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Abstract— This paper focuses on safe control problems for
high-dimensional systems with large uncertainties. A major
challenge is the computation burden required for long outlook
horizons and large-scale systems. We approach this challenge
using an integration of probabilistic reachability, the com-
parison theorem, PDE techniques, and probabilistic forward
invariance. Specifically, we construct a probabilistic certificate
for long-term safety that only requires myopically ensuring
linear control constraints and evaluating two-dimensional PDEs
regardless of the system dimension. The certificate is con-
structed by obtaining a long-term safe probability bound as
a solution of the PDE using the comparison theorem and
applying a new notion of probabilistic forward invariance on the
probability bound. The use of probabilistic forward invariance
on probabilistic reachability allows our method to carry the
former’s computation efficiency and the latter’s control over
long-term behaviors. Its capability to efficiently ensure long-
term safety for high-dimensional systems can be useful in
many large-scale distributed autonomous systems operating
with limited onboard resources in latency-critical environments.

I. INTRODUCTION

Making safe decisions under uncertainty is a key challenge
for the safe deployment of many autonomous systems in
the wild. Deterministic safe control methods have been well
studied and can be used for systems with bounded/small
disturbances [1], [2]. Some stochastic methods are designed
to ensure the safety condition at each infinitesimal time inter-
vals [3], [4], [5]. However, these methods may not guarantee
long-term safety in stochastic systems because they cannot
control the accumulation of risky tail probabilities, which
is particularly problematic with large uncertainties. On the
other hand, stochastic safe control approaches that account
for longer time horizons (e.g., stochastic barrier functions [6],
probabilistic reachabilities [7], chance constrained predictive
control [8]) either require heavy computation or give conser-
vative actions to guarantee safety. There often have stringent
tradeoffs between scalability, computation burden, fast re-
sponse, over-conservatism, and long-term safety. Moreover,
those tradeoffs are even more severe for high-dimensional
systems.

There is a need for new methods that can ensure long-
term safety in real time for systems operating with limited
onboard resources in latency-critical environments. In this
paper, we propose a scalable safety certificate and a control
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algorithm with guaranteed long-term safety. The proposed
method reduces the computation burden of the following
two processes: evaluation of long-term safe probability and
generating control actions via optimizing long-term future.
Below, we summarize our contributions and the features of
the proposed method.

Scalable evaluation of long-term safe probability. Eval-
uation of long-term safe probability usually involves sam-
pling the system trajectories or computing partial differential
equations (PDEs) whose dimension scales with the size of
the system. Such computation can be prohibitive for large-
scale systems with limited onboard resources. Here, we first
build upon the tools of [9] and comparison theorem of
SDEs to show that the long-term safe probabilities can be
lower bounded by the solution of two-dimensional PDEs
regardless of the system dimension. This result enables
highly compressed computation of the safety probability,
thereby overcoming the curse of dimensionality in exhaustive
Monte Carlo rollouts or solving high-dimensional PDEs.

Achieving long-term safety using myopic controllers. We
propose a probabilistic certificate for long-term safety which
can be used by a myopic controller or imposed as a linear
constraint. This uses a novel notion of probabilistic for-
ward invariance on the probability space proposed by [10].
This notion integrates probabilistic reachability and bar-
rier function-based approaches and admits a generalization
to unknown system parameters and multi-agent scenarios
with limited communication [11], [12]. The integration of
reachability- and invariance-based approaches will carry both
the former’s control over the long-term future and the latter’s
computation efficiency due to the use of myopic controllers.

The structure of this paper is as follows. Section II
states the problem. Section III presents the proposed safety
certificate and its theoretical guarantees. Section IV provides
numerical examples. Section V concludes the paper.
Notations. Let R and R+ be the sets of real numbers and
non-negative real numbers, respectively. Let Rn and Rm×n

be the n-dimensional Euclidean space and the space of m×n
real matrices, respectively. To discuss stochastic systems,
we denote a filtered probability space as the quadruple
(Ω,F ,P, {Ft}t∈R+

), where Ω is the sample space, F is the
σ-field of Ω, P is the probability measure, and {Ft}t∈R+

is the filtration of F . Throughout this paper, we assume
that filtrations are right continuous and that F0 contains all
the set of probability zero. Given the event E , P(E) denotes
the probability of E , and P(E | E ′) denotes the conditional
probability of E conditioned on the event E ′. For the random
variable X , the notation E[X] represents the mathematical
expectation of X . The conditional mathematical expectation



of X conditioned on the event E is denoted by E [X | E ].
Given the event E , the random variable Y , and the stochastic
process Xt for t ∈ R+, Px (E) := P (E | X0 = x) and
Ex[Y ] := E [Y | X0 = x], respectively.

II. PROBLEM STATEMENT

This section describes stochastic control systems in the
subsection II-A and the goal of the safe control in the
subsection II-B.

A. Description of Stochastic Control Systems

Here, we introduce the stochastic control systems consid-
ered throughout this paper. Let the control system be given
by the Itô-type stochastic controlled differential equation

dXt = (f(Xt) + g(Xt)Ut) dt+ σ(Xt)dWt, X0 = x (1)

where Xt ∈ Rn is the state, Ut ∈ Rm is the control, Wt ∈ Rω

is the ω-dimensional standard Wiener process, f : Rn →
Rn, g : Rn → Rn×m, σ : Rn → Rn×ω . To simplify the
following discussion, we assume that the initial value X0 =
x is deterministic.

We assume that the control policy is given by modifying
a nominal controller to meet the safety specifications ex-
plained in the subsections II-B. Let the nominal controller
be represented by

Ût = N(Xt), (2)

where N : Rn → Rm. This controller is designed to
satisfy operational goals, but may not necessarily guarantee
safety. To ensure safety, the output of (2) will be certified or
modified to produce the actual control action

Ut = KN (Xt), (3)

where KN : Rn → Rm.
Remark 1. We limit ourselves to Markov-type feedback
control of (3), as opposed to control that depends on the past
history of Xt. We demonstrate in section III that the myopic
control design ensures long-term safety even for stochastic
systems.

We denote the solution to the SDE (1) by XN
t or XKN

t ,
expressing the dependence of the controllers N or KN , or
simply by Xt when no confusion arises.

Throughout the paper, we make the following assump-
tions.

Assumption 1. The elements of f(x), g(x), σ(x), N(x),
and KN (x) are locally Lipschitz continuous in x.

Assumption 1 ensures the existence and uniqueness of
the strong solution to the closed-loop system (1) with the
controllers (2) and (3). See [13, Chapter IV] and [14, Chapter
5] for the definition and conditions for the strong solution of
SDEs.

Assumption 2. The solution Xt to the closed-loop sys-
tem of (1) with the controllers (2) and (3) satisfies the
non-explosion property, i.e., for the stopping time τ∞ =
inf {t ∈ R+ | Xt /∈ Rn}, Px (τ∞ =∞) = 1 for any x ∈ Rn.

Assumption 2 implies that the solution of the closed-loop
system Xt exists for any t ∈ R+ with probability one.

B. Safety specifications and design objectives

Recall from the previous section that the nominal con-
troller aims to satisfy the operational goals but does not
necessarily ensure safety. Here, our design objective is to
ensure long-term safety by either certifying or modifying
the output of the nominal controller. Let ϕ : Rn → R be a
barrier function, and

C(L) := {x ∈ Rn : ϕ(x) ≥ L} (4)

be its L-superlevel set. The safe region in the state space
is characterized by the zero superlevel set of the barrier
function C(0).

The long-term safety is defined as: for any t ∈ R+ and
for some ϵ ∈ (0, 1)

Ex

[
F (XKN

t )
]
≥ 1− ϵ, (5)

given the initial system state as X0 = x, where XKN
t is the

solution to the system (1) with the controller (3) and F (x)
is given by

F (x) =P
(
XN

τ ∈ C(0),∀τ ∈ [t, t+ T ] | XN
t = x

)
=Px

(
min

0≤t≤T
ϕ(XN

t ) ≥ 0

)
,

(6)

with XN
t be the solution to the SDE with the nominal

controller Ut = N(Xt) in (2). The second equality holds
because the system (1) and (2) is time-invariant. The hori-
zon length T is assumed to be T > 0. Because 0 ≤
F (x) ≤ 1 for x ∈ Rn, Ex[F (XKN

t )] in (5) always satisfies
0 ≤ Ex[F (XKN

t )] ≤ 1. Therefore, the parameter ϵ in (5)
determines the tolerance level of the safety.

The condition (5) can be explained as follows. First,
the function F (x) of (6) is the probability that the state
controlled by the nominal controller Ut = N(Xt) stays
within the safe set C(0) on the interval [0, T ] given the initial
value X0 = x. Then, F (XKN

t ) in (5) is the probability
that, given the state XKN

t , which is controlled by the safe
controller (3) until time t, the state stays within C(0) on the
horizon [t, t+ T ] if the system is controlled by the nominal
controller (2) on the future horizon. Accordingly, the value
of Ex[F (XKN

t )] gives the mathematical expectation of the
safety probability F (XKN

t ) at time t. The control design
requires keeping the value of Ex[F (XKN

t )] above 1 − ϵ.
This control problem can be explained in a model predictive
control-like fashion. We evaluate the future behavior of the
system by using F (XKN

t ) which expresses how safe the
current state is when using the nominal controller on the
future horizon. Then, we determine the control to keep the
state within the safe set with a high probability depending
on the value of F (XKN

t ).

III. PROPOSED METHOD AND THEORETICAL
GUARANTEES

In this section, we will first introduce our approach and
preliminaries in section III-A, and then present the proposed



algorithm in section III-B, followed by the derivation of its
theoretical properties in section III-C.

A. Probabilistic forward invariance

We introduce the operator L for a C2 function h : Rn → R
by

LUh(x) = Lfh(x)+Lgh(x)U+
1

2
Tr

(
∂2h

∂x2
(x)σ(x)σ(x)T

)
,

(7)
where Lfh and Lgh are the Lie derivatives of the function
h with f and g, respectively, and ∂2h

∂x2 is the Hessian of h.
Standard stochastic safe control methods for safe control

consider forward invariance on the state space, and impose
constraints on the control input to make the gradient of the
barrier function point inwards the safe set. Mathematically,
this is formulated as

P(LUt(ϕ(Xt)) ≥ 0 | Xt ∈ ∂C) ≥ 1− ϵ, (8)

where Xt is the state of the system (1) at the time t, Ut is
the control at the time t, and ϵ ∈ (0, 1) is the risk tolerance.
This condition ensures safety of the system in the immediate
next step with high probability, but will often lead to unsafe
behaviour in the long run due to the accumulated error caused
by the noises in the system.

In order to address this issue, [10] proposes to impose
forward invariance on the probability space with the safety
probability defined in (6). The control condition is

LUtF (Xt) ≥ −α {F (Xt)− (1− ϵ)} , (9)

where F is given in (6), and α ≥ 0 is a tunable parameter.
With this new condition, the long-term safety defined in (5)
can be achieved. Furthermore, condition (9) is an affine
constraint with respect to Ut, thus can be imposed as a linear
constraint in convex problems. The evaluation LUtF (Xt)
requires to evaluate the first and second derivatives of the
probability F (Xt) of (6). These quantities can be evaluated
using Monte-Carlo simulation or numerically solving partial
differential equations (PDEs). When Monte-Carlo simulation
is used, the required number of sample system trajectories
scales exponentially with the dimension of the system. When
the PDE is used, one needs to solve a PDE whose dimension
is at least the same as the dimension of the system, which
is also intractable.

B. Proposed Safety Certificate and Control Algorithms

To address the issue mentioned above, we propose a
modified safe control scheme. Instead of evaluating (9), we
introduce a lower bound of F (x) that can be evaluated by a
PDE, which can be solved efficiently. The main machinery
for obtaining the lower bound and the PDE is a comparison
theorem for SDEs [15].

The proposed algorithm is outlined as follows. First, we
consider the lower bound of F (x). The definition of the
function F (x) in (6) shows F (x) is the probability that the
states XN

t controlled by the nominal controller during the
horizon of the length T will stay within the safe set. This

is equivalent to the probability of ϕ(XN
t ) staying at non-

negative values during the horizon. The comparison theorem
of SDEs provides a kind of lower bound of ϕ(XN

t ), a scalar
diffusion process ξ+−

t given below. Due to its nature, the
lower bound process ξ+−

t can provide criteria to evaluate
the probability of ϕ(XN

t ) staying non-negative during the
horizon. A well-known result on stochastic processes allows
us to evaluate the probability of the lower bound process ξ+−

t

keeping non-negative values throughout the horizon using a
PDE concerning the scalar process ξ+−

t . This probability
provides the lower bound of F (x). Then, we control a
systems based on a condition for safe control using the lower
bound of F (x).

The lower bound of F (x) is obtained as follows, using
the comparison theorem of SDEs [15]. First, we introduce
the functions a : Rn → R and b : Rn → R using the barrier
function ϕ:

a(x) =
∑
i,j,k

σi
k(x)σ

j
k(x)

∂ϕ

∂xi
(x)

∂ϕ

∂xj
, b(x) =

LNϕ(x)

a(x)
,

(10)
where σi

k(x) is the (i, k)-element of the diffusion coefficient
σ(x), and LN is the operator LU with U = N(x). Addi-
tionally, let ξ ∈ I ⊂ R be a scalar variable, where I is the
range of the barrier function ϕ(x). Using similar notations
employed in [15], consider

a+(ξ) = sup
x:ϕ(x)=ξ

a(x), b−(ξ) = inf
x:ϕ(x)=ξ

b(x). (11)

Then, by using the functions a+ and b−, we introduce the
following operator for a C2 function h : R→ R:

L+−h(ξ) = a+(ξ)

{
1

2

d2h

dξ2
(ξ) + b−(ξ)

dh

dξ
(ξ)

}
. (12)

As discussed later, this operator becomes the infinitesimal
generator of a diffusion process ξ+−

t that is a solution to the
SDE

dξ+−
t = a+(ξ+−

t )b−(ξ+−
t )dt+

√
a+(ξ+−

t )dW̃+
t , (13)

where W̃+
t is a one-dimensional standard Wiener process.

We make the following assumption, which ensures the exis-
tence of a diffusion process ξ+−

t .

Assumption 3. The functions α+(ξ) and b−(ξ) in (11) are
globally Lipschitz continuous in ξ ∈ I ⊂ R. Moreover,
a(x) > 0 for any x ∈ Rn.

Next, we define the following function:

F (ξ) = Pξ

(
min

0≤t≤T
ξ+−
t ≥ 0

)
, (14)

where ξ+−
t is a scalar diffusion process given by the

SDE (13) with ξ+−
0 = ξ ∈ I ⊂ R. We set F (ξ) = 0

for ξ ≤ 0. Functions F (x) and F (ξ) satisfy the following
relation.

Lemma 1. Assume that Assumptions 1, 2, and 3 hold. Then,

F (ϕ(x)) ≤ F (x), ∀x ∈ Rn, (15)



where F (·) and F (·) are defined by (6) and (14), respectively.

Lemma 1 gives the lower bound of F (x) in the design
objective (5), and yields Ex[F (XKN

t )] ≥ Ex[F (ϕ(XKN
t ))].

Therefore, this lower bound allows us to develop a control
algorithm to achieve the design objective of (5).

The function F can be obtained by solving a 2-
dimensional PDE. The probability in the right-hand side
of (14) can be expressed as Pξ(min0≤t≤T ξ+−

t ≥ 0) =
Pξ(τ

ξ > T ), where τ ξ = inf
{
t ∈ R+ | ξ+−

t = 0
}

is the first
hitting time with ξ+−

0 = ξ. The well-known results on the
probability distribution of the first hitting time [16] allows us
to obtain the function F using a solution to the PDE given
by

∂u

∂t
(t, ξ) = L+−u(t, ξ) for (t, ξ) ∈ (0,∞)× I̊ (16)

with the boundary conditions u(0, ξ) = 1 for ξ ∈ I̊ and
u(t, 0) = 0 for t > 0. The set I̊ is the interior of I . The
solution of the PDE (16) gives u(t, ξ) = P(τ ξ > t), and
accordingly we can obtain F (ξ) = u(T, ξ) where T is the
safety time horizon in (6). The PDE (16) concerns the scalar
space variable ξ, and thus is significantly easier to evaluate
than the PDE in [17].

Using function F , we show a sufficient condition for
condition (5). To show the condition, define the function
Λ : Rn × Rm → R by

Λ(x, U) = LU (F ◦ ϕ) (x), (17)

where the notation LU (F ◦ ϕ) means the operator LU of (7)
is applied for the composite function F ◦ ϕ(·).

Theorem 1. Let ϵ ∈ (0, 1) and α ≥ 0. Assume that
Assumptions 1, 2, 3 hold. Moreover, assume that the function
F (ξ) is twice continuously differentiable at ξ = 0. Further,
assume that the initial value X0 = x0 of the system (1)
satisfies F (ϕ(x0)) ≥ 1− ϵ. If for any x ∈ Rn, the controller
KN satisfies

Λ(x,KN (x)) ≥ −α {F (ϕ(x))− (1− ϵ)} , (18)

then the closed-loop system (1) and (3) satisfy the condi-
tion (5).

From Theorem 1, to achieve the safety specification (5), it
suffices finding a control satisfying the condition (18). Such
control action can be solved efficiently because (18) is a
linear constraint of the control action U . Thus, it can be
integrated into the following quadratic program. At each time
t, the system observes Xt and solves

min
U
∥U −N(Xt)∥2

s.t. Λ(Xt, U) ≥ −α {F (ϕ(Xt))− (1− ϵ)} .
(QP)

As stated in subsection II-A, we obtain the safe controller
KN from the nominal controller N(x). Given the solution
U∗(x) of (QP), the controller is given by KN (x) = U∗(x).
The local Lipschitz continuity of KN (x) obtained by (QP)
can be shown by adapting Theorem 3 of [18].

The above algorithm is summarized in Algorithm 1.

Algorithm 1 Safe control algorithm

1: Define ∆t, T
2: Solve PDE (16); F (ξ)← u(T, ξ).
3: t← 0
4: while t < Tend do
5: Observe Xt

6: Solve (QP) to obtain KN (Xt) = U∗(Xt)
7: Execute control Ut = KN (Xt)
8: t← t+∆t
9: end while

C. Derivation of theoretical guarantees

We here show the proofs of Lemma 1 and Theorem 1. To
prove them, we first show that L+− gives a diffusion process
ξ+−
t .

Lemma 2. Assume that Assumption 3 holds. Then, there
exists a diffusion process ξ+−

t whose generator is L+−. In
other words, ξ+−

t is a weak solution to the SDE (13) with
the initial value ξ+−

0 = ξ0 ∈ I .

Proof. It is straightforward to see that the SDE (13) pos-
sesses the generator L+−. Conversely, according to the con-
tinuity of the coefficients in Assumption 3 and the existence
results on the martingale problem [13, Chapter IV], the
generator ensures the existence of the diffusion process ξ+−

t

that follows the SDE (13). ■

We give the proof of Lemma 1.

Proof of Lemma 1. Applying the Itô formula to ϕ(Xt), we
obtain

dϕ(Xt) = LUtϕ(Xt)dt+
∂ϕ

∂x
(Xt)σ(Xt)dWt. (19)

Note that the SDE (13) is a modification of the SDE (19)
using the functions a+(ξ) and b−(ξ). From [15, Theorem
3.1], there exists a probability space such that the following
conditions hold.
1) There exits a stochastic process ξt that has the same law

as that of ϕ(Xt).
2) The inequality

min
0≤s≤t

ξ+−
s ≤ min

0≤s≤t
ξs (20)

holds with probability one for any t ∈ R+ when ξ+−
0 =

ξ0.
Condition 1 implies that

Pξ0

(
min
0≤s≤t

ξs ≥ 0

)
= PX0

(
min
0≤s≤t

ϕ(Xs) ≥ 0

)
(21)

holds when ξ0 = ϕ(X0). Condition 2 implies that

Pξ0

(
min
0≤s≤t

ξ+−
s ≥ 0

)
≤ Pξ0

(
min
0≤s≤t

ξs ≥ 0

)
(22)

holds. Therefore, replacing ξ0 and X0 with ϕ(x) and x,
respectively, the inequality (22) implies the inequality (15),
which completes the proof. ■



Remark 2. Intuitively, the process ξt can be regarded as
ϕ(Xt). However, due to the limitation of the comparison
theorem [15], we cannot argue pathwise statements such as
min0≤s≤t ξ

+−
s ≤ min0≤s≤t ϕ(Xs). Instead, we compare the

probabilities of events on ξ+−
t and ϕ(Xt) by combining (21)

and (22).

Finally, we prove Theorem 1.

Proof of Theorem 1. Lemma 2 implies the existence of
the solution ξ+−

t to the SDE (13). Lemma 1 guarantees
F (ϕ(x)) ≤ F (x) for x ∈ Rn. Taking conditional expectation
on both sides yields

Ex

[
F (XKN

t )
]
≥ Ex

[
F (ϕ(XKN

t ))
]
. (23)

Additionally, the function F (·) is given as a solution to
the PDE (16). Under Assumption 3, we can show that the
PDE (16) admits a weak solution u(t, ξ) such that u(t, ξ)
is twice continuously differentiable for any ξ ∈ I̊ when
t > 0 [16, Proposition 6]. Because F (ξ) is given by F (ξ) =
u(T, ξ), F (ξ) is a C2 function on I̊ . Under the assumption of
the twice differentiability of F (ξ) at ξ = 0, LKN (F ◦ ϕ)(x)
is well defined for x ∈ Rn. Dynkin’s formula implies

d

dt
Ex[F (ϕ(XKN

t ))] = Ex

[
LKN (F ◦ ϕ) (XKN

t )
]
. (24)

Condition (18) implies

d

dt
Ex[F (ϕ(XKN

t ))] ≥ −α
{

Ex[F (ϕ(XKN
t ))]− (1− ϵ)

}
.

(25)
The ordinary differential equation

ẇ(t) = −α (w(t)− (1− ϵ)) (26)

possesses the solution

w(t) = (1− ϵ) + (w(0)− (1− ϵ))e−αt. (27)

Note that when w(0) is given by w(0) = F (ϕ(x)) ≥ 1− ϵ,

w(t) ≥ 1− ϵ ∀t ≥ 0, (28)

for any α ≥ 0. The standard differential inequality result,
such as [19, Chapter I, Theorem 6.1], implies that

Ex[F (ϕ(XKN
t ))] ≥ w(t) ≥ 1− ϵ, ∀t ≥ 0. (29)

This completes the proof. ■

IV. NUMERICAL EXAMPLE

We demonstrate the safe control using the proposed con-
trol design condition. The proposed control method enables
a scalable control design for the safety control problem
for high-dimensional systems, which is challenging in the
previous study [10].

We test the proposed method using noisy n-th order
integrator

dX
(i)
t = X

(i+1)
t dt, dX

(n)
t = Utdt+ σdWt, (30)

where 1 ≤ i ≤ n− 1, Xt = (X
(1)
t , . . . , X

(n)
t )T ∈ Rn is the

state, Ut ∈ R is the control input, Wt is the scalar standard

Wiener process, and σ ∈ R+. The nominal controller is given
by

N(Xt) = −k1r tanh(X(1)
t /r)−

n∑
i=2

kiX
(i)
t , (31)

where ki ∈ R (i = 1, . . . , n) are the gain parameters, and r
is a sufficiently large positive parameter. This nominal con-
troller is a modification of a stabilizing feedback controller
for the integrator. Therefore, when the initial value is close
to the origin, the system state tends to converge to the origin.
The safe set is given by C(0) = {x : ϕ(x) ≥ 0} with the
barrier function ϕ(x) = cTx + d, where c ∈ Rn, x ∈ Rn,
and d ∈ R.

We show the results of the numerical experiment when
n = 10 with parameters σ = 1, d = 3, r = 10, ϵ = 0.1, α =
2. We use pole placement to design the nominal feedback
control k with poles p = −[0.4, 0.5, · · · , 1.3], and we let
c = [k2, k3, · · · , k10, 1]. Then, the functions a+(ξ) and b−(ξ)
in (10) becomes a+(ξ) = 1 and b−(ξ) = −r = −10,
respectively. We apply the proposed control algorithm in
Algorithm 1 to the system (30). We set the initial value of
the state as X0 = (0.5, · · · , 0.5)T .

We compare the control results of the proposed safe
control strategy with the nominal controller (31). Fig. 1
shows the barrier function value for systems with and without
the safe control. It can be seen that with the proposed safe
control, the barrier function value of the high dimensional
system will remain positive during the experiment time,
whereas the nominal control will yield negative barrier
function value, indicating unsafe behaviours. Fig. 2 shows
the empirical probabilities by calculating the ratio of safe
trajectories over all the trajectories. Long-term safety is en-
sured with the proposed control, while the safety probability
keeps decreasing over time for the nominal control. Fig. 3
visualizes the sample trajectories of system (30) with n = 2.
We set X0 = [2, 3]T , k = [1, 1]T for better visualizations,
and other settings remain the same. We can see that without
the safe control, a large portion of the trajectories violate
the safety boundary. On the contrary, the safe control can
successfully maintain the system states in the safe region
with high probability.

To investigate the computation efficiency of the proposed
method, we conducted the numerical simulation for systems
from n = 2 to n = 4 and report their computation times.
The simulations require solving the PDE (16), solving the
SDE (30), and determining the safe control by solving the
QP. We solved the SDE (30) for t ∈ [0, 10] using the
Euler-Maruyama method with time step ∆t = 0.01. We
use standard finite-difference method to solve the PDE (16).
Table I shows the mean and standard deviation of the
computation times in the total simulations for a sample
trajectory, the computation times for solving the PDE (16),
and the mean of the computation time of QP for the control
in each time step, for n = 2, 3, 4. The computation times for
numerically solving the PDE (16) do not vary much with
the dimension n because the space dimension of the PDE is
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Fig. 1: Barrier function values for the 10-dimensional system
with (left) and without (right) safe control.
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Fig. 2: Empirical safety probability for the 10-dimensional
system with and without safe control.

always scalar. The computation times for solving QP are also
sufficiently small, thus enables scalable and computationally
feasible safe control in real time.

TABLE I: Computation times

n = 2 n = 3 n = 4
Total time [s] 2.44± 0.20 3.22± 0.12 3.08± 0.16
PDE (16) [s] 0.78 1.71 1.48
QP per time step [s] 2.0× 10−6 2.0× 10−6 2.0× 10−6

V. CONCLUSION

In this paper, we present a computationally efficient
safe control method using a combination of probabilistic
reachability, the comparison theorem, PDE techniques, and
probabilistic forward invariance. The proposed method has
the following features: scalability in the evaluation of long-
term safe probability, and assurance of long-term safety using
myopic controllers.
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