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Abstract

Optimal and safety-critical control are fundamental prob-
lems for stochastic systems, and are widely considered in
real-world scenarios such as robotic manipulation and au-
tonomous driving. In this paper, we consider the problem
of efficiently finding optimal and safe control for high-
dimensional systems. Specifically, we propose to use dimen-
sionality reduction techniques from a comparison theorem
for stochastic differential equations together with a general-
izable physics-informed neural network to estimate the opti-
mal value function and the safety probability of the system.
The proposed framework results in substantial sample effi-
ciency improvement compared to existing methods. We fur-
ther develop an autoencoder-like neural network to automat-
ically identify the low-dimensional features of the system to
enhance the ease of design for system integration. We also
provide experiments and quantitative analysis to validate the
efficacy of the proposed method. Source code is available at
https://github.com/jacobwang925/path-integral-PINN.

Introduction
Optimal control and safety-critical control are the two cen-
tral concerns for autonomous systems. These concerns are
particularly pronounced in real-world applications, e.g.,
manufacturing robots and autonomous cars. The operational
environment often introduces stochastic noise, which com-
pounds the difficulties of achieving optimal performance
and ensuring safety. Traditional deterministic methods prove
inadequate for stochastic dynamics (Katsoulakis and Vi-
lanova 2020). Furthermore, many real-world systems are
characterized by high-dimensional state spaces (e.g., multi-
agent systems), leading to substantial computational burdens
when devising optimal and safe control strategies.

Previous work on stochastic optimal control deals with
diverse uncertainty and randomness, but these methods
are not efficient for high-dimensional systems because for-
ward rollouts and backward dynamic programming requires
computation that scales exponentially with the dimension
of the state (Gorodetsky, Karaman, and Marzouk 2018;
Frankowska and Zhang 2020). Previous studies on stochas-
tic safe control aim to control the level of risk in the sys-
tem and ensure the probability of safety does not decay
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over time (Samuelson and Yang 2018; Gómez et al. 2016).
These methods rely on accurate estimations of the probabil-
ity of risk in the system, and standard methods for such risk
estimation are computationally heavy, especially for high-
dimensional systems. For both problems, existing methods
require computation that scales exponentially or linearly
with the time horizon of interest. To the best of our knowl-
edge, there is no study that provides estimation of the value
function or risk probability in long time horizons without in-
troducing additional computation, which can be very bene-
ficial for systems with long-term performance requirements.

In order to address these challenges in computation,
this study proposes a unified framework to efficiently
estimate the value function and safety probability of
high-dimensional stochastic systems. The method lever-
ages a comparison theorem (Yamada 1973) to find low-
dimensional representations of the value function and safety
probability, and uses such low-dimensional features to con-
struct low-dimensional partial differential equations (PDEs)
for the value function and safety probability calculation in
order to reduce the dimension of the problem for efficient
computation. We further propose a physics-informed neu-
ral network (PINN) to solve these PDEs for better sample
complexity and generalization abilities. We also propose an
autoencoder-like neural network to automatically identify
low-dimensional features of the system. Fig. 1 shows the
overall diagram of the proposed method. The advantages of
the proposed method are
1. A unified framework for accurate estimation of value

functions and safety probabilities of stochastic systems
(Fig. 3a).

2. Efficient estimation with much lower sample complexity
for high-dimensional systems (Fig. 5).

3. Generalization to unseen regions in the state space and
longer time horizons (Fig. 4).

4. Intuitive plug and use with automatic feature identifica-
tion (Fig. 3b).

Related Work
Path Integral Optimal Control
Path integral control generally refers to numerical meth-
ods to solve a stochastic optimal control problem by re-
peatedly performing forward Monte Carlo rollouts of open-
loop dynamics. The original derivation of the path integral
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Figure 1: The overall diagram of the proposed method for
stochastic optimal value function and safety probability es-
timation.

control algorithm (Kappen 2005) relied on the Feynman-
Kac lemma, whereas an alternative derivation without the
Feynman-Kac lemma became available later (Theodorou
and Todorov 2012) based on the variational approach. In
both derivations, the path integral method is restricted to the
class of stochastic optimal control problems whose Hamil-
ton–Jacobi–Bellman (HJB) PDEs are linearizable, but gen-
eralizations have been considered in (Satoh, Kappen, and
Saeki 2016; Williams et al. 2017). Various implementations
such as path integral for policy improvements (Theodorou,
Buchli, and Schaal 2010) and receding horizon implemen-
tations (Williams, Aldrich, and Theodorou 2017) have been
widely used. Path integral control has also been applied to
constrained systems and systems with non-differentiable dy-
namics (Satoh and Kappen 2020; Carius et al. 2022). Path
integral control for risk minimization in robot navigation has
been considered in (Patil et al. 2022), which requires solving
PDEs whose dimension scales with the size of the system.
Here, we show that the value function and safety probability
can be bounded exactly by the solution of low-dimensional
PDEs regardless of the system dimension.

Risk Quantification for Safe Control
Risk quantification is the key enabler for many long-term
stochastic safe control methods (Wang et al. 2021; Jing and
Nakahira 2022). Existing methods often use rare event simu-
lation through Monte Carlo (MC) and importance sampling
to estimate the long-term risk in stochastic systems (Botev,
L’Ecuyer, and Tuffin 2013; Hanna, Niekum, and Stone 2021;
Stadie et al. 2018; Madhushani et al. 2021). The subset simu-
lation calculates the risk probability conditioned on interme-
diate failure events for improved sample efficiency (Huang,
Chen, and Zhu 2016; Zhao and Wang 2022; Rashki 2021).
Probabilistic reachability estimates the risk of controllers in
stochastic systems by propagating the estimated risk back-
wards over time (Hewing and Zeilinger 2018; Bansal et al.
2020; Huh and Yang 2020). MC techniques typically require
samples to cover states and evaluate the risk over the time
horizon. PDE techniques are also used to understand proba-
bilistic values in stochastic systems (Chern et al. 2021; Feng
2014), but numerical PDE techniques such as finite differ-
ence, finite element, and finite volume methods are less scal-
able than MC methods. Probability bounds and martingale
inequalities have been used to approximate risk probabili-
ties for certain classes of systems (Clark 2019; Yaghoubi
et al. 2020; Santoyo, Dutreix, and Coogan 2021; Cheng et al.

2020; Meng and Liu 2022; Nishimura and Hoshino 2023).
The large deviation is another standard approach that can be
adapted to the safe control area, which allows evaluating the
probability of the state of a stochastic differential equation
that exists from a given region (Bressloff and Newby 2014;
Bertini, Faggionato, and Gabrielli 2015). Nonetheless, most
existing methods suffer from the curse of dimensionality. In
this work, we solve the high-dimensional safety probabil-
ity estimation problem by finding effective low-dimensional
representations, and we are able to reduce the sample com-
plexity by orders compared to MC methods.

Physics-informed Neural Networks
Physics-informed neural networks (PINNs) are neural net-
works that are trained to solve supervised learning tasks
while respecting any given laws of physics described by
general nonlinear PDEs (Raissi, Perdikaris, and Karniadakis
2019). PINNs take both data and the physics model of the
system into account, and are able to solve the forward prob-
lem of getting PDE solutions, and the inverse problem of dis-
covering underlying governing PDEs from data. PINNs have
been widely used in power systems (Misyris, Venzke, and
Chatzivasileiadis 2020), fluid mechanics, (Cai et al. 2022)
medical care (Sahli Costabal et al. 2020), and risk quan-
tification (Han, Jentzen, and Weinan 2018; Pereira et al.
2021; Wang and Nakahira 2023). We leverage the general-
ization ability of PINNs to efficiently estimate value func-
tions and safety probabilities in unseen regions of the state
space to further enhance the sample complexity of the pro-
posed method.

Problem Formulation
System Dynamics
Consider the following class of nonlinear stochastic dynam-
ical systems defined on a probability space (Ω, F, P ):

dxt = f (xt) dt+ σ (xt) (utdt+ dwt) (1)
Here, xt ∈ X ⊂ Rn, 0 ≤ t ≤ T is the state of the system
and ut ∈ U ⊂ Rm, 0 ≤ t ≤ T is the control input, wt is
the m-dimensional standard Brownian motion in the proba-
bility measure P and σ is the diffusion coefficient. The role
of the controller is to apply the control input ut based on a
state feedback policy i.e., ut is measurable with respect to
the filtration F xt generated by {xτ}0≤τ≤t. Suppose that Q
is an alternative probability measure in which ut ≡ 0. Cor-
respondingly, we have

dw̃t = utdt+ dwt, w̃0 = 0 (2)
is the standard Brownian motion.

Stochastic Optimal Control
Consider the running cost defined as

w(xt, ut) = c(xt) +
1

2
∥ut∥2, (3)

where c : Rn → R. The stochastic optimal control problem
aims to find the optimal value function

V (x, t) := min
u

EP

[∫ T

t

w(xτ , uτ )dτ + c (xT ) | xt = x

]
,

(4)
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which explicitly yields the optimal control as

u⋆
t = −σ (xt)

⊤ ∇xV (xt, t) . (5)

A notable feature of the stochastic optimal control problems
is the applicability of Monte Carlo-based numerical solu-
tion strategy, which we call the path-integral method (Thi-
jssen and Kappen 2015). For each time t ∈ [0, T ) and the
state x ∈ Rn, the path-integral method allows the control
agent to compute the optimal input u⋆

t by evaluating the
path integrals along randomly generated state trajectories
xτ , t ≤ τ ≤ T starting from xt = x. From existing results
on KL control and free energy (Fleming and Soner 2006;
Boué and Dupuis 1998; Theodorou and Todorov 2012), the
value function (4) can be solved explicitly as

V (x, t) =

− logEQ

[
exp

(
−
∫ T

t

c (xτ ) dτ − c (xT )

)
| xt = x

]
.

(6)
Since the right hand side of (6) contains the expectation with
respect to Q, one can consider approximating it by Monte
Carlo simulation as

V (x, t) ≈ − log

[
1

N

N∑
i=1

exp

(
−
∫ T

t

c
(
xi
τ

)
dτ − c

(
xi
T

))]
,

(7)
where

{
xi
τ , t ≤ τ ≤ T

}N
i=1

are randomly drawn sample
paths from distribution Q. Since w̃t is the standard Brow-
nian motion under Q, such sample paths can be obtained by
simply simulating the uncontrolled system dxt = f(xt)dt+
σ(xt)dw̃t. Note that Q is the uncontrolled process and is
easy to sample from, while the value function given by (7) is
associated with the optimal control. This is the path integral
control method, and is widely adopted for low-dimensional
systems. However, when the system dimension is high, sam-
pling (7) is nontrivial. We aim to address this issue with the
proposed framework.

Safety-critical Control
We consider system (1) with a nominal control policy u =
N (x). We define safety of the system as the state staying
within a safe set C, which is the super-level set of a barrier
function ϕ(x) : Rn → R, i.e.,

C = {x : ϕ(x) ≥ 0}. (8)

This definition of safety can characterize a large variety of
practical safety requirements (Prajna, Jadbabaie, and Pappas
2007; Ames et al. 2019). Since in stochastic systems safety
can only be guaranteed in the sense of probability, we con-
sider long-term safety probability F of the system defined
as below.

Definition 1 (Safety probability). Starting from initial state
x0 = x ∈ C, the safety probability F of system (1) for out-
look time horizon t is defined as the probability of state xτ

staying in the safe set C over the time interval [0, t], i.e.,

F (x, t) = P(xτ ∈ C, ∀τ ∈ [0, t] | x0 = x). (9)

High-dimension
System

Low-dimension
Features

Low-dimension
PDE

Value Function
Safety Probability

Comparison Theorem
Autoencoder-like NN

Feynman-Kac Formula

Physics-informed Learning

Figure 2: The procedure diagram of the proposed method.

The goal is to find the safety probability F over the state
space for a long-term horizon T . Once the safety probabil-
ity is acquired, existing safe control methods can be used
to guarantee safety of the system (Wang et al. 2021; Jing
and Nakahira 2022). One standard approach to acquire such
safety probability is to run Monte Carlo simulation with the
nominal controller N multiple times and calculate the em-
pirical probability of the system being safe, i.e.,

F̄ (x, T ) =
Nsafe

N
≈ P(xτ ∈ C, ∀τ ∈ [0, T ] | x0 = x),

(10)
where Nsafe is the number of safe trajectories over N tra-
jectories. However, such estimation has a sample complex-
ity that scales linearly with horizon T and exponentially
with system dimension n (Rubino and Tuffin 2009; Wang
et al. 2021), and is thus inefficient for high-dimensional sys-
tems with long-term safety requirements. We aim to over-
come these issues and efficiently estimate long-term safety
probabilities of high-dimensional systems with the proposed
framework.

Proposed Method
In the section, we introduce the proposed framework to
efficiently estimate value functions and safety probabili-
ties of high-dimensional systems. The method consists of
three procedures. We first apply comparison theorem to find
low-dimensional features of the system and the associated
stochastic processes that characterize their evolution. Then
we transform the stochastic process into the solution of cer-
tain PDEs. Last, we formulate a physics-informed learning
problem to efficiently solve the PDE with special bound-
ary and initial conditions. Additionally, we introduce an
autoencoder-like neural network for automatic feature iden-
tification. Fig. 2 shows the overall procedures of the pro-
posed framework.

Comparison Theorem for Feature Identification
We assume the low-dimensional feature can be represented
by a smooth function p : Rn → R. Here, we use comparison
theorem (Ikeda and Watanabe 1977, Theorem 3.1) to find
the stochastic process ξ that describes the exact evolution of
p(x). We introduce the operator A as

AU (·)(x) = ∂(·)
∂x

(x)f(x) +
∂(·)
∂x

(x)σ(x)U+

1

2
Tr

(
∂2(·)
∂x2

(x)σ(x)σ(x)⊤
)
,

(11)
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where U : Rn → Rm is the control policy that maps the
state to the control input, and we define

a(x) =
∑
i,j,k

σi
k(x)σ

j
k(x)

∂p

∂xi
(x)

∂p

∂xj
(x), b(x) =

AUp(x)

a(x)
,

(12)
where σi

k(x) is the (i, k)-th element of the diffusion coeffi-
cient σ(x). For value function estimation, we consider A0

for the uncontrolled process where U ≡ 0, and for safety
probability estimation, we consider AN where U = N is
the nominal control policy. Additionally, let ξ ∈ I ⊂ R be
a scalar variable, where I is the range of the feature p(x).
Using similar notation employed in (Ikeda and Watanabe
1977), consider

a+(ξ) = sup
x:p(x)=ξ

a(x), a−(ξ) = inf
x:p(x)=ξ

a(x)

b+(ξ) = sup
x:p(x)=ξ

b(x), b−(ξ) = inf
x:p(x)=ξ

b(x)
(13)

Assumption 2. We assume that the feature function p(x)
satisfies that a+(ξ) = a−(ξ) = α(ξ) and b+(ξ) = b−(ξ) =
β(ξ), ∀ξ ∈ I .
Assumption 3. The functions α(ξ) and β(ξ) are globally
Lipschitz continuous in ξ ∈ I ⊂ R. Moreover, a(x) > 0,
∀x ∈ Rn.
Theorem 4. Given Assumptions 2 and 3 hold, p(xt) with
xt being sampled from system (1) is characterized by the
following stochastic process

dξt = α (ξt)β (ξt) dt+
√

α (ξt)dB̃t, (14)

with ξ0 = p(x0), and B̃t being a one-dimensional standard
Wiener process.

Proof. See extended version of the paper (Wang et al. 2023).
Assumption 2 gives the conditions for the upper and lower

bounds to match with the actual value α and β, thus a sin-
gle stochastic process ξ can be derived. Until here, we have
found the one-dimensional process (14) that characterizes
the evolution of the feature of the high-dimensional system
without any information loss.

PDE for Value Function with Feynman-Kac
In this section, we describe how to estimate the value func-
tion with the solution of a low-dimensional PDE. We con-
sider p(x) = c(x), i.e., the feature of the high-dimensional
system is the value of the running cost on state. We set

V (x, t) = − logφ(x, t). (15)
Let ξ = p(x), then from (6) we have

φ(x, t) = E

[
exp

(
−
∫ T

t

ξτdτ − ξT

)
| ξt = ξ

]
(16)

With that, we apply Feynman-Kac formula (Del Moral and
Del Moral 2004) on (16) and (14) and get φ(x, t) is the so-
lution of the following two-dimensional PDE

Wφ(ξ, t) :=
∂φ

∂t
(ξ, t) + α(ξ, t)β(ξ, t)

∂φ

∂ξ
(ξ, t)

+
1

2
α(ξ, t)

∂2φ

∂ξ2
(ξ, t)− ξφ(ξ, t) = 0,

(17)

with initial (terminal) condition

φ(ξ, T ) = exp(−1

2
ξ). (18)

PDE for Safety Probability
In this section, we describe how to estimate the safety prob-
ability with the solution of a low-dimensional PDE. We con-
sider p(x) = ϕ(x), i.e., the feature of the high-dimensional
system is the value of the barrier function for the state. Then
we have

F (x, t) = P (xτ ∈ C, ∀τ ∈ [0, t] | x0 = x)

= P
(

min
0≤τ≤t

ϕ(xτ ) ≥ 0

)
= P

(
min

0≤τ≤t
p(xτ ) ≥ 0

)
= P

(
min

0≤τ≤t
ξτ ≥ 0

)
.

(19)

The well-known results on the probability distribution of the
first hitting time (Patie and Winter 2008) allow us to ob-
tain (19) as a solution to the two-dimensional PDE given by

WF (ξ, t) :=
∂F

∂t
(ξ, t)− α(ξ, t)β(ξ, t)

∂F

∂ξ
(ξ, t)

− 1

2
α(ξ, t)

∂2F

∂ξ2
(ξ, t) = 0,

(20)

with boundary and initial conditions

F (ξ, 0) = 1, ξ > 0; F (0, t) = 0, t > 0. (21)

Physic-informed Learning
In this section, we will introduce a physics-informed learn-
ing pipeline to solve the PDE for the value function (17)
and the PDE for safety probability (20). For conciseness, we
will focus on the case of value function estimation, as adap-
tation to safety probability estimation is trivial where one
just needs to replace the variables and the governing PDE.

From (7), we can estimate the value function using path
integral control by sampling the uncontrolled process. How-
ever, the path integral MC is not sample efficient when we
want to know the value function on the entire space, espe-
cially for a large horizon T . Further, efficiently solving the
value function PDE (17) using standard numerical methods
is challenging.

To leverage the advantages of MC and PDE methods
and to overcome their drawbacks, we propose a physics-
informed neural network (PINN) to learn the mapping from
the feature-time pair to the value function φ. Fig. 3a shows
the architecture of the PINN. The PINN takes the feature-
time pair (ξ, t) as the input, and outputs the value function
prediction φ̂, the feature and time derivatives ∂φ̂

∂ξ and ∂φ̂
∂t ,

and the Hessian ∂2φ̂
∂ξ2 , which come naturally from the auto-

matic differentiation in deep learning frameworks such as
PyTorch (Paszke et al. 2019) and TensorFlow (Abadi et al.
2016). Assume the PINN is parameterized by θ, the loss
function is defined as

L(θ) = ωpLp(θ) + ωdLd(θ), (22)
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where

Lp(θ) =
1

|P|
∑

(ξ,t)∈P

∥Wφ̂θ
(ξ, t)∥22,

Ld(θ) =
1

|D|
∑

(ξ,t)∈D

∥φ̂θ(ξ, t)− φ̄(ξ, t)∥22.
(23)

Here, φ̄ is the training data, φ̂θ is the prediction from the
PINN, P and D are the training point sets for the physics
model and external data, respectively. The loss function L
consists of two parts, the physics model loss Lp and data loss
Ld. The physics model loss Lp measures the satisfaction of
the PDE constraints for the learned output. It calculates the
actual PDE equation value Wφ̂θ

, which is supposed to be 0,
and use its 2-norm as the loss. The data loss Ld measures
the accuracy of the prediction of PINN on the training data.
It calculates the mean square error between the PINN pre-
diction and the training data point as the loss. The overall
loss function L is the weighted sum of the physics model
loss and data loss with weighting coefficients ωp and ωd.
Though out of the scope of this paper, theoretical analysis
on the approximation error of PINNs and neural operators
can be found in (Wang and Nakahira 2023; Lu et al. 2021a;
Kovachki, Lanthaler, and Mishra 2021).

Remark 5. For finding the optimal control, one can further
enhance the sample complexity using path integral control
together with value function prediction from the PINN. De-
note V̂ as the PINN value function prediction, we can ini-
tially estimate the optimal control from (5) with û(x, t) =

−σ (x)
⊤ ∇V̂ (x, t). Then we can refine the optimal con-

trol using importance sampling (Thijssen and Kappen 2015)
with the following procedure

u⋆(x, t)− û(x, t) =

lim
s↘t

EP
{
exp

{
−Sû(t)

} ∫ s

t
dWτ | xt = x

}
(s− t)EP {exp {−Sû(t)} | xt = x}

(24)

where P is the process with regard to û and

Sû(t) =

∫ T

t

w (xτ , ûτ ) dτ +

∫ T

t

û⊤
τ dWτ + c (xT ) . (25)

Essentially, one can use the sampled cost function (25) with
control policy û to estimate the optimal control policy u⋆

with (24). The sample complexity for estimating the expecta-
tion in (24) is much lower than the naive estimation with (7)
and (5) due to the fact that path generated from û is much
closer to the optimal path. The importance sampling theory
provides theoretical analysis on the improvement of the sam-
ple complexity (Thijssen and Kappen 2015).

Generalization: Arbitrary Feature Dimension
In this section we generalize the previous results such that
the representation of the system can be of arbitrary dimen-
sion. The procedure consists of two key steps. First, we use
comparison theorem to find a multidimensional representa-
tion of the value function and the associated multidimen-
sional process, i.e., ξ = [ξ(1), ξ(2), · · · , ξ(k)]⊤ where k is

the dimension of the reduced representation. Then, we apply
the high-dimensional Feynman-Kac formula (Pham 2009,
Theorem 1.3.17) to transform the stochastic process ξ to a
k-dimensional PDE which can be solved by the PINN.

For the first step, we find functions p(x) =
[p1(x), p2(x), · · · , pk(x)]⊤ as the low dimensional
representation of the original system. We define a+−

i and
b+−
i similar to (13) and assume Assumption 2 and 3 hold

for ∀i. Then from the comparison theorem, we can find
stochastic processes

dξ
(i)
t = αi

(
ξ
(i)
t

)
βi

(
ξ
(i)
t

)
dt+

√
αi

(
ξ
(i)
t

)
dB̃

(i)
t (26)

for i = 1, 2, · · · , k that characterize pi(x), where B̃
(i)
t is

one-dimensional standard Wiener processes.
Assumption 6. For value function estimation, we assume
the running-cost can be represented by the following func-
tion

c(x) = r(ξ) = r (p1(x), p2(x), · · · , pk(x)) (27)

where r : Rk → R is a continuous function.
Assume Assumption 6 holds, then

φ(x, t) = E

[
exp

(
−
∫ T

t

r(ξτ )dτ − r(ξT )

)
| ξt = ξ

]
.

(28)
From the high-dimensional Feynman-Kac formula (Pham
2009, Theorem 1.3.17), we have φ as the solution of the
following PDE

rφ− ∂φ

∂t
− Gtφ = 0, on Rk × [0, T )

φ(·, T ) = exp(−r(·)), on Rk,

(29)

where r is given by (27) and

Gt(·) = α (ξt)β (ξt) ·
∂(·)
∂ξ

+
1

2
Tr

(
a (ξt)

∂2(·)
∂ξ2

)
, (30)

with

α (ξt)β (ξt) =


α1

(
ξ
(1)
t

)
β1

(
ξ
(1)
t

)
α2

(
ξ
(2)
t

)
β2

(
ξ
(2)
t

)
...

αk

(
ξ
(k)
t

)
βk

(
ξ
(k)
t

)

 , (31)

and

a (ξt) =


α1 (ξt)

α2 (ξt)
. . .

αk (ξt)

 . (32)

Assumption 7. Similarly, for safety probability estimation,
we assume the barrier function can be represented by the
following function

ϕ(x) = r(ξ) = r (p1(x), p2(x), · · · , pk(x)) , (33)

where r : Rk → R is a continuous function.
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ξ

t

σ

σ

σ

σ

σ

σ

φ̂ / F̂
...

...

PINN (ξ, t; θ) ∂
∂ξ

∂2

∂ξ2

∂
∂t

rφ̂ − ∂φ̂
∂t − Gtφ̂ / ∂F

∂t − GtF

Physics model loss Lp

φ̂(ξ, t) − φ̄(ξ, t) / F̂ (ξ, t) − F̄ (ξ, t)

Data model loss Ld

L = ωpLp + ωdLd θ∗

Minimize

x

Rn

Encoder
pσ(x)

ξ

Rk

LC.T.

Decoder
gσ(ξ)

r̂(ξ)

R1

LRC

Figure 3: (a) The training scheme of the physics-informed neural network (PINN). (b) Autoencoder-like network architecture.

Then the safety probability can be written as

F (x, t) = P
(

min
0≤τ≤t

ϕ(xτ ) ≥ 0

)
= P

(
min

0≤τ≤t
r(ξτ ) ≥ 0

)
.

(34)
We define B = {ξ : r(ξ) ≥ 0}. From the probability dis-
tribution of hitting time (Patie and Winter 2008) we have
that (34) can be characterized by the solution of the follow-
ing PDE

∂F

∂t
− GtF = 0, on [0, T )× Rn (35)

F (ξ, 0) = 1, ξ ∈ B; F (ξ, t) = 0, ξ ∈ ∂B. (36)

Remark 8. The Assumptions 6 or 7 where the running-cost
can be represented by (27) or the barrier function can be
represented by (33) is a necessary condition for the proposed
method to work. The high-dimensional system must admit a
low-dimensional representation of its value function/safety
probability.

Deep Learning for Feature Identification
For high dimensional systems with complex structure, de-
riving feature maps p1, p2, . . . , pk such that Assumptions 2
and 3 hold is a challenging problem. Thus, we propose an
autoencoder-like neural network (Fig. 3b) to automatically
identify lower-dimensional features that meet the bounding
requirements of Assumption 2 and sufficiently represent the
cost/barrier function (Remark 8). The network takes an input
state x ∈ Rn and outputs a low-dimensional representation
ξ ∈ Rk via the encoder pσ(x) and the function r̂(ξ) ∈ R
via the decoder gσ(ξ). We use θ as the parameters of the
autoencoder-like model. The loss function is defined as

LAE(θ) = wRCLRC(θ) + wC.T.LC.T.(θ) (37)

where

LRC(θ) =
1

|X |
∑
x∈X

(c(x)− r̂(ξ;θ))
2
, (38)

LC.T.(θ) =
1

k

k∑
i=1

1

|Ri|
∑
ξ∈Ri

1

|Mξ,i|
∑

x∈Mξ,i

(39)

. . . ||∇xai(x;θ)||22 + ||∇xbi(x;θ)||22

Here, X is the discretized state-space, k is the dimension of
the feature space, Ri is the range of pi and Mξ,i = {x :
pi(x;θ) = ξ} is the set of x that maps to the same value
of ξ ∈ Ri. The reconstruction loss LRC measures how well
the reconstruction r̂(ξ) represents c(x) or ϕ(x), correspond-
ing to Remark 8. The comparison theorem loss LC.T. en-
forces the condition that ai(x) and bi(x) are constant for all
x ∈ Mξ,i, for each ξ ∈ Ri, and for each feature p1, . . . , pk.
This is a sufficient condition to achieve Assumption 2. The
overall loss function is the weighted sum of the reconstruc-
tion loss and comparison theorem loss, where weights are
chosen according to the desired strength and balance on the
cost/barrier function reconstruction and the satisfaction of
the comparison theorem. We refer readers to extended ver-
sion of the paper (Wang et al. 2023) for algorithm details.

Experiments
In this section, we show experiment results of the proposed
method with both qualitative and quantitative analysis.

Value Function Estimation
We consider a 1000-dimensional system for which we want
a 2-dimensional representation of the optimal value func-
tion. The system dynamics is given by

dx =Āxdt+ σ(udt+ dw), (40)

where x ∈ R1000 is the state, u ∈ R1000 in the con-
trol, and dw is the 1000-dimensional standard Wiener pro-
cess. We set σ = I1000 to be the identity matrix, and set

Ā =

[
A 0
0 A

]
where A ∈ R500×500. Let ai,j be the en-

try of A at i-th row and j-th column. We choose A such
that ai,i = 1.1, ai,(i+2)|500 = ai,(i+4)|500 = 0.1 and
ai,(i+6)|500 = ai,(i+8)|500 = −0.1 for ∀i = 1, 2, · · · , 500,
where | is the mod operator. The running cost function is
assumed to be

c(x) =
1

500
(
500∑
i=1

xi)
2 +

1

500
(
1000∑
j=501

xj)
2. (41)

We pick two features of the state,

ξ1 = p1(x) =
500∑
i=1

xi, ξ2 = p2(x) =
1000∑
j=501

xj . (42)
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Then from (13), we have

α1(ξ1) = α2(ξ2) = 500; β1(ξ1) =
ξ1
500

, β2(ξ2) =
ξ2
500

,

(43)
thus satisfying Assumptions 2 and 3, and the running cost
function can be written as

r(ξ) =
1

500
ξ21 +

1

500
ξ22 , (44)

thus satisfying Assumption 6. By the Feynman-Kac formula,
we know that the exponential of the optimal value function
φ is the solution of the following PDE

0 = r(ξ)µ− ∂µ

∂t
− α(ξ)β(ξ)

∂µ

∂ξ
− 1

2
Tr

(
a(ξ)

∂2µ

∂ξ2

)
(45)

=
ξ21 + ξ22
500

µ− ∂µ

∂t
− ξ1

∂µ

∂ξ1
− ξ2

∂µ

∂ξ2
− ∂2µ

∂ξ21
− 250

∂2µ

∂ξ22

µ(ξ, T ) = exp(− 1

500
ξ21 − 1

500
ξ22). (46)

With that, we generate data for φ̄(ξ, t) on spatial-temporal
space Ω×T = [1, 2]2× [0, 1.5], with grid size dξ = 0.1 and
dt = 0.1 and train the PINN on Ω×T = [1, 2]2×[1, 1.5]. We
use a PINN with 3 hidden layers and 32 neurons per layer to
learn the value function φ̂. The activation function is chosen
as hyperbolic tangent function (tanh). We use the Adam op-
timizer (Kingma and Ba 2014) for training with initial learn-
ing rate set as 0.001. The PINN parameters θ are initialized
via Glorot uniform initialization and the weights in the loss
function (22) are set to be ωp = ωd = 1. The simulation
is constructed based on the DeepXDE framework (Lu et al.
2021b). Fig. 4 shows the estimated value function from the
path integral MC and the proposed method. It can be seen
that the proposed framework is able to estimate value func-
tions accurately, while the path integral method has signif-
icantly more noise. Also, the computation time for training
the PINN is significantly less than sampling path integral
MC (80s v.s ∼3000s). Note that the PINN is able to esti-
mate the value function at unseen regions in the state space
and generalize to longer time horizons, as the testing data at
t = 0.5 is not seen by the PINN during training. We refer
readers to the extended version of the paper (Wang et al.
2023) for the safety probability estimation setting where
similar results can be obtained.

Sample Complexity
We further examine the computation complexity of the pro-
posed method to show its advantages in sample efficiency.
We consider the problem of value function estimation of a 3-
dimensional system with similar dynamics and cost defined
in (40) and (41). See extended version of the paper (Wang
et al. 2023) for details of the setting. Fig. 5 shows the per-
centage error of the estimated value function with different
number of samples for path integral MC and PINN with and
without using comparison theorem for dimension reduction.
The path integral MC with dimension reduction has sample
complexities that are one order less than MC without dimen-
sion reduction, which indicates the efficacy of the dimen-
sion reduction scheme from the comparison theorem. The
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Figure 4: Estimation of the exponential of value function at
t = 0.5 for the 1000-dimensional system by path integral
MC (left), and by the proposed method (right).
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Figure 5: Percentage error of the estimated value function
with path integral MC.

PINN further reduces sample complexity and achieves the
best trade-off between accuracy and computation.

Feature Learning
We verify our autoencoder-like network by learning the fea-
tures and cost function (similar to equations (42) and (44))
for the 3-dimensional system used for sample complexity
analysis. The network consists of 5 fully connected hidden
layers of sizes 100, 10, 2, 10, 100, respectively, with the ac-
tivation function as hyperbolic tangent. We use the Adam
optimizer with initial learning rate set as 0.001. The pa-
rameters of the network are initialized via the Glorot uni-
form initialization. The weights in the loss function (37)
are set as wRC = 1, wC.T. = 10. The network is trained
on a [0, 1]3 state-space with grid size 0.01. The network
successfully identified the features derived analytically with
MSE(ξ1, ξ̂1) = 0.2 and MSE(ξ2, ξ̂2) = 0.06.

Conclusion
We propose a unified framework for value function and
safety probability estimation of high-dimensional stochas-
tic systems. The novel dimensionality reduction technique
uses the comparison theorem to generate low-dimensional
stochastic processes that provide an exact characterization
of the cost/barrier function, significantly improving sample
complexity. We then transform the low-dimensional pro-
cess into a low-dimensional PDE, and leverage physics-
informed learning to generalize solutions into longer time
horizons and unseen regions of state-space. We also achieve
automatic feature identification through a specially designed
autoencoder-like neural network. Experiment results show
the efficacy of the proposed method. Future work includes
application to multi-agent robotic control systems.
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