear
anisotropy, sinusoidal anisotropy, and exponential anisotropy. Different parameter val-
ues generate different anisotropies.

this work, as shown in figure 2.1, with the expressions:

Alin(φ, λ) = max{1− λ · |φ|
π
, 0} (2.2)

Asin(φ, λ) = λ+ (1− λ) · 1 + cos |φ|
2

(2.3)

Aexp(φ, λ) = exp (−λ · |φ|) , (2.4)

where φ ∈ [−π, π] is a variable representing the interaction angle and λ is the parameter
adjusting the anisotropy characteristics. The major difference among these anisotropies
is the rate of attenuation at the angles near 0. For example, as |φ| increases from 0 to a
certain angle (e.g. 90 degrees), exponential anisotropy attenuates very fast, but sinusoidal
anisotropy attenuates relatively slow (see the second row in figure 2.1). This difference
plays an important role in modeling pedestrian’s reaction to a target agent.

Decaying Functions

Decaying functions take input as the distance between the ego pedestrian to the target
agent. The output is the magnitude of the influence, i.e., the force magnitude applied
to the point mass dynamics. The magnitude decreases monotonically as the distance
increases.

Exponential function, as shown in the left of figure 2.2, is a common option in most
social force models, due to its simplicity and effectiveness:

fexp(d,A,B) = A exp (−Bd), (2.5)
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Figure 2.2: Illustration of decaying functions. Left: exponential decaying with different
parameter values; Middle: linear function with smoothing with different parameter values
while α is fixed; Right: linear function with smoothing with different parameter values
while M and d0 is fixed.

where d is a variable representing the distance between the ego pedestrian and the target
agent, and A,B are parameters adjusting the characteristics of the decaying relationship.

Another type of decaying function, as shown in the middle of figure 2.2, describes a
linear relationship with smoothness modification [12] on the point where the magnitude
reaches zero:

flm(d, d0,M, σ) =
M

2d0
·
(
d0 − d+

√
(d0 − d)2 + σ

)
, (2.6)

where d is again a variable representing the distance, M is the force magnitude when
the distance reaches zero (physical touch happens), σ is the parameter that modifies the
smoothness around zero magnitude, and d0 is a threshold distance where the magnitude
almost reaches zero (equals zero if σ = 0).

The exponential function is effective in most situations, which has been demonstrated
in various social force based models. In an exponential function, the rate of decaying is still
exponential, which is helpful in some situations. For example, in the scenario of a vehicle
approaching the ego pedestrian, when the distance from the ego pedestrian to the vehicle
is very close, the exponential increase of the magnitude of the vehicle influence quickly
drives the pedestrian away from the vehicle, which is normal due to the severe consequence
of potential collision. However, the exponential relationship can be unrealistic in other
situations. For example, the change of effect of a surrounding pedestrian from 4 meters
to 2 meters prefers a more linear relationship than an exponential relationship.

2.3.2 Pedestrian Dynamics

Pedestrians are regarded as point mass agents in social force model. The motion of an
agent is governed by Newtonian dynamics with the state of position xi, yi and velocity
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vix, v
i
y expressed as:

ẋi = vix

ẏi = viy

v̇ix = aix =
F ix
mi

v̇iy = aiy =
F iy
mi
, (2.7)

where mi is the mass of pedestrian i, ~F it = (F ix,t, F
i
y,t)

T is the total force applied on the
point mass. The above dynamics is discretized by a discretization time of ∆t in this work.
Therefore, a state-space vector ~xit = (xit, y

i
t, v

i
x,t, v

i
y,t)

T at time t is updated at every time

step after calculating the total force ~F it = (F ix,t, F
i
y,t)

T based on the immediate interaction
status.

According to the definition of social force model, the total force ~F it is the summation
of multi-source effect:

~F it = ~F i,pedt + ~F i,veht + ~F i,dest , (2.8)

where ~F i,pedt is the pedestrian-pedestrian interaction force (effect of surrounding pedes-

trians), ~F i,veh the vehicle-pedestrian interaction force (effect of vehicle), and ~F i,dest the
destination force (effect of attraction of destination), all of which are detailed in the fol-
lowing sections.

Although each pedestrian is viewed as a point-mass agent, a virtual radius of Ri is con-
sidered when calculating the distance between the ego pedestrian and a target pedestrian.
This allows two pedestrians to overlap a little bit with each other, which is regarded as the
effect of pushing and squeezing. Therefore, the boundary distance between two pedestrians
are defined as:

dijt = |~rijt | −Ri −Rj , (2.9)

where ~rijt := (xjt , y
j
t )
T − (xit, y

i
t)
T is a vector that points from the ego pedestrian i to the

target pedestrian j.

Constraints

Limits of velocity and acceleration are imposed on pedestrian motion. There is an absolute
limit beyond which the pedestrian can never reach due to the physiological limit of human
beings. In normal conditions, pedestrians don’t reach the limit unless something emergent
happens, e.g. a vehicle is approaching in a dangerous way. Pedestrians also tend to restrict
the velocities and accelerations within a certain range in order to walk comfortably in free
flow or to adapt particular situations, e.g., when the pedestrian density increases they
naturally slow down. Therefore, the constraints applied on both the velocity and the
acceleration are time-dependent. In this work, the constraints account for the vehicle-
pedestrian interaction force ~F i,veht and the reciprocal of nearby pedestrian density, i.e.,
the sparseness of nearby pedestrians Sit :

|~vit| ≤ vilim,t
(
~F i,veht , Sit

)
(2.10)

|~ait| ≤ ailim,t
(
~F i,veht , Sit

)
, (2.11)
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Pedestrian 

Pedestrian 

Ego pedestrian 

(a) Fan area OS
t (b) Sparseness

Figure 2.3: Sparseness and the corresponding fan area. The sparseness is plotted based
on the calibrated parameters shown in table 4.1.

where

Sit := min
{ dijt

Alin(φijt , λ
S)

}
,∀j ∈ OS

t . (2.12)

φijt := φ<~vit,~nij>
is the angle between the ego pedestrian’s walking direction and the direc-

tion to the target agent, pedestrian j. λS is the anisotropy parameter. OS
t defines a fan

area centered at the ego pedestrian’s walking direction with a radius of threshold TS and
a field of view φS , which are illustrated in figure 2.3a. The sparseness value of a pedestrian
depends on the relative position of the target, as illustrated in figure 2.3b.

In this work, 6 parameters are defined to model the limits of the velocity and the
acceleration. Specifically, they are maximum velocity limit vmax = 2.5m/s, normal ve-
locity limit vnor = 1.7m/s, dense velocity limit vden = 0.3m/s, maximum acceleration
limit amax = 5m/s2, normal acceleration limit anor = 2.5m/s2, and dense acceleration
limit aden = 0.68m/s2. These values were determined according to the statistical findings
in existing studies [6][31][36][30]. Both vilim,t and ailim,t are designed such that when the
sparseness is small, pedestrians are restricted to small velocity and acceleration, but when
the vehicle influence is large, the limits increase based on certain sparseness level. The
limits never exceed the maximum values vmax and amax. The relationships are expressed
as:

vilim,t(
~F i,veh, Sit) = min(βSv ·max(Sit − S0

v , 0), vnor − vden) + vden

+ min(βFv ·max(|~F i,veh| − F 0
v , 0), vmax − vnor) (2.13)

ailim,t(
~F i,veh, Sit) = min(βSa ·max(Sit − S0

a, 0), anor − aden) + aden

+ min(βFa ·max(|~F i,veh| − F 0
a , 0), amax − anor), (2.14)

where βSv , S
0
v , β

F
v , F

0
v , β

S
a , S

0
a, β

F
a , and F 0

a are parameters that adjust the characteristics of
the relationship. Figure 2.4 gives an example of the constraints on the velocity and the
acceleration.

2.3.3 Surrounding Pedestrian Effect

The pedestrian-pedestrian interaction force accounts for the effect of all surrounding pedes-
trians. Therefore, for the ego pedestrian i, the total interaction force is the summation of
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Figure 2.4: The constraints on the acceleration and velocity, which are plotted based on
the calibrated parameters shown in table 4.1.

every individual interaction force. An individual interaction force is further divided into
physical collision force ~F ij,colt and virtual interaction force ~F ij,virt :

~F i,pedt =
∑
j∈Q(i)

(
~F ij,colt + ~F ij,virt

)
, (2.15)

where j ∈ Q(i) denotes the indexes of surrounding pedestrians that belong to ego pedes-
trian i.

Physical Collision Force

Physical collision force is effective only when the distance between two pedestrians is very
close or the physical collision happens. This force allows the ego pedestrian to push the
target pedestrian, especially in emergent situations such as a vehicle approaching in a
dangerous way. It also describes extremely crowded situations as studied in [21]. The
collision force is expressed as:

~F ij,colt = −αcol ·min{dijt , 0} · ~n
ij
t , (2.16)

where ~nijt is the unit vector pointing from the ego pedestrian i to the target pedestrian
j, αcol is the parameter. The collision force is effective when the boundary distance dijt is
negative.

Virtual Interaction Force

Virtual interaction force makes the ego pedestrian to keep a certain ’social’ distance to
the target pedestrian. This is achieved by the combination of a repulsive force and a
navigational force. Both of them are formulated as forces of which the magnitude and the
direction calculated based on the temporal-spatial relationship between the ego and the
target:

~F ij,virt = ~F ij,rept + ~F ij,navt , (2.17)

where

~F ij,rept = −flm(dijt , d
rep
0 ,M rep, σrep) · Asin(φijt , λ

rep) · ~nijt (2.18)

~F ij,navt = flm(dijt , d
nav
0 ,Mnav, σnav) · Aexp(φijv,t, λnav) · ~n

ij
⊥,t. (2.19)
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Figure 2.5: Illustration of navigational force. Blue circle indicates the ego pedestrian, red
circle indicates the target pedestrian. The relative velocity (in blue color) represents the
relative motion from the ego pedestrian to the target pedestrian.

As illustrated in figure 2.5, φijv,t := φ
<~vjit ,~n

ij
t >

is the angle between the direction from ego

pedestrian to the target pedestrian, ~nijt , and the direction of the relative velocity from
pedestrian i to pedestrian j (in terms of pedestrian j’s coordinate), ~vjit = ~vit − ~v

j
t . The

unit vector ~nij⊥,t is perpendicular to ~nijt . Here ~nij⊥,t has two options (left or right side),

depending on which side the φijv,t is.
The repulsion force purely considers the distance between the ego pedestrian and the

target pedestrian, which can be interpreted as a social rule of giving enough personal space
when walking in a crowd. The linear decaying function with smoothing is applied with
the assumption that the repulsion force is more of a linear relationship.

The navigation force is primarily designed for anticipating and avoiding potential col-
lision. It considers both the positions and the velocities of two interacting pedestrians.
The navigation is dependent on the relative motion (velocity) between the two interacting
pedestrians. If the relative motion indicates that the ego pedestrian is moving toward
the target pedestrian (φijv,t is around zero), then a navigation force with the direction of

~nij⊥,t is generated to avoid the potential collision. The magnitude is calculated based on
the distance. An anisotropy is applied to reduce the magnitude when the possibility of
collision is becoming small due to a large φijv,t.

2.3.4 Destination Force

Destination force assumes that each pedestrian has a desired walking speed in mind. The
pedestrian tries to keep the desired speed as much as possible by generating the destination
force:

~F i,dest = βdes · kdes · (~vit − ~v
i,d
t ), (2.20)

where kdes is a parameter that can be viewed as feedback gain for the destination force.
The desired speed ~vi,dt is always pointing from the ego pedestrian to the destination and
is updated at every time step.

~vi,dt = vi0 ·
~xi,dest − ~xit√

|~xi,dest − ~xit|2 + (σdes)2
, (2.21)
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Figure 2.6: Illustration of the elliptic vehicle effect.

where the parameter vi0 represents the desired speed and the parameter σdes reduces the
magnitude of desired speed as the pedestrian reaches the destination [12]. βdes ∈ [0, 1] in

equation 2.20 is a function of |~F i,veht | that adjusts the destination force when the effect of
vehicle becomes large:

βdes = max{min{ 1

F2 − F1
· (|~F i,veht | − F2), 1}, 0}. (2.22)

It decreases from 1 to 0 with two parameters F1, F2 as thresholds. This design allows the
pedestrian to switch from reaching the destination to avoiding the collision with vehicle,
which is the case in realistic situations.

It is necessary for the destination force to have a destination or temporal goal. In
real-time application, it is estimated based on the historical pedestrian trajectory and the
scenario layout. If the model is being evaluated based on recorded pedestrian trajectory
data, the destination is usually available or can be estimated based on the entire recorded
trajectory. If the model is used for the simulation of self-designed scenarios, the destination
is usually pre-defined together with the scenario.

2.3.5 Vehicle Effect

Elliptic Effect

In the first version of our vehicle effect design, the vehicle effect is modeled as an elliptic
shape. Fig. 2.6 shows the repulsive effect ~F i,veht from the vehicle to the pedestrian. To
create such an ellipse, we need two foci and a point on the boundary of the ellipse. The
two points are defined as the rear point of the vehicle ~Prear, and the expected front point
~Pexpected. The distance between ~Pexpected to ~Pfront is calculated based on the vehicle’s
current longitudinal velocity, so that the faster the vehicle, the longer the distance between
two foci. The position of the pedestrian is used as the point on the boundary of the ellipse.
The vehicle effect force is calculated by the following equation:

~F i,veht = k1exp(−k2b)~n, (2.23)

where b is the length of semi-minor axis of the ellipse, k1, k2 are parameters, and ~n is the
force direction which is perpendicular to the tangent line of the ellipse at the position of
the pedestrian. The detailed modeling and the simulation results that correspond to the
elliptic vehicle effect can be found in [56].
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Figure 2.7: Illustration of the vehicle influence modeling

Three-area Effect

The second version of the vehicle effect divides the surrounding space of the vehicle into
3 areas: front area, body area, and rear area.

Considering the local coordinates with the origin at the center of vehicle and assuming
that the vehicle is heading to the positive x-axis. The vehicle influence is described as the
multiplication of longitudinal effect fx, lateral effect fy, and direction ~n:

~F i,veht = fx · fy · ~n. (2.24)

Let ξ = (ξ1, ξ2)
T be the position of a pedestrian in the local coordinates. Different ξ

characterize different areas: the front area (ξ1 > 0), the body area (−dr < ξ1 < 0), and
the rear area (ξ1 < −dr), as shown in figure 2.7.

In the front area, an outward angle η defines the major influence region, which is
enclosed by the red dashed line in figure 2.7. Both fx and fy are modeled as follows:

fx =
1

2dx

(
−(ξ1 − dx) +

√
(ξ1 − dx)2

)
(2.25)

fy = Ay · exp (−by(|ξ2| − dy)) (2.26)

dx = d0x + α · |vv| (2.27)

dy = d0y + ξ1 tan η (2.28)

~n =

[
cos(sign(ξ2) · ζ(ξ1))
sin(sign(ξ2) · ζ(ξ1))

]
(2.29)

ζ =

{
π
2 −∆ζm · dx−dm−ξ1dx−dm ,∀ξ1 > dm
π
2 −∆ζm · ξ1 ,∀ξ1 < dm.

(2.30)

dx is the look-ahead distance where the longitudinal effect vanishes, which is a function
of the vehicle velocity |vv| with parameters d0x and α, as shown in figure 2.8. fy decreases
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Figure 2.8: The magnitude (contours and arrow lengths) and direction (arrow directions)
of vehicle influence with the modeling parameters
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along the lateral direction. dy is the distance where the lateral effect is constant (fy = Ay).
ζ is a small angle that changes the force direction ~n, which is dependent on ξ1 with
parameters ∆ζm and dm. The change of force directions can be visualized in figure 2.8.

In the body area, fx = 1 which means the longitudinal effect does not change. fy
decreases as the lateral distance increases. ~n points to the lateral direction.

fx = 1 (2.31)

fy = Ay · exp
(
−by(|ξ2| − d0y)

)
(2.32)

~n =

[
cos(sign(ξ2) · π2 )
sin(sign(ξ2) · π2 ).

]
(2.33)

In the rear area, fx is defined in a similar way as in the front area, with dx being the
vanishing point. fy now decreases as the distance from the rear-center to the pedestrian
position increases. ~n points from the rear-center to the pedestrian.

fx =
1

2dextr

(
ξ1 + dx +

√
(ξ1 + dx)2

)
(2.34)

fy = Ay · exp
(
−by(|ξ′2| − d0y)

)
(2.35)

dx = dr + dextr (2.36)

ξ′2 =
√

(ξ1 + dr)2 + ξ22 (2.37)

~n =

[
cos(ξ1 + dr)

sin(ξ2).

]
(2.38)

Fig. 2.8 shows the contour plot as well as the force vectors with the proposed vehicle
effect design. Fig. 2.9 provides a surface plot of the magnitude of the vehicle effect. All
the modeling detail the the corresponding results can be found in [59].

Anisotropy-based Effect

In the third/latest version, we proposed a new design of vehicle-pedestrian interaction
force. It considers the spatial-temporal relationship (relative positions and velocities)
between the ego pedestrian and the vehicle. The vehicle’s size and shape, as well as
anisotropy, are also considered. In other words, different pedestrian orientations and
velocities and different vehicle orientations of velocities create different combinations of
vehicle-pedestrian interaction.

A virtual contour of the vehicle is defined as an extension of the vehicle actual contour
and the consequence of slow motion. The virtual contour is illustrated in figure 2.10.
An extension length le is added on based on original contour of the vehicle with length
lr + lf and width lw. This can be conceptualized as a minimum distance or a buffer that
the ego pedestrian wants to keep from the vehicle. d0x is an extended length along the
vehicle’s orientation, which assumes that the pedestrian wants to keep a larger distance
from the front bumper than from the rear bumper. αx · uveh is another extended length
along vehicle’s moving direction, which is proportional to the vehicle longitudinal speed
uveh with the parameter αx. The faster the vehicle, the longer the extension in front of
the vehicle.

Once the virtual contour is available, an influential point P ivt on the contour is deter-
mined by finding the minimum distance divt from the ego pedestrian to the contour. Then,
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Figure 2.9: The surface plot of the vehicle influence magnitude

CoG

Figure 2.10: Vehicle’s virtual contour (blue dashed line). A surrounding pedestrian needs
to find the influential point (closest point to the virtual contour), and then calculates the
vehicle-pedestrian interaction force.
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Figure 2.11: The magnitudes of vehicle influence under different conditions. Columns from
left to right: vehicle longitudinal speed increases (0m/s, 1m/s, 2m/s, and 3m/s). Rows
from top to bottom: pedestrian walking direction varies (with velocity vector of [0,-1],
[-1,0], [0,1], [1,0], and [-1,1] in Euclidean coordinate).

the vehicle-pedestrian interaction force is calculated by the following equation:

~F i,veht = fexp(d
iv
t , A

veh, bveh) · Asin(φivt , λ
veh) · ~nvit . (2.39)

The direction of the vehicle-pedestrian interaction force is determined by ~nvit , which is
a unit vector pointing from the influential point to the ego pedestrian. The magnitude
applies an exponentially decaying function with parameters Aveh and bveh, because as
mentioned in the previous section, the pedestrian should be quickly driven away from
the vehicle once getting close to the virtual contour. Anisotropy is considered in which
φivt := φ<−~nvi

t ,~v
i
t>

and λveh is the parameter of the anisotropy. The anisotropy adjusts the
magnitude of the vehicle influence based on the walking direction of the pedestrian with
respect to the vehicle moving direction. For example, a pedestrian walking away from the
vehicle should have less vehicle influence than a pedestrian walking toward the vehicle.

Figure 2.11 are heat maps that illustrate the magnitudes of vehicle-pedestrian inter-
action force in different situations. It compares different combinations of longitudinal
vehicle speeds and different pedestrian walking directions. As vehicle speed increases,
the influence area expands (primarily in the vehicle moving direction). Also, notice that
the difference among the influence areas when the pedestrian walking direction changes
(different rows).
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Figure 2.12: (a) Kinematic bicycle model; (b) Lane-following controller.

2.3.6 Vehicle Motion

We believe that vehicles should be considered more of mechanical systems instead of
point-mass dynamics similar to pedestrians, because one major purpose of developing the
proposed pedestrian motion model is to provide more information for automated systems
on vehicles. Specifically, a common procedure (path planning, trajectory generation, and
trajectory following) of automated driving is applied. The vehicle motion is generated by
a kinematic bicycle model [40] with a pure-pursuit path tracking controller [28] that tracks
a reference path.

The kinematic bicycle model has three assumptions: (a) the vehicle has planner motion;
(b) both left and right wheels steer the same angle; and (c) there is no slip at both front
and rear tires. It is applicable when the vehicle moves at relatively low speed, which is
the case for most scenarios in this study. As illustrated in figure 2.12-(a), let xv ∈ R2 and
θv ∈ R be the position and the orientation of the vehicle, the model can be described as:

ẋ1v = vv cos(θv + βv)

ẋ2v = vv sin(θv + βv)

v̇v = f(u)

θ̇v =
vv
lr

sinβv

βv = arctan

(
lr

lf + lr
tan δf

)
(2.40)

where vv is the longitudinal speed, βv is the velocity angle with respect to the vehicle
center of gravity (C.G.), lf , lr are the distances from C.G. to the front wheel and the rear
wheel, respectively, u is the longitudinal control action (brake/gas), and δf is the lateral
control action (steering angle of the front wheel).

The pure-pursuit path tracking controller calculates the steering angle command δf to
track the reference path:

δf = − tan−1

(
(lf + lr) sin ηv
La
2 + la cos ηv

)
. (2.41)

A proportional controller generates the acceleration/brake command to track the desired
longitudinal speed. The reference paths are usually pre-defined for the simulation of self-
designed scenarios. This allows us to test the performance of the proposed pedestrian
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model in various vehicle-pedestrian interaction patterns. Note that in the process of
calibrating model parameters (see chapter 4.2.3), ground truth vehicle trajectory is directly
applied, because the primary focus in this work is pedestrian motion.

2.4 Conclusion

This chapter presents the design of the social force based model that can describe the
pedestrian motion under vehicle influence. Three different versions of vehicle effect were
discussed in this chapter. The last version proposed a straightforward yet efficient vehicle
effect design. We tested and validated the proposed model based on several fundamen-
tal vehicle-pedestrian interaction scenarios. We first conducted qualitative evaluation by
simulating these scenarios and visually inspecting the behavior of all pedestrians. Then,
the model parameters were further calibrated using collected pedestrian trajectory data
in the same scenarios. These will be presented in the next two chapters.
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Chapter 3

Dataset

3.1 Background

This vehicle-crowd interaction (VCI) scenario has been drawing attention in recent years.
Specific models [62][3][56][7] have been designed to describe the individual motion of a
crowd in some specific situations where both interpersonal and vehicle-pedestrian inter-
action were differently considered. To either calibrate or train such models above and
further evaluate the their performance, providing ground truth trajectories of VCI is be-
coming increasingly important. However, to the best of authors’ knowledge, there is no
public dataset that covers VCI, especially in scenarios where interpersonal interaction is
not negligible. To fill this gap, we built two VCI datasets. One (CITR dataset) focuses
on fundamental VCI scenarios in controlled experiments, and the other (DUT dataset)
consists of natural VCIs in crowded university campus.

In general, the approaches for modeling pedestrian motion in crowd can be classified in
two categories. Traditionally, a rule-based model, e.g., social force models [61], is designed
based on human experience and the parameters of the model are then calibrated by using
ground truth pedestrian trajectories [62][9]. Recently, with the growing popularity of
deep learning, long-short term memory (LSTM) networks have been applied to model
this pedestrian motion [1][43] in the hope of taking advantage of the potential in deep
neural networks, which heavily relies on pedestrian trajectory data. The requirement
of ground truth pedestrian trajectories in both approaches confirmed the necessity of
building more pedestrian/crowd trajectory dataset, especially in scenarios that have not
been covered in existing ones. Existing dataset such as ETH [42] and UCY [29] only
covers interpersonal interaction, which is not suitable for VCI. Stanford Drone Dataset
[45] includes some vehicle trajectories, but the number of surrounding pedestrians is small
so that there is little interpersonal interaction. This work aims to provide a new type
of pedestrian trajectory dataset that can enrich the existing datasets, and meanwhile
assists in solving pedestrian safety related problems in the areas of intelligent vehicles and
intelligent transportation systems.

Unlike pure interpersonal interaction, VCI introduces more complexity. This complex-
ity can be decomposed by separating vehicle influence from interpersonal influence and by
identifying different types of vehicle influence on pedestrians. To this end, in our CITR
dataset, controlled experiments were designed and conducted in a way that from inter-
personal interaction scenarios to VCI scenarios, they can be pairwisely compared so that
separate effect, for example, the existence (or not) of a vehicle or the walking direction of
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the crowd, can be identified and analyzed.
Some pedestrian motion models may consider personal characteristics, i.e., each pedes-

trian applies a model with a unique parameter set. CITR dataset provides such personality
by assigning the same pedestrian always the same ID, hence more options are provided to
researchers.

To supplement each other, in DUT dataset natural VCI data was constructed from a
series of recordings of crowded university campus. A down-facing camera attached to a
drone hovering above and far away from the ground was used as the recording equipment.
Therefore, both the crowd and the vehicle are unaware of being observed, hence producing
natural behavior. The DUT dataset can be used for final verification of VCI models or
some end-to-end VCI modeling design.

Both CITR and DUT datasets applied a hovering drone as the recording equipment.
This ensured the accuracy of the extracted trajectories by avoiding the issue of occlusion,
a major deficiency if pedestrians are detected from the view of sensors mounted on moving
vehicles or buildings.

The trajectories of individual pedestrians and vehicles were extracted by image pro-
cessing techniques. Due to the unavoidable instability of the camera attached to a hovering
drone (even with a gimbal system), the recorded videos were stabilized before further pro-
cessing. A robust tracking algorithm (CSRT[32]) was then applied to automatically track
pedestrians and vehicles, although the initial positions still have to be manually selected.
In the last step, different Kalman filters were applied to further refine the trajectories of
both pedestrians and vehicles. This design avoided tedious manual annotation as done in
the ETH and UCY dataset [42][29], and possible imprecision of the tracking as done in
the Stanford dataset [45].

In general, the contribution of the study can be summarized as follows:

• We built a new pedestrian trajectory dataset that covers both interpersonal interac-
tion and vehicle-crowd interaction.

• The dataset includes two portions. One comes from controlled experiments, in which
fundamental VCIs are covered and each person has a unique ID. The other comes
from crowded university campus scenarios where the pedestrian reaction to a vehicle
is completely natural.

• The application of a drone camera for video recording, a new design of tracking strat-
egy, and the Kalman filters for refining trajectories made the extracted trajectories
as accurate as possible.

In the rest of the chapter, section 3.2 reviews related dataset regarding pedestrian mo-
tion and vehicle-pedestrian interaction. Section 3.3 details the configuration of both CITR
and DUT dataset. Section 3.4 describes the algorithm applied for trajectory extraction
and the Kalman filters used for trajectory refinement. Section 3.5 shows some statistics
of our dataset. Section 3.6 concludes this chapter and discusses possible improvement.
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3.2 Related Works

Pedestrian dataset can be in general divided into two categories: world coordinate (WC)
based dataset and vehicle coordinate (VC) based dataset. WC based dataset is usually
applied to studies that need to consider interpersonal interaction, because the collective
motion of pedestrians is clear, accurate enough, and easily accessible, while VC based
dataset doesn’t contain enough instances of interpersonal interaction. Popular WC based
dataset includes UCY Crowds-by-Example dataset [29], ETH BIWI Walking Pedestrians
dataset [42], Town Center dataset [5], Train Station dataset [66] and Stanford Drone
dataset [45]. They have been widely used for crowd motion analysis, risk detection, and the
calibration/training of various rule-based and learning-based pedestrian motion models [4].
The proposed dataset in this study aims to enrich the WC based dataset by incorporating
the vehicle-crowd interaction. A comparison among the proposed and existing WC based
datasets are shown in table 3.1. VC based dataset is usually used for single/multiple,
but not too many, pedestrian detection and/or intention estimation from a mono camera
mounted in front of the vehicle. A couple of datasets such as Daimler Pedestrian Path
Prediction dataset [47] and KITTI dataset [17] provide vehicle motion information, hence
the trajectories of both the vehicle and pedestrians in world coordinate can be estimated by
combining vehicle motion and video frames. The estimated trajectories can serve as ground
truth data for vehicle-pedestrian interaction but with little interpersonal interaction due
to the limited number of pedestrians.

Some existing datasets also apply a down-facing camera attached to a hovering drone
as the recording equipment. For example, in Stanford Drone dataset [45], the utilization
of drone eliminated occlusion so that all participants (pedestrians, cyclists, cars, carts,
buses) were individually tracked. Another dataset HighD [27], which focuses on vehicle-
vehicle interaction on highway driving, also successfully demonstrated the benefit of using
the hovering drone to remove occlusion.

3.3 Dataset

3.3.1 CITR Dataset

The controlled experiments were conducted in a parking lot near the facility of Control
and Intelligent Transportation Research (CITR) Lab at The Ohio State University (OSU).
Figure 3.1 shows the layout of the experiment area. A DJI Phamton 3 SE Drone with a
down-facing camera on a gimbal system was used as the recording equipment. The video
resolution is 1920 × 1080 with an fps of 29.97. Participants are the members of CITR
Lab at OSU. During the experiments, they were instructed only to walk from one small
area (starting points) to another small area (destinations). The employed vehicle was an
EZ-GO Golf Cart, as shown in figure 3.2. 3 markers were put on top of the vehicle to
help vehicle motion tracking, of which the vehicle position is calculated by geometry. The
reason of using 3 markers is to reduce the tracking noise as much as possible.

The designed fundamental scenarios were generally divided into 6 groups, as shown in
figure 3.3. They were designed such that by comparing pedestrian-only scenarios (pure
interpersonal interaction) and VCI scenarios, the vehicle influence can be separated and
analyzed. Therefore, except for the difference due to the existence (or not) of a vehi-
cle, all other factors remain the same such as pedestrians’ intention (starting point and
destination), pedestrians’ identity (who are these pedestrians), and environment layout
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Interaction Area

Figure 3.1: Layout of the controlled experiment area (a parking lot near CITR Lab at
OSU). The vehicle (a golf cart) moves back and forth between two blue areas. Pedestrians
move back and forth between two green areas. The interaction happens in the orange
area, which is also the central area of the recording.

𝑷𝟏 𝑷𝟐

𝑷𝒄

𝑴𝟏 𝑴𝟐

𝑴𝟑

Figure 3.2: EZ-GO Golf cart employed in the experiments (left) and makers on top of the
vehicle (right). In the vehicle tracking process, 3 markers (M1,M2,M3) were continuously
being tracked. By geometry, P1, P2 were calculated and recorded for vehicle orientation
and Pc as the vehicle center position.
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Reference Frame New Frame

Reference Frame New Frame

Reference Frame New Frame

Detect features (key-points)

Find good matches

Calculate transformation matrix

M

Lateral Interaction 
(Unidirectional)

Lateral Interaction 
(Bidirectional)

Front Interaction

Back Interaction

Pedestrian Only 
(Unidirectional)

Pedestrian Only 
(Bidirectional)

Figure 3.3: Designed scenarios of controlled experiments. Red arrows indicate the motion
of pedestrians/crowd, while blue arrows indicate vehicle motion.

Table 3.2: Number of clips in each scenario of CITR dataset

Scenarios Num. of clips

Pedestrian only (unidirectional) 4

Pedestrian only (bidirectional) 8

Lateral interaction (unidirectional) 8

Lateral interaction (Bidirectional) 10

Front interaction 4

Back interaction 4

(location, time period, weather, etc.). The scenarios of front, back, and side interactions
help exploring typical VCIs which could guide the design of pedestrian motion models.

After processing, there are 38 video clips in total, which include approximate 340
pedestrian trajectories. The detailed information is presented in table 3.2.

3.3.2 DUT Dataset

The DUT dataset was collected at two crowded locations in the campus of Dalian Univer-
sity of Technology (DUT) in China, as shown in figure 3.4. One location includes an area
of pedestrian crosswalk at an intersection without traffic signals. When VCI happens,
in general there is no priority for either pedestrians or vehicles. The other location is a
relatively large shared space near a roundabout, in which pedestrians and vehicles can
freely move. Similar to CITR dataset, a DJI Mavic Pro Drone with a down-facing camera
was hovering above the interested area as the recording equipment, high enough to be
unnoticed by pedestrians and vehicles. The video resolution is 1920× 1080 with an fps of
23.98. Pedestrians are primarily made up of college students who just finished classes and
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Figure 3.4: Locations of DUT dataset. Upper: an area of crosswalk at an intersection
without traffic signals. Lower: a shared space near a roundabout.
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Figure 3.5: Trajectories of vehicles (red dashed line) and pedestrians (colorful solid lines)
in a clip of the intersection scenario.

on their way out of classrooms. Vehicles are regular cars that go through the campus.
With this configuration, scenarios of DUT dataset consists of natural VCIs, in which

the number of pedestrians varies hence introducing some variety of the VCI.
After processing, there are 17 clips of crosswalk scenarios and 11 clips of shared space

scenarios, including 1793 trajectories. Some of the clips contains multiple VCIs, i.e., more
than 2 vehicles interacting with pedestrians simultaneously, as in the lower picture in
figure 3.4.

Figure 3.5 and 3.6 demonstrate the processed example trajectories of the DUT dataset.

3.4 Trajectory Extraction

Four procedures were done to extract the trajectories of both pedestrians and vehicles
from the recorded top-view video.

3.4.1 Video Stabilization

First, the raw video was stabilized to remove the noise caused by unstable drone motion.
This procedure applies several image processing techniques, which include scale-invariant
feature transform (SIFT) algorithm for finding key-points, k-nearest neighbors (k-NN) for
obtaining matches, and random sample consensus (RANSAC) for calculating perspective
transformation between each video frame and the first video frame (reference frame). The
detailed procedure is illustrated in algorithm 1.
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Figure 3.6: Trajectories of vehicles (red dashed line) and pedestrians (colorful solid lines)
in a clip of the shared space scenario.

Algorithm 1: Video Stabilization

Result: calibrated frames F cali

set 1st frame F1 as reference Fref ;
for each new frame Fi, i = 2, 3, · · · do

apply SIFT to find key-points in Fi and Fref , separately;
apply KNN to find matches;
obtain good matches by removing matches that have long distance of pixel
positions in Fi and Fref ;

apply RANSAC for the good matches to calculate the transformation matrix
Mi from Fi to Fref ;

obtain F cali by applying transformation Mi to Fi;

end
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3.4.2 Vehicle and Pedestrian Tracking

Once the video was stabilized, pedestrians and vehicles were automatically tracked by using
Discriminative Correlation Filter with Channel and Spatial Reliability (CSR-DCF) [32].
In the tracking process, raw videos are partitioned into small clips, which contain separate
and complete VCIs. Once pedestrians appear in the region of interest (ROI), the initial
positions were manually given, hence initializing the trackers. When they exited the ROI,
the trackers stopped. Due to the vehicle size, vehicle tracking was done by individually
tracking either the 3 markers on top of the vehicle (CITR dataset) or four corners of vehicle
(DUT dataset). Then, the vehicle position was calculated based on geometric relationship
of these tracked points.

3.4.3 Coordinate Transformation

Pedestrian trajectories obtained in the previous step are in the coordinates of image pixels.
A coordinate transformation operation is necessary to convert the trajectories from image
pixels into actual scale in meters.

This can be done by either measuring the actual length of a relatively long reference
line in the scene or measuring the distance between markers on top of the vehicle (if
applicable). The assumption here is that, compared with the altitude of the hovering
drone, the distance between the ground plane and the tracking plane (the plane of a
pedestrian’s head or the vehicle’s top) is very small so that both planes can be treated as
the same plane.

3.4.4 Trajectory Filtering

In the last step, Kalman filters [14] was applied to remove the noise and refine the trajec-
tories. It is sufficient to use a linear Kalman filter with a point-mass model for pedestrian
trajectories, in which the 2D velocity (in x and y axes) can be estimated. The state
transition and measurement follows the equations:

ẋ = v + w1 (3.1)

v̇ = a+ w2 (3.2)

y = x+ v, (3.3)

where position x ∈ R2 and velocity v ∈ R2 are the system state, y ∈ R2 is the measurement
(recorded position), w = [wT1 , w

T
2 ]T ∼ N(0, Q) the state transition noise, and v ∼ N(0, R)

the measurement noise.
When applying the Kalman filter, it is assumed that a = 0, which implies a constant

velocity model.
Vehicle motion is somehow constrained, e.g., the lateral motion/velocity can not be

abruptly changed. Therefore, an extended Kalman filter with a nonlinear kinematic bicycle
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model was applied. The bicycle model follows:

ẋx = v cos(θ + β) + w1 (3.4)

ẋy = v sin(θ + β) + w2 (3.5)

θ̇ =
v

lr
sinβ + w3 (3.6)

v̇ = a+ w4 (3.7)

β = arctan

(
lr

lf + lr
tan δf

)
(3.8)

y = [xx, xy]
T + v, (3.9)

where xx, xy stands for the position, v is the longitudinal speed, β is the velocity angle with
respect to the vehicle C.G., lf , lr are the distances from C.G. to the front wheel and the
rear wheel, respectively, a is the longitudinal acceleration, δf is the steering angle of the
front wheel, w = [w1, w2, w3, w4]

T ∼ N(0, Q) the state transition error, and v ∼ N(0, R)
the measurement error.

At each step of the extended Kalman filter, the system is linearized at current state
by calculating its Jacobian. It is assumed that both inputs a = 0 and δf = 0.

3.5 Statistics

To give a more detailed description of the above dataset, the magnitude of pedestrian
velocities (estimated by the Kalman filter) in all video clips were analyzed. The reason of
analyzing velocity magnitude is that, pedestrian velocity is the most intuitive way of de-
scribing pedestrian motion, and, as argued in [4], if pedestrian trajectories are used to train
neural network based pedestrian model, using pedestrian velocity (offset in motion at the
next time step) is better than using absolute position, because different reference systems
(how the global coordinates are defined) in different dataset usually cause incompleteness
of training data.

Figure 3.7 and 3.8 show the distribution of the velocity magnitude for CITR dataset
and DUT dataset, respectively. Table 3.3 presents the mean velocity magnitude and mean
walking velocity magnitude. The walking velocity excludes the velocity magnitude that
is less than 0.3m/s, at which the pedestrian is considered as either standing or yielding
to the vehicle instead of walking. The value of 0.3m/s was intuitively selected based on
the shape of the histogram. It is obvious that, from the velocity distribution and the
mean velocity results, the pedestrians in DUT dataset walk faster than the pedestrians in
CITR dataset. The reason could be that, when conducting controlled experiments, as in
the CITR dataset, pedestrians were more relaxed, while in the DUT dataset, pedestrians
were in a little bit hurry because they just came out of classes. However, in general, the
distribution and the mean velocity magnitude are in accordance with the preferred walking
velocity in various situations [36].

3.6 Conclusion

Two dataset, experimentally designed CITR dataset and natural DUT dataset, were built
in this study for pedestrian motion models that consider both interpersonal and vehicle-
crowd interaction. The trajectories of pedestrians and vehicles were extracted by image
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Figure 3.7: Distribution of velocity magnitude in CITR dataset
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Figure 3.8: Distribution of velocity magnitude in DUT dataset

Table 3.3: Mean velocity magnitude

Dataset Mean velocity Mean walking velocity

CITR 1.2272 1.2435

DUT 1.3661 1.3825
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processing techniques and refined by Kalman Filters. The statistics of the velocity mag-
nitude validated the proposed dataset.
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Chapter 4

Model Calibration

4.1 Background

This chapter presents the process of calibrating the parameters of the model proposed
in chapter 2 using part of our established dataset in chapter 3. Previous works such
as [29, 42] utilized pedestrian-only datasets to calibrate pedestrian-only models, which
however demonstrated the advantage of using pedestrian trajectory data to improve pedes-
trian motion modeling. In terms of the calibration method, most works adopted genetic
algorithm [24, 25, 61], evaluated based on the difference between the ground truth trajec-
tories and simulated trajectories of the social force model. This method was proved to be
effective in calibrating the parameters of pedestrian motion model. Our work also applied
the genetic algorithm.

4.2 Calibration

4.2.1 Parameter Set

All parameters associated with the proposed model in chapter 2 are presented in table 4.1.
They have been classified into 3 categories:

• Constant Parameters: the parameters that can be directly assigned based on statis-
tics (e.g. using average pedestrian radius and mass) or ground truth (e.g. vehicle
size).

• Ped2Ped Parameters: the parameters that are responsible for pedestrian-pedestrian
interaction.

• Veh2Ped Parameters: the parameters that are responsible for vehicle-pedestrian
interaction.

This study applied a two-step procedure for calibrating the parameters. First, the
Ped2Ped parameters were calibrated and evaluated based on the trajectory data that does
not contain vehicles. In this step the Veh2Ped parameters were fixed to arbitrary values,
because whatever values of the Veh2Ped parameters are set, the vehicle force is always zero.
Second, keeping the obtained Ped2Ped parameters fixed, Veh2Ped parameters were then
calibrated and evaluated based on the data that contains vehicles. The reason of applying
this configuration is that, if the Veh2Ped parameters were not fixed in the process of
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1

Two Crowds 

Encounter
Back Interaction Front Interaction Side Interaction

Figure 4.1: Scenarios: the first scenario was used for calibrating Ped2Ped parameters; the
following three scenarios were used for calibrating Veh2Ped parameters.

calibrating Veh2Ped parameters, some Ped2Ped parameters might be modified in favor
of obtaining better results on the data containing vehicle influence. We argue that the
calibration cannot automatically differentiate between Ped2Ped parameters and Veh2Ped
parameters.

4.2.2 Scenarios and Dataset

Four fundamental scenarios were used for the calibration, as shown in figure 4.1. The first
scenario was used for pedestrian-pedestrian interaction. After the calibration, the model is
expected to generate collective pedestrian behaviors such as lane formation and collision
avoidance. Here only the scenario of bidirectional pedestrian motion is used, because
the pedestrian motion patterns are similar in the scenarios that were used for vehicle-
pedestrian interaction. The following three scenarios are used for calibrating vehicle-
pedestrian interaction. They are fundamental interaction scenarios that consist of back
interaction (vehicle coming behind the walking pedestrians), front interaction (vehicle
coming in front of the walking pedestrians), and lateral interaction (vehicle coming from
both sides of the walking pedestrians).

Trajectories of pedestrians and vehicles that correspond to the scenarios in figure 4.1
were collected by conducting controlled experiments. The experiments were conducted at
an open space in a parking lot near the CAR-West facility at The Ohio State University, as
shown in figure 4.2. Pedestrian motion, as well as vehicle motion, were recorded by a drone
with a downward camera hovering above the experiment area. To obtain trajectories,
positions were extracted by computer vision based tracking techniques, while velocities
were reconstructed by Kalman filters. There are 80 pedestrian trajectories in total for
pedestrian-pedestrian interaction, and 96 pedestrian trajectories in total for the vehicle-
pedestrian interaction. Details about the dataset can be found in chapter 3.

4.2.3 Calibration Procedure

The calibration consists of manual calibration and data-driven calibration. In the manual
calibration, a set of reasonable and acceptable parameters were obtained by trial-and-
error, which was evaluated by visually inspecting the simulation results with the obtained
parameters. Using the manually calibrated parameters as initial values, the genetic al-
gorithm (GA) was then applied to further calibrate the parameters. The GA calibration
was evaluated by the errors between the ground truth trajectories and the simulated tra-
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Table 4.1: The list of calibrated parameters for the proposed model

Parameter Calibrated Value Category

Ri 0.27 Constant

mi 80 Constant

lr 1.2 Constant

lf 1 Constant

lw 1.2 Constant

βSv 3.9761 Ped2Ped

S0
v 0.06566917 Ped2Ped

βSa 2.994062 Ped2Ped

S0
a 0.39941 Ped2Ped

αcol 9825.125 Ped2Ped

drep0 0.7801 Ped2Ped

M rep 301.028 Ped2Ped

σrep 0.45971243 Ped2Ped

λrep 0.1 Ped2Ped (fixed)

dnav0 1.5892008 Ped2Ped

Mnav 410.875 Ped2Ped

σnav 0.41745 Ped2Ped

λnav 1 Ped2Ped (fixed)

TS 3.665375 Ped2Ped

φS 121.39191 Ped2Ped

λS 1.87 Ped2Ped

vi0 1.394293 Ped2Ped

σdes 1 Ped2Ped (fixed)

kdes 545.3125 Ped2Ped

βFv 0.001577598 Veh2Ped

F 0
v 199.3611 Veh2Ped

βFa 0.09775474 Veh2Ped

F 0
a 53.94855 Veh2Ped

le 0.2151011 Veh2Ped

d0x 0.510985 Veh2Ped

αx 1.394358 Veh2Ped

Aveh 777.5852 Veh2Ped

bveh 2.613755 Veh2Ped

λveh 0.3119132 Veh2Ped

F1 199.7455 Veh2Ped

F2 672.6487 Veh2Ped
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Figure 4.2: Illustration of the controlled experiment. Positions of both pedestrians and
vehicles were extracted from the top-view video. Velocities were reconstructed by Kalman
filters.

jectories. Ultimately, using the updated parameters, post-simulations were conducted to
verify and validate the proposed model.

As mentioned in section 2.3.4, a destination is required for the social force model. In the
manual calibration, the destinations of all pedestrians were pre-defined in the self-designed
scenarios. In the data-driven calibration, a pedestrian’s destination was estimated based
on the initial position ~xi,rec0 and final position ~xi,recT of the recorded trajectory. Specifically,
for pedestrian-pedestrian interaction, the destination was estimated individually:

~xi,dest = ~xi,rec0 + αrec · (~xi,recT − ~xi,rec0 ),∀i ∈ S (4.1)

where S refers to a specific scenario, and αrec is a positive scalar, which was set as 1.5 in
the calibration.

For vehicle-pedestrian interaction, since all pedestrians have similar motion, the des-
tination was estimated based on the average of all initial positions and the average of all
final positions:

~xi,dest = ~xmean,rec0 + αrec · (~xmean,recT − ~xmean,rec0 ),∀i ∈ S. (4.2)

4.2.4 Genetic Algorithm

Genetic algorithm (GA) [35] is a class of evolutionary algorithms that mimics natural
selection. It is well suitable for finding the (near) optimal solutions to complex systems.
The basic operators such as mutation, crossover, and selection introduce randomness,
hence possibly overcoming the local minima problem.

In the GA calibration process, equation 2.1 was iteratively applied for each pedestrian
to obtain simulated trajectories {~xi,simt }, ∀t ∈ {1, · · · , T},∀i ∈ S. Pedestrian’s initial sate
was set as the initial state of the recorded trajectory ~xi,sim0 := ~xi,rec0 ,∀i ∈ S, while vehicle
applied the whole recorded trajectory ~xvt := ~xv,rect ,∀t ∈ {0, 1, · · · , T − 1}.

The performance of a particular parameter set Θ was evaluated by a loss function
comparing the simulated trajectories with the recorded trajectories.
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Loss Function

A classical way of designing loss function is to maximize the likelihood of every point
on the pedestrian trajectory. The assumption is that the error between the simulated
trajectory and the recorded trajectory is Gaussian. If the log-likelihood is maximized, as
presented in [9], it is equivalent to minimizing the mean square error:

σ2i (Θ) =
1

T

T∑
t=1

(~xi,rect − ~xi,simt )2, (4.3)

where Θ stands for the parameter set. This study applied mean square error as the loss
(fitness) function of the genetic algorithm.

Initialization

The parameters were initialized as the manually calibrated parameters in the previous
step. Lower bounds and upper bounds were added to ensure that, in the process of cali-
bration, the parameters don’t go beyond unrealistic values. For example, some parameters
representing force magnitude should always be positive. And a parameter of the field of
view obviously has an angle limit. The total number of population in the genetic algorithm
was set to 200, which is sufficient for the calibration.

Implementation

The calibration and evaluation were conducted in MATLAB R2018b with Simulink. The
Global Optimization Toolbox is used for executing the genetic algorithm. As an example
of computation time, a typical GA calibration with 25 generations requires approximate
12 hours on an Intel(R) Core(TM) i7-4790 CPU @3.60GHz desktop computer. Simulation
is done at the time interval of ∆t = 0.0334s, which is equivalent to 29.97 frames per second
(FPS), the same value as the FPS in the trajectory dataset.

4.3 Result

4.3.1 Pedestrian-Pedestrian Interaction

In this step, only Ped2Ped parameters, as shown in table 4.1, were calibrated. Some pa-
rameters that were manually calibrated in the previous step were fixed during the GA cali-
bration. Specifically, λrep and λnav were fixed, because we think the associated anisotropies
were good enough, and the fixation could also reduce the uncertainty of running the GA
calibration. σdes was fixed because it only reduces the desired velocity when a pedestrian
is close to its destination, which does not affect the pedestrian motion too much if the
pedestrian has not reached the destination.

Calibration

The GA calibration was executed for more than 30 generations. After 20 generations,
both the best fitness and the mean fitness converged. The best fitness value of 1.00468 was
obtained, which means the average error of all positions in all trajectories of all pedestrians
is about 1 meter. This indicates the parameters were calibrated to some extent so that the
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Figure 4.3: Validation of a selected scenario of pedestrian-pedestrian interaction. Left:
A comparison between simulated trajectories (red solid lines) and recorded trajectories
(green dashed lines). The asterisks indicate the initial positions of each pedestrian. fms
shown in the title is the average of the mean square errors (as defined in equation 4.3) of
all pedestrians. Right: The evolution of velocities of all pedestrians in this scenario. More
results can be found in supplementary materials A.1.

model achieved its best performance based on the applied trajectory data. The obtained
values of Ped2Ped parameters are presented in table 4.1.

Validation

The validation was done by simulating pedestrians with the same initial conditions as
in the data used for calibration. This allows us to compare and analyze the simulated
trajectories with recorded trajectories. Figure 4.3 plotted both types of trajectories as
well as the evolution of velocities of all pedestrians from a selected pedestrian-pedestrian
interaction scenario. The blue asterisks show the initial positions of all pedestrians. The
red solid lines indicate the simulated trajectories, while the blue dashed lines indicate
recorded ground truth trajectories. The results of more scenarios can be found in the
supplementary materials A.1. The trajectory plotting shows that in general pedestrians
are able to navigate around each other when there is potential conflict. The velocities
demonstrate that pedestrians adjust their walking speed (slow down or accelerate) when
interacting with each other.

Post-simulation

Post-simulations of pedestrians in more complex scenarios were conducted to further eval-
uate the model based on the calibrated parameters. In particular, a scenario was designed
such that 4 groups of pedestrians interact with each other from 4 different directions. The
screenshots of the simulation were displayed in figure 4.4. As the screenshots show (see
the caption for detail description), all pedestrians were interacting as expected, even in the
extremely dense situation. Figure 4.5 shows the trajectories and the evolution of veloci-
ties of all pedestrians in the simulation. The curved trajectories indicate the pedestrians
navigate around to avoid potential collision. The multiple decreases in velocities indicate
the pedestrians slow down to avoid collision.

It can be seen from the simulated pedestrian motion that each pedestrian is capable
of navigating around any potential conflict with others.
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Figure 4.4: Simulation of 4 groups of pedestrians interacting from 4 different directions.
Pedestrians in different groups are plotted in different colors. The small black arrows
indicate the walking directions and the walking velocities (length of the arrow). Different
groups were randomly initialized in different quadrants and were assigned a destination in
the diagonal position, respectively. For example, the red group was initialized within the
area of x ∈ [0, 10] and y ∈ [0, 10] and was assigned a destination at [−10,−10].
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Figure 4.5: Trajectories and velocities of 4-group interaction. Left: Trajectories of all
pedestrians in the simulation. Right: The evolution of velocities of all pedestrians in the
simulation.
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4.3.2 Vehicle-Pedestrian Interaction

After obtained the Ped2Ped parameters, the Veh2Ped parameters, as shown in table 4.1
were calibrated by using the data that includes vehicles. This step did not change the
values of Ped2Ped parameters.

Calibration

The GA calibration was executed for more than 30 generations. Similarly, after about
20 generations, both the best fitness and the mean fitness converged. The best fitness
value of 4.1918 was obtained. The obtained parameter values are shown in table 4.1. The
best fitness value for Veh2Ped parameters is larger compared with the best fitness value
obtained for Ped2Ped parameters. This is because the vehicle-pedestrian interaction is
much more complex than the pedestrian-pedestrian interaction, so it is reasonable that
the fitness value is larger. Complex interaction may require a considerably large amount
of data for calibration. But in any case, the convergence of both mean fitness and best
fitness indicates that the model achieved its best performance based on the calibration
data. Therefore, we can still conclude that the model performance was improved to some
extent.

Validation

The model was still calibrated by simulating pedestrians with the same initial conditions
as in the data used for calibration. Different from pedestrian-pedestrian interaction, ve-
hicle motion was added in the simulation by using the ground truth vehicle trajectories.
Figure 4.6, 4.7, and 4.8 show 3 selected scenarios, which correspond to back interaction,
front interaction, and lateral interaction, respectively. More results can be found in sup-
plementary materials A.2. According to the simulated trajectories, pedestrians are able
to avoid the vehicle from different directions. The velocities indicate that pedestrians may
slow down or accelerate to avoid the potential collision with the vehicle. There is still a
certain degree of error between the simulated trajectories and recorded trajectories, which
can be explained by the following reasons:

• Different types of fundamental interactions (back, front, and lateral interactions)
may need a different parameter set, which implies that one general model may not
be sufficient to describe the vehicle-pedestrian interaction.

• Our assumption of homogeneous pedestrians (every pedestrian applies the same
parameter set) limits the model performance. Even for the same pedestrian in the
same situation, the pedestrian behavior could also be affected by his or her inner
thought (e.g. in a rush or not).

• The limited amount of data for calibration could also cause the error.

Post-simulation

Post-simulations were conducted to further evaluate the performance of the model. Sce-
narios of 3 types of fundamental vehicle-pedestrian interactions were designed and sim-
ulated: back interaction, front interaction, and lateral interaction. The vehicle motion
was simulated by using a pure-pursuit controller tracking a pre-defined path, as described
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Figure 4.6: Validation result of a selected scenario of back interaction. Left: A comparison
between simulated trajectories (red solid lines) and recorded trajectories (green dashed
lines). The cyan dash-dotted line represents the ground truth trajectory of the vehicle
motion. The asterisks indicate the initial positions of each participant. fms shown in the
title is the average of the mean square errors (as defined in equation 4.3) of all pedestrians.
Right: The evolution of velocities of all pedestrians in this scenario. More results can be
found in supplementary materials A.2.
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Figure 4.7: Validation result of a selected scenario of front interaction. The notation is
the same as in figure 4.6.
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Figure 4.8: Validation result of a selected scenario of lateral interaction. The notation is
the same as in figure 4.6.
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Figure 4.9: Simulation snapshots of back interaction: A slowing-moving (3m/s, which is
the average speed in the dataset) vehicle (yellow box) was moving from negative x axis
to positive x axis. Pedestrians (red circles) were randomly initialized within the area of
x ∈ [−9,−3] and y ∈ [−3, 3] and was assigned a destination at [20, 0]. The small black
arrows indicate the walking directions and the walking velocities (length of the arrow) of
pedestrians, while similarly the big black arrow indicates the orientation and the velocity
of the vehicle.

in section 2.3.6. The simulation results are shown in figures 4.9, 4.10, and 4.11, respec-
tively. Details of the simulation configuration can be found in the figure captions. The
pedestrians in the simulation are able to avoid the collision with the vehicle from different
directions. Notice that in a relatively crowded situation, as shown in figure 4.11, there
are a couple of instances of small overlap among pedestrians. This is exactly what we
expected because the pedestrians should be able to push others if a vehicle is approaching
in a dangerous way. Trajectories and velocities of the above simulation can be found in
the supplementary materials A.3, in which pedestrian behavior such as slowing down and
accelerating to avoid the vehicle can be identified.

Overall, although the calibration of vehicle-pedestrian interaction did not generate a
very good fitness value, the post-simulation still validated the performance of the proposed
model.

4.4 Conclusion

This chapter describes how the proposed social force model was evaluated and validated by
both the simulation and calibration of fundamental vehicle-pedestrian interaction scenarios
(back, front, and side interaction).

In this work, each pedestrian is assumed to be associated with a homogeneous pedes-
trian motion model (same values of parameters), because we were looking for a general
model that can describe general pedestrian motion under vehicle influence. The proposed
model is able to describe pedestrian motion in fundamental vehicle-pedestrian interac-
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Figure 4.10: Simulation snapshots of front interaction: The configuration is the same as
in figure 4.9, except the pedestrians were initialized within x ∈ [5, 11] and y ∈ [−3, 3] and
was assigned a destination at [−20, 0]
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Figure 4.11: Simulation snapshots of lateral interaction: The configuration is the same as
in figure 4.9, except there were two groups of pedestrians. One group (red circles) was
initialized within x ∈ [−3, 3] and y ∈ [2, 8] with a destination at [0,−20]. The other group
(blue circles) was initialized within x ∈ [−3, 3] and y ∈ [−8,−2] with a destination at
[0, 20].
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tion scenarios, as demonstrated in the simulation. Pedestrian-pedestrian interaction is
in general good. However, a certain amount of error exists in vehicle-pedestrian inter-
action, hence indicating that a homogeneous model is not enough for describing detailed
pedestrian behavior under vehicle influence.
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Chapter 5

Applications

5.1 Background

The intention of crowd pedestrians plays an important role for autonomous vehicles or
intelligent systems in transportation. This intention is especially critical to shared space
scenarios that involve crowd pedestrians and autonomous vehicles. One of the most com-
mon issues that relies on the crowd intention is how to improve the transportation efficiency
in shared spaces when autonomous vehicles traverse the shared spaces that are partially
or mostly occupied by crowd pedestrians. To do this, it is necessary to evaluate the status
of individual pedestrians as well as their interactions with other pedestrians and the au-
tonomous vehicles. This evaluation requires simultaneous handling of pedestrian motion,
vehicle action, and the driving efficiency of the vehicle.

The proposed social force pedestrian model can be applied to this type of problems.
This chapter proposed a framework that includes the pedestrian motion model. The frame-
work aims to (a) detect individual pedestrian’s state in the crowd via multiple sensors, (b)
predict crowd pedestrians’ motion given the driving strategy of the autonomous vehicles,
and (c) evaluate the vehicle driving efficiency based on the scenario simulation, which
eventually contributes to the transportation efficiency in shared spaces. A multi-sensor
strategy was introduced for accurately detecting and estimating the individual pedestrian’s
state. Initial results of pedestrian detection on each separate sensor are presented. The
social force based pedestrian model was combined with a vehicle model to predict and
evaluate the scenario. Based on the prediction and evaluation, the driving efficiency was
consequently adjusted. The approaches to address several types of driving efficiency prob-
lems were discussed. Two case studies were conducted to improve two types of driving
efficiencies. The first case is an offline approach which predicts the desired passing time
for an autonomous vehicle to pass through a crowd of pedestrians. The second case is
an online approach which actively adjusts the vehicle’s control action to pass through a
crowd of pedestrians.

On-vehicle pedestrian detection is primarily achieved by a combination of different
sensors, i.e., monocular camera, LiDAR, and stereo camera. Monocular vision [13, 18, 11]
is the primary source of pedestrian detection because it provides the texture of pedestrians.
LiDAR pointcloud[34] and stereo vision[65][38] provide depth information hence usually
being used as supplementary source to the monocular vision. On-vehicle sensors provide
instant detection results of pedestrians in the neighborhood of the autonomous vehicle.
However, when the crowd density is high enough, it is generally difficult for on-vehicle
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sensors to detect all individual pedestrians due to massive occlusions. Nowadays, with
the commercialization and the decreasing prices of unmanned aerial vehicles (UAVs), it
is possible to use UAVs with downward facing aerial cameras as infrastructure sensors
hovering above the interested area so that the individual pedestrians can be more easily
detected. This is also the case for the cameras mounted on infrastructures of certain
height. Therefore, we propose a multi-sensor pedestrian detection strategy that relies on
both infrastructure sensors and the on-vehicle sensors to handle the massive occlusion
problems.

Scenario prediction provides necessary information for adjusting the driving efficiency
of autonomous vehicles traversing the crowd in shared spaces. The prediction requires
analyzing the interactive behavior of both the crowd pedestrians and the autonomous
vehicles. Several studies have inspected this interaction mechanism[3][62][59]. Due to the
complexity of the interaction mechanism, scenario simulation[56] is an effective approach to
address the driving efficiency problem. Assuming the correctness of pedestrian detection in
the previous stage and the validity of the vehicle-crowd interaction mechanism, analyzing
the simulation results gives useful information for the improvement the driving efficiency.

For the rest of the chapter, section 5.2 presents the proposed overall framework. Sec-
tion 5.3 describes the multi-sensor strategy and the methods for pedestrian detection on
individual sensors with the corresponding initial results. Section 5.4 details the approach
to evaluate and improve the transportation efficiency in shared spaces, with a simulation
case study for the estimated time to pass through the crowd. Lastly, conclusions and
future work are discussed.

5.2 Framework

Figure 5.1 shows the proposed overall framework. First, for an area of interest, individ-
ual pedestrians in the crowd are detected via both on-vehicle sensors and infrastructure
sensors. Second, for the subject vehicle, the detection results are fused with the results
from nearby vehicles (if they exist) and the results of the infrastructure sensors. The
current pedestrian states, i.e., the positions and orientations of individual pedestrians at
the current time step, are determined by combining the fused detection results with the
high precision map. Next, the autonomous vehicle plans an initial driving strategy based
on current pedestrian states. Both the driving strategy and the pedestrian states are sent
to the scenario prediction module. The output of the scenario prediction is fed back to the
autonomous vehicle so that the driving strategy can be updated based based on a specific
driving efficiency objective, which is generated according to the transportation efficiency
objective in shared spaces. Finally, the actual motion of the autonomous vehicle physically
affects the area of interest.

Transportation efficiency objectives in shared spaces should be pre-specified as an input
or a criteria for the framework. The transportation efficiency objective is then translated
into the vehicle driving efficiency objective, because the autonomous vehicle is the primary
and the most influential participant in the scenario.
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Figure 5.1: The proposed framework to improve transportation efficiency.
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Figure 5.2: Experimental vehicle (right) and the configuration of on-vehicle sensors (left).

Figure 5.3: The pedestrian detection process of a monocular camera. Step 1: calculate
pixel gradients, i.e., magnitude and direction in 8x8 cells. Step 2: each pixel votes for
its cell gradient orientation depending on its gradient magnitude. Step 3: concatenate
cell histograms into blocks of 2x2 that describe the final HOG feature vector of the whole
image. Step 4: classify resulting HOG feature vector into pedestrians and other.

5.3 Pedestrian Detection in Crowd

5.3.1 On-vehicle Sensors

An E-Z-GO golf cart is used as our experimental vehicle. The vehicle contains a front
facing stereo camera, two front/side facing monocular cameras, and three LiDAR (Light
Detection And Ranging) sensors as shown in figure 5.2.

Monocular camera

Monocular camera vision comes from two FLEA 3 GigE Vision cameras. It also comes
from either one of the channels of the stereo camera. Our study uses the approach in [10],
which relies on extracting a Histogram of Oriented Gradient (HOG) features from the
image, followed by a linear classifier using Support Vector Machines (SVMs). The overall
detection process is illustrated in figure 5.3. Those methods usually work, specifically
for pedestrians, as HOG features are robust against illumination and small local pose
differences due to the fact that pixel gradients are normalized locally within blocks in
the image. Adding texture information using Local Binary Pattern (LBP) descriptors
to HOG features is a well-known method of detecting shapes and textures in the image
feature space and could be applied to our system for better detection accuracy [51].
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Figure 5.4: Stereo vision based pedestrian detection. The top row shows the process of
semantic segmentation while the bottom row shows the process of UV-disparity map based
object detection.

Stereo camera

A ZED 2K stereo camera is used primarily for detecting pedestrians in front of the au-
tonomous vehicle. As shown in figure 5.4, the detection task is divided into two parallel
processes: UV-disparity map based object detection, and the semantic segmentation of a
monocular vision based on a convolution neural network (CNN). The U-disparity map can
be used to detect the ground plane and find the upper and lower edges of the object while
the V-disparity map can be used to find the left and right edges. Once the objects are
identified, they are compared with the semantic segmentation result, which is achieved by
ICNet [64]. Pedestrians can be identified by combining the semantic segmentation result
and the objects found using the UV-disparity map.

LiDAR

Three Velodyne VLP-16 LiDAR sensors are used in conjunction to form a single 3D point
cloud. Each LiDAR unit has 16 vertical layers covering a ±15◦ vertical field of view and
a 360◦ horizontal field of view with a 100 meter range. The point cloud data is received
from each LiDAR at 10 Hz and then translational and rotational offsets are applied before
combining the point clouds to properly account for their different mounting locations.
The translational offset is measured manually and the rotational offset is measured by the
extrinsic rotational calibration method presented in[33].

The pedestrian detection method is similar to that used in [34] in regards to the
LiDAR data being used in conjunction with monocular camera data. The overall process
is illustrated in figure 5.5. The ground plane is first removed from the combined point
cloud using the ground plane extraction algorithm from [23]. After the ground plane
removal, object segmentation is performed as also done in [23]. The objects found in the
point cloud after segmentation guide the camera-based pedestrian detection by providing
regions of interest and narrowing the search space.

5.3.2 Infrastructure Sensors

Infrastructure sensors could be any combination of dedicated cameras mounted on nearby
buildings, regular surveillance cameras, and downward facing aerial cameras mounted on
UAVs. This section only focuses on UAV-based infrastructure sensors, as the detection
methods apply similarly to others. In this study, a DJI Phantom 3 SE with a built-in
camera, as shown in figure 5.6, is used as the UAV-based infrastructure sensor.
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Figure 5.5: The flowchart of LiDAR based pedestrian detection.

Figure 5.6: The DJI R© Phantom 3 SE unmanned aerial vehicle (UAV).
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Figure 5.7: Pedestrian detection of UAV-based infrastructure camera. In the scenario, 3
pedestrians are walking in shared space while the vehicle tries to traverse.

Figure 5.8: The flowchart of the Dempster-Shafer theory (DST).

Since the UAV is part of the infrastructure, it is safe to assume that the background of
the area of interest is known. Individual pedestrian detection is done based on each new
frame calibrated and subtracted with respect to the background. For each background-
removed frame, a series of image processing operations (thresholding, opening, and closing)
are applied and the contours and bounding boxes of all objects are then generated. Using
the contours, positions of individual pedestrians can be easily determined. The above
detection process is illustrated in figure 5.7.

5.3.3 Sensor fusion

Once we have performed the pedestrian detection for both on-vehicle sensors and UAV-
based infrastructure sensors, the next step is to fuse the detection results. The purpose of
sensor fusion is to exploit the complementary and redundant characteristics of the sensors
for increasing the reliability and accuracy of the pedestrian detection. The Dempster-
Shafer theory (DST) is applied for the sensor fusion task, which combines the sources
of evidence while avoiding counter-intuitive results [49]. Figure 5.8 shows how multiple
sources of evidence are processed by DST. First, the basic belief assignment (BBA) is done
based on multiple sources. Then the most credible pedestrian positions are generated by
applying Dempster’s rule of combination.

5.4 Transportation Efficiency in Shared Spaces

In a future project we will consider the application of these modeling results to improving
the performance of autonomous vehicles in shared spaces. Here we summarize our initial
proposed approaches to this problem.
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Figure 5.9: Online driving strategy planning process.

5.4.1 Scenario Prediction

The scenario in a short time horizon, for example 10 to 30 seconds, can be predicted in
simulation given the current states of the individual pedestrians, models that describe the
motion of both the pedestrians and the vehicle, and the driving efficiency objective of the
autonomous vehicle.

Once the states of all individual pedestrians are available, the next step would be to
estimate the current pedestrian goals. It is common to assume that a pedestrian walks
linearly at a constant speed for a short horizon. Under this linear assumption, a near-term
goal of the pedestrian can be inferred. The social force based pedestrian interaction model
in chapter 2 will be applied to describe the motion of pedestrians under the influence of
vehicles in shared spaces.

5.4.2 Approaches

As the pedestrian motion can only be predicted but hardly controlled by intelligent sys-
tems, the driving efficiency of the autonomous vehicle plays the main role in affecting the
transportation efficiency in shared spaces. Depending on the driving efficiency objective,
the driving strategy could be determined by either online or offline approaches.

Figure 5.9 shows the process of online driving strategy planning. Once the driving effi-
ciency objective has been chosen and the current pedestrian states are available, modules
of scenario prediction, objective evaluation, and driving strategy planning will be executed
sequentially and iteratively until a driving strategy that satisfies the driving efficiency ob-
jective is generated. This can be achieved by forming a model predictive control (MPC)
problem and solving the objective function. Specific vehicle driving objectives could be,
for example, finding the shortest passing time through the crowd while guaranteeing the
pedestrian safety.

The driving strategy can also be determined offline as shown in figure 5.10. This ap-
proach requires training of a model that represents the relationship between the inputs
(the driving efficiency objective and the current pedestrian states), and the output (the
driving strategy). Training will be achieved by the scenario prediction and the objective
evaluation module given the data of possible initial pedestrian states and different can-
didates of driving efficiency objectives and driving strategies. One example of a problem
that can be attacked by thie approach is to estimate the desired time for the autonomous
vehicle to pass an area of interest in a crowded shared space [58].

55



Understanding and Guiding Pedestrian and Crowd Motion

Figure 5.10: Offline driving strategy determination process.

5.5 Conclusion

This chapter presented a framework that combines pedestrian detection via multiple sen-
sors, vehicle-crowd interactive scenario prediction, and approaches to improve the driving
efficiency of autonomous vehicles, which finally affects the transportation efficiency in
shared spaces. Methods of pedestrian detection on different types of sensors were intro-
duced and the corresponding initial results were presented. Finally, we propose both online
and offline approaches for improving driving efficiency. The proposed framework has the
potential to solve transportation problems in shared spaces where crowd pedestrians and
autonomous vehicles interact with each other.
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Chapter 6

Conclusion

6.1 Conclusion

This report summaries the design of a social force based pedestrian motion interaction
model that specifically considers the vehicle effect on the behavior of pedestrians. The
parameters of the proposed model were calibrated by the genetic algorithm with the
help of visual inspection. A pedestrian trajectory dataset that involves vehicle-pedestrian
interaction was established as the ground truth data to support the model parameter
calibration. The dataset also has the potential to benefit a variety of pedestrian crowd
related studies. Applications of the proposed pedestrian motion model were also presented.
We proposed a framework that combines the pedestrian detection, scenario prediction,
and vehicle driving efficiency improvement in pedestrian-dense scenarios. In a subsequent
project, we will explore and develop these approaches and examine case studies that will
demonstrate how to apply the proposed model into driving efficiency application.

6.2 Future Work

To further improve the pedestrian motion model and its calibration, there are several
points to consider:

• The assumption of homogeneity could be removed; hence the pedestrian motion
model can describe different types of interactions. For example, pedestrians could
have different radii, different action capabilities (fast or slow), and different prefer-
ences of avoiding the collision. This can be achieved by individually calibrating a
parameter set for each pedestrian or clustering a certain number of features based
on the individually obtained parameters.

• The utilization of mean square error for calibration may not be a perfect choice. As
the simulation time step increases, the error accumulates. The final prediction error
(the difference between the last simulated position and the last recorded position)
could be considered together with the mean square error.

• Instead of using the whole pedestrian trajectory in the data for calibration, a fixed-
time length trajectory can be applied. This will avoid larger cumulative error in
longer trajectories.
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• Different fundamental vehicle-pedestrian interaction scenarios (front, back, and lat-
eral) may require different designs of vehicle influence, or at least different parameter
sets for vehicle influence. That means the calibration of vehicle-pedestrian could be
done separately.

• Regarding multi-modality, various types of road users (e.g. cyclists, animals, etc.)
should be considered in the future to make the pedestrian motion model more gener-
alizable. But still, among these road users, vehicles should be the primary concern,
as they are the most dominant and dangerous participants in the traffic.

The pedestrian trajectory dataset has the following limitations:

• There is no much variation of the vehicle speed in the dataset. Our data has an
average vehicle speed of 3m/s. Whether the proposed model generalizes to the
influence of the vehicle of higher speed has not been validated by the data. The
dataset with different vehicle velocities is desirable.

• Pedestrian participants in our dataset do not represent all kinds of pedestrians, since
they are primarily composed of college students. Also, the density of pedestrian
crowd does not vary too much.

• It is also expected to build a benchmark that tests a couple of famous pedestrian
motion models, which is our major future work.

• Another improvement could be automatically detecting/selecting initial positions of
pedestrians when they entered the ROI, hence totally removing manual operation.

• From the aspect of personal characteristics, it would help if the pedestrians in the
dataset could be identified according to their age, gender, head direction, and other
features, although manual annotation of these features seems to be the only option
at current stage.

For the applications presented in this report:

• Pedestrian Detection: The fusion of detection results from different sensors should
be further improved. As a fundamental structure for sensor fusion, Dempster-Shafer
theory should be adapted to fit the specific situation. The communication between
UAV-based infrastructure sensors and on-vehicle sensors also requires further explo-
ration, especially for how to guarantee real-time information exchange.

• Pedestrian Goal Estimation: Although linear assumption is generally acceptable in
practice, applying a high-fidelity estimation model or incorporating more environ-
ment information can improve the estimation result. However, high-fidelity models
and additional information require high computational capability. It is necessary to
find an approach that can balance the estimation performance and the computational
load.
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Appendix A

Social Force Modeling
A.1 Validation of Pedestrian-Pedestrian Interaction

Figure A.1 shows the validation results of all scenarios of pedestrian-pedestrian interaction.
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Figure A.1: A comparison between simulated trajectories (red solid lines) and recorded
trajectories (green dashed lines) in pedestrian-pedestrian interaction scenarios. fms shown
in the title is the average of the mean square errors (as defined in equation 4.3) of all
pedestrians in the scenario. The asterisks indicate the initial positions of each pedestrian.
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A.2 Validation of Vehicle-Pedestrian Interaction

Figure A.2 shows the validation results of all scenarios of vehicle-pedestrian interaction.
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Figure A.2: A comparison between simulated trajectories (red) and recorded trajectories
(black) of pedestrians in vehicle-pedestrian interaction scenarios, i.e., scenarios that con-
siders vehicle influence. fms is the mean square error as defined in equation 4.3. The
vehicle motion uses ground truth, of which the trajectories are indicated in dash-dotted
cyan. The asterisks indicate initial positions. Rows 1-2, 3-4, and 5-6 show scenarios of
back interaction, front interaction, and lateral interaction, respectively.
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A.3 Post-Simulation of Vehicle-Pedestrian Interaction

Figures A.3, A.4, and A.5 show the trajectories and velocities back, front, and lateral
interactions that correspond to figures 4.9, 4.10, and 4.11, respectively, in the post-
simulation.
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Figure A.3: Trajectories and velocities of back interaction. Left: Trajectories of pedestri-
ans (solid lines) and the vehicle (dashed line) in the simulation. Right: The evolution of
velocities of all pedestrians in the simulation
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Figure A.4: Trajectories and velocities of front interaction. Left: Trajectories of pedestri-
ans (solid lines) and the vehicle (dashed line) in the simulation. Right: The evolution of
velocities of all pedestrians in the simulation
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Figure A.5: Trajectories and velocities of lateral interaction. Left: Trajectories of pedes-
trians (solid lines) and the vehicle (dashed line) in the simulation. Right: The evolution
of velocities of all pedestrians in the simulation
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Appendix B

Research Products for this Project

B.1 Journal Publications

Dongfang Yang, Ümit Özgüner, and Keith Redmill, “A Social Force Based Pedestrian Mo-
tion Model Considering Multi-Pedestrian Interaction with a Vehicle”, ACM Transactions
on Spatial Algorithms and Systems (TSAS), 6:2(2020), pp. 1–27.

B.2 Conference Publications

Dongfang Yang, Arda Kurt, Keith Redmill, Ümit Özgüner, “Agent-based microscopic
pedestrian interaction with intelligent vehicles in shared space”, Proceedings of the 2nd
International Workshop on Science of Smart City Operations and Platforms Engineering,
pp. 69–74, 2017.
Dongfang Yang, John Maroli, Linhui Li, Menna El-Shaer, Bander Jaber, Keith Redmill,
Ümit Özgüner, and Füsun Özgüner, “Crowd motion detection and prediction for trans-
portation efficiency in shared spaces”, 2018 IEEE International Science of Smart City
Operations and Platforms Engineering in Partnership with Global City Teams Challenge
(SCOPE-GCTC), pp. 1–6, 2018.
Dongfang Yang, Ümit Özgüner, and Keith Redmill, “Social force based microscopic mod-
eling of vehicle-crowd interaction”, 2018 IEEE Intelligent Vehicles Symposium (IV), pp.
1537–1542, 2018.
Dongfang Yang, Linhui Li, Keith Redmill, and Ümit Özgüner, “Top-view trajectories: A
pedestrian dataset of vehicle-crowd interaction from controlled experiments and crowded
campus”, 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 899–904, 2019.

B.3 Thesis

Rayan El Helou, Agent-based Modelling of Pedestrian Microscopic Interactions, Masters
Thesis, The Ohio State University, 2016.

B.4 Datasets

CITR Ohio State University dataset is available at https://github.com/dongfang-steven-
yang/vci-dataset-citr
Dalian Institute of Technology dataset is available at https://github.com/dongfang-steven-
yang/vci-dataset-dut
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