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Abstract— This paper focuses on the multi-agent safe control
problem for stochastic systems. We propose a probabilistic
certificate for safety and performance specifications and use it
to construct a distributed algorithm. The certificate integrates
the reachability- and invariance-based (barrier-function-based)
approaches via a new notion of forward invariance defined
on the long-term probability. The proposed method has two
features. First, it can guarantee a long-term probability of safety
and performance satisfaction using myopic evaluation. Second,
each agent can collaboratively ensure system-wide specifications
even if each does not have sufficient information to evaluate the
specifications. The effectiveness of the proposed method is tested
using numerical experiments.

I. INTRODUCTION

Multi-agent autonomous systems must balance safety and
performance specifications in uncertain environments with
distributed control in real-time. There can be information
sharing constraints between agents due to limited communi-
cation or the scale of the network. In such systems, an agent
may only have access to the information of a small subset
of the whole network or its neighboring agents. Despite the
information sharing constraints, the safety and performance
specifications are often given as global specifications that
need to be ensured in the long-term. For example, swarms
of autonomous agents must collaboratively achieve some
common goal (e.g., when a swarm of surveillance drones
need to collectively cover the search areas, and when at
least one robot should reach a target area to perform some
tasks). Safety (e.g., collision avoidance, stability) must also
be satisfied at all times. Nonlinear systems can have an
unsafe (unstable) region of attractions, which often cannot
be avoided by myopically moving away from unsafe regions.
Moreover, the environments in which these agents operate
can be highly uncertain and dynamic. These uncertainties can
come from a multitude of factors, arising from human and
other agents’ behaviors, disturbance and noise, limited com-
munications, and unmodeled dynamics. Due to the highly
dynamic nature, agents must have a fast feedback loop and
respond quickly. Such latency requirements may prohibit the
use of cloud computation and delayed communication, and
the agents’ control actions often need to be computed using
onboard hardware. To tackle these challenges, this paper
studies how to ensure long-term global objectives with infor-
mation sharing constraints and limited online computation in
uncertain environments.

Related work. There has been great advancement in safe
control techniques for uncertain or multi-agent systems in the
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past decade. When the control objective is to avoid obstacles
(one agent crashes into another), the existing literature has
proposed to use a distance-based barrier function that can
be evaluated using local information [1], [2]. This approach
is based on the idea that one only needs to know the
distance between two agents to control their possibility of
crashes. More generally, this approach works when a control
objective can be translated into a local condition whose
safe set is defined by a level set of decomposable Barrier
or Lyapunov functions [3], [4], [5]. Here, decomposable
functions refer to the ones that can be evaluated using only
the information available to each agent. Although global
objectives are quite common in many multi-agent systems
(as stated above), this approach cannot account for global
objectives that cannot be represented by non-decomposable
Barrier/Lyapunov functions.

There often exists stringent tradeoffs between assuring
long-term behaviors vs. computational efficiency. On one
hand, there exist model prediction control and reachability-
based techniques that account for future trajectories of long
time horizon to ensure long-term safety [6], [7], [8]. These
techniques are often computationally expensive because the
space of possible trajectories exponentially increases with
the horizon. To reduce the computation burden, various
techniques based on barrier function approaches have been
proposed to ensure short-term safety conditions myopi-
cally [9], [10], [11]. On the other hand, approaches such
as stochastic control barrier functions achieve a significant
reduction in computational cost due to their use of myopic
controllers, but can result in unsafe behaviors in a longer
time horizon due to the compounding probabilities of unsafe
events [5], [12], [13], [14]. These approaches cannot control
the accumulation of tail distribution and may result in small
long-term safe probability. To better account for tradeoffs,
we have proposed a framework to ensure long-term safe
probability using myopic evaluation for fully observable
centralized systems [15]. In this paper, we will generalize our
prior work to distributed systems with information sharing
constraints.

Contribution of this paper. In this paper, we propose
a stochastic safe control technique that can ensure multi-
ple global objectives for multi-agent systems in uncertain
environments. We first define a new notion of probabilistic
forward invariance and forward convergence which can rep-
resent the satisfaction of safety and operational specifications
with high probability. The specifications can be given global
specifications in the form of unions and intersections of for-
ward invariance and forward convergence conditions. Then,
we show a sufficient condition for the probability of the



control objectives to be within a desired range. This sufficient
condition has two features. First, it can achieve all global
objectives using local computation. The global objectives can
be something that cannot be represented by decomposable
barrier functions. At the same time, the condition can be
used by each agent with only local information to certify
the safety of an existing action or modify it to satisfy the
safety and operational specifications. Second, it can achieve
long-term safety or performance specifications using myopic
evaluation. The specification can be defined as satisfying
forward invariance condition (safety) or forward convergence
condition (operational) through an outlook time horizon,
while its condition can be evaluated using future evolution
of an immediate next step. When the sampling frequency is
sufficiently high, the certification and modification scheme
can be done using a linear constraint and be integrated into a
convex/quadratic program. Using this condition, we propose
a distributed control algorithm for each agent: Each agent
solves an optimization problem with the linear constraints;
the information sharing structure or the decision of control
actions has a tree structure that can accommodate the relative
priority (power) between agents.

The proposed methods have the following advantages.
Advantage 1: The proposed methods can use local infor-

mation to ensure global safety and performance specifica-
tions. The proposed method can be implemented in a decen-
tralized manner: Each agent can use its local information to
certify or modify its control actions based on the sufficient
condition described above. If all agents can find a feasible
action, the global safety or operational specifications will be
satisfied with desired probabilities, even global specifications
which are represented using non-decomposable Barrier or
Lyapunov functions.

Advantage 2: The proposed methods can ensure long-
term safety using myopic evaluation. The proposed method
embeds the probability of long-term safety or performance
into a Barrier-like function. This embedding allows a new
notion of conditional forward invariance to be applied on
the long-term probability. This new notion allows each agent
to typically evaluate the outcome of the immediate future
horizon, only using its local information, to ensure long term
probability.

To achieve advantages 1 and 2, our novel definition
of conditional probabilistic forward invariance and forward
convergence condition (see section III-C for detail) is critical
to achieve this property. To the best of our knowledge,
there does not exist any existing methods that can achieve
advantages 1 and 2 simultaneously.

II. PRELIMINARY

Let R, R+, Rn, and Rm×n be the set of real numbers, the
set of non-negative real numbers, the set of n-dimensional
real vectors, and the set of m×n real matrices, respectively.
Let x[k] be the k-th element of vector x. Let f : X → Y
represent that f is a mapping from space X to space Y .
Let 1{E} be an indicator function, which takes 1 when
condition E holds and 0 otherwise. Let 0m×n be an m× n

matrix with all entries 0. Let 1
[m]
n be a length n column

vector with the m-th entry 1 and other entries 0. Let Im
be the m × m identity matrix. Let ▽xf be the gradient
of a real valued function f with respect to x. Let Hxf be
the hessian of a real valued function f with respect to x.
Given events E and Ec, let P(E) be the probability of E
and P(E|Ec) be the conditional probability of E given the
occurrence of Ec. Given random variables X and Y , let E[X]
be the expectation of X and E[X|Y = y] be the conditional
expectation of X given Y = y. We use upper-case letters
(e.g., Y ) to denote random variables and lower-case letters
(e.g., y) to denote their specific realizations.

III. PROBLEM STATEMENT

A. System Description

We consider a multi-agent time-invariant stochastic dy-
namical system with M agents. The dynamics of agent i,
i ∈ {1, 2, · · · ,M}, is given by the stochastic differential
equation (SDE):

dXi = (F i(Xi) +Gi(Xi)U i)dt+Σi(Xi)dW i, (1)

where Xi ∈ Rmi

is the system state of agent i, U i ∈ Rni

is the control input of agent i, and W i ∈ Rωi

captures the
system uncertainties of agent i. We assume that W i is the
independent standard Brownian motions with 0 initial value.
The value of Σi(Xi) is determined based on the size of
uncertainty in agent i. We assume that the dynamics of agent
i does not depend on other agents. Thus, the dynamics of
the entire multi-agent system can be written as

dX = (F (X ) +G(X )U )dt+Σ(X )dW , (2)

where

X =


X1

X2

...
XN

 , U =


U1

U2

...
UN

 ,W =


W 1

W 2

...
WN

 , (3)

and

F = diag(F 1, F 2, · · · , FM ) (4)

G = diag(G1, G2, · · · , GM ) (5)

Σ = diag(Σ1,Σ2, · · · ,ΣM ). (6)

Let

m =

M∑
i=1

mi (7)

denote the dimension of the state, i.e., X ∈ Rm. To
implement the controller in digital system, we discretize
the time into sampled points of equal interval ∆t, i.e.,
tk = ∆tk,∀k ∈ Z+. Accordingly, system (1) and (2) can
be written in discrete-time as

Xi
k+1 = F i(Xi

k, U
i
k,W

i
k) (8)

and

Xk+1 = F (Xk, Uk,Wk), (9)



respectively. With slight abuse of notation, we use Xk to
denote X evaluated at time k∆t.

We assume that agent i can access the information of
its own states and the states and control inputs of a few
other agents. Let Ai be the set of agents whose states
and information can be accessed by agent i. Then, the
information available to agent i at time k is given by

Qi
k = {Xj

k, U
l
k : j ∈ Ai, l ∈ Ai\{i}}. (10)

B. Nominal Controller
We assume the existence of a nominal controller

U i
k = N i(Qi

k) (11)

for each agent i. The nominal controller is assumed to
satisfy some performance specifications, but not necessarily
all safety and operational specifications, as we will introduce
in section III-C. The proposed framework does not restrict
the choice of nominal controllers, and each agent can have
different forms of nominal controllers.

C. Design Goal
Our goal is to ensure long term safety of all agents as well

as satisfaction of operational specifications. We assume that
there are B such specifications, indexed by j = 1, 2, · · · , B,
and each specification is represented as follows: at time k,
specification j is defined by the event

Cjk = {x ∈ Rm : ϕj
k(x) ≥ 0}, (12)

where ϕj
k(x) : Rm → R is a continuous mapping. Here, B is

the number of safety/operational specifications. We consider
two forms of conditions: forward invariance and forward
convergence, formally defined below.

1) Forward Invariance: The forward invariance specifi-
cations require the condition to continuously hold. If the j-
th condition is given as a forward invariance condition, its
satisfaction during time horizon T j

k is given by

Sj
k = {xτ ∈ C

j
k,∀τ ∈ {k, k + 1, · · · , k + T j

k}}. (13)

2) Forward Convergence: The forward convergence spec-
ifications require the system to satisfy the condition eventu-
ally. If the j-th condition is given as a forward convergence
condition, its satisfaction before time horizon T j

k is given by

Sj
k = {∃τ ∈ {k, k + 1, · · · , k + T j

k} s.t. xτ ∈ C
j
k}. (14)

The overall performance specification can be represented
by the intersections and/or unions of condition Sj , j ∈
{1, 2, · · · , B}, denoted by S. The design goal is to satisfy
the S with probability above 1− ϵ at each time k, i.e.,

P(Sk) ≥ 1− ϵ, ∀k ≥ 0. (15)

The forward invariance specifications and forward conver-
gence specifications are combined in (15). This is different
from existing techniques that use two separate processes.
In a separate design, the control input calculated based on
one specification may compromise other specifications. The
advantage of combining them into one condition is to jointly
account for multiple specifications of both types and not
compromising any specification.

IV. PROPOSED METHOD

Here, we present a sufficient condition to achieve the
design goal in section IV-A and prove its performance
guarantee in section IV-C. Based on this condition, we
propose a distributed controller in section IV-B.

A. Conditions to Assure Safety and Operational Specifica-
tions

In this subsection, we present a sufficient condition to
satisfy the performance and safety specifications. Let

Ψk(I) := P(Sk|I) ∈ R (16)

be the sequence of probability of event Sk conditioned on
the information I . We define a new notion of conditional
discrete-time generator as below.

Definition 1 (Conditional discrete-time generator). The
conditional discrete-time generator A of a discrete-time
stochastic process {xk}k∈Z+ conditioned on another process
{yk}k∈Z+

with sampling interval ∆t evaluated at time k is
given by

Aϕ(xk|yk) =
E[ϕ(xk+1)|yk]− E[ϕ(xk)|yk]

∆t
(17)

whose domain is the set of all functions ϕ : Rn → R of the
stochastic process.

When xk = yk, this generator can be considered as the
discrete-time counterpart of the continuous-time infinitesimal
generator. We additionally add the conditioning of yk in order
to capture the information-sharing constraints. Although the
value of Aϕ(yk) depends on both xk and yk, with slight
abuse of notation, for the rest of the paper, we will use
Aϕ(yk) where the discrete-time stochastic process xk in
Definition 1 is the full state of the system, i.e., Xk in (9).

We consider the following condition at all time k:

AΨk(Q
i
k) ≥ −γ(Ψk(Q

i
k)− (1− ϵ)), ∀k ≥ 0. (18)

Here, γ : R → R is a function that satisfies the following 2
design requirements:

Requirement 1: γ(h) is linear in h.
Requirement 2: γ(h) ≤ h for any h ∈ R.

The probability measure of P(Sk|I) is taken over X , the
global state, conditioned on Qi, the information that can
be accessed by agent i. Therefore, the values on both sides
of (18) can be computed using Qi. Thus, the form of (18)
is advantageous in distributed networks without centralized
information or computing (see section IV-B). Interestingly,
this localizable property does not require the global safety
and operational specifications S to be decomposable (i.e.,
the design specifications S can depend on the value of all
states). This is in stark contrast with the existing literature
for deterministic and standard barrier functions: agent i can
only evaluate the safety constraint S only depending on the
information of Qi.

Theorem 1. Consider system (8) and (9). We assume the
initial condition X0 = x satisfies P(S0|X0 = x) ≥ 1− ϵ. If



at each time k, each agent i generates a control policy that
satisfies (18), then the following condition holds:

E[P(Sk|Xk)] ≥ 1− ϵ, ∀k ≥ 0. (19)

Interestingly, although the conditions in (18) can be im-
posed by each agent i using its local information Qi

k, the
behavior can be guaranteed for global safety and operational
specifications. The proof of theorem 1 is given in section IV-
C.

B. Proposed Controller

To efficiently implement condition (18) in real time, we
first show that (18) can be implemented as a linear function
of U i

k. We define Γi
D : Rm × R× R→ R

∑
j∈Ai mj

to be1

Γi
D(Xk, a, δ)

={Xj
k + δ1{1 ≤ a−

j−1∑
l=1

ml ≤ mj}1[a−
∑j−1

l=1 ml]

mj : j ∈ Ai}.

(20)

Note that although Γi
D takes input of the state of the whole

system, only the information available to agent i is required
for evaluation. Let Di(Xk) be defined as

Di(Xk) = [Di
(1)(Xk),Di

(2)(Xk), · · · ,Di
(m)(Xk)]

⊺ ∈ Rm,

(21)

where

Di
(a)(Xk) =

Ψk(Γ
i
D(Xk, a,∆))−Ψk(Γ

i
D(Xk, a,−∆))

2∆
.

(22)

Here, ∆ is the step size to calculate the finite difference of
Ψk. We additionally define Γi

H : Rm × R × R × R × R →
R
∑

j∈Ai mj

to be

Γi
H(Xk, a, b, δa, δb)

={Xj
k + δa1{1 ≤ a−

j−1∑
l=1

ml ≤ mj}1[a−
∑j−1

l=1 ml]

mj

+δb1{1 ≤ b−
j−1∑
l=1

ml ≤ mj}1[b−
∑j−1

l=1 ml]

mj : j ∈ Ai}. (23)

Note that although Γi
H takes input of the state of the whole

system, only the information available to agent i is required
for evaluation. Let

Hi(Xk)

=


Hi

(1,1)(Xk) Hi
(1,2)(Xk) · · · Hi

(1,m)(Xk)

Hi
(2,1)(Xk) Hi

(2,2)(Xk) · · · Hi
(2,m)(Xk)

...
...

. . .
...

Hi
(m,1)(Xk) Hi

(m,2)(Xk) · · · Hi
(m,m)(Xk)

 ,

(24)

1Here, we use R
∑

j∈Ai mj

to denote the set that has
∑

j∈Ai mj real
elements.

Fig. 1: Min and max composition of 3 barrier functions.
Note that although ϕ(x) (top plot) is not differentiable, the
probablistic formulation Ψ(x) (bottom plot) is smooth.

where

Hi
(a,b)(Xk) =

1

∆2
(Ψk(Γ

i
H(Xk, a, b,∆,∆))

−Ψk(Γ
i
H(Xk, a, b,−∆,∆))

−Ψk(Γ
i
H(Xk, a, b,∆,−∆))

+ Ψk(Γ
i
H(Xk, a, b,−∆,−∆))). (25)

Lemma 1. If the limit of lim∆t→0 AΨk(Q
i
k) exists, the

following condition holds:

lim
∆t→0

AΨk(Q
i
k) = lim

∆→0
(Di(Xk) · (F (Xk) +G(Xk)Uk)

+
1

2
tr(Σ⊺(Xk)Hi(Xk)Σ(Xk))). (26)

Remark 1. The function Ψk(x) can be smooth even when
ϕ(x) is not differentiable. For example, consider the case
with system (2) with F = − 1

2X , G = 0 and Σ = 2. The
system is discretized with ∆t = 0.1. As an example, we
define 3 barrier functions:

ϕ1(x) = −x2 − 1 (27)

ϕ2(x) =
1

2
x− 1 (28)

ϕ3(x) = sin (x), (29)

and specify a composition of ϕ1(x), ϕ2(x), and ϕ3(x), given
by

ϕ(x) = min(max(ϕ1(x), ϕ2(x)), ϕ3(x)). (30)

Observe that ϕ(x) is not differentiable. However,

Ψ(x) = P(ϕ(Xτ ) ≥ 0,∀τ ∈ {1, 2, · · · , 10}|X0 = x) (31)

is smooth, as shown in fig. 1.
For each agent i, if the information of the a-th entry

of X is not accessible, then the a-th entry of Di will be
0. Similarly, if either information of the a-th or b-th entry
of X is not accessible, then the (a, b)-th entry of Hi will
be 0. Therefore, (26) can be evaluated using only the local
information available to agent i and the current control action
of other agents whose states are available to agent i, i.e.,
{U j

k : j ∈ Ai}. Since the control action of agent i is
computed based on the control actions of other agents, the
control actions of agents must be available in an order such



that later agents can compute their control actions based on
previously available control actions. To calculate (16) using
the state information of the agents whose control actions are
not available yet and ensure that there exist feasible control
actions for these agent, we assume the existence of another
controller:

U i
k = Ri(Qi

k). (32)

This controller can be considered to be a controller that is
conservative in terms of performance. With this controller,
we propose a cascading architecture. We assume that there
exists a way to rank all agents such that agent i computes
its control action using its own state measurement, and the
state measurements and control actions of a subset of agents
j, 1 ≤ j < i. Based on theorem 1 and (26), we propose
the following constrained optimization problem to find the
control action. Each agent i uses Qi

k to solve

U i
k = argmin

ui

J i(N(Qi
k), u

i) (33)

s.t. Di(Xk) · (F (Xk) +G(Xk)u)

+
1

2
tr(Σ⊺(Xk)Hi(Xk)Σ(Xk))

≥ −γ(Ψk(Q
i
k)− (1− ϵ))

uj = 0, ∀j ̸∈ Ai.

Here, u contains the control actions of all agents and ui

is the control action of agent i. When computing (16), the
agents with index j < i are assumed to use the nominal
control action N j , while the agents with index j > i are
assumed to use Rj . The mapping J i : Rni × Rni → R is
an objective function that penalizes the derivation from the
nominal controller policy for agent i. Additional constraints
can be added to the optimization problem (33) to account
other constraints, such as actuation limits. The proposed
algorithm is shown in algorithm 1.
Remark 2. Although the input of Di and Hi is the full state
Xk, they can be evaluated using Qi

k only, as defined in (20)
to (25). Therefore, the constraint of (33) can be evaluated
using local information Qi

k only.

Algorithm 1 Proposed control algorithm

1: k ← 0
2: while k < Kmax do
3: for i = 1 : M do
4: Obtain Qi

k

5: Receive U l
k, l ∈ Ai\{i}

6: Find U i
k ← solve {ui in (33)}

7: end for
8: Execute control actions U i

k, 1 ≤ i ≤M
9: k ← k + 1

10: end while

Remark 3. In algorithm 1, agents with larger indexes make
decisions based on the actions of agents with smaller in-
dexes, so agents with smaller index gets more priority in

decision making. Apart from this priority hierarchy, the
information sharing structure can also take forms of general
tree structures, where the agents on the child nodes make
decisions based on the actions of all the nodes on the path
to the root node. There exists multiple ways to structure
the information sharing structure and choose priorities for
agents. One example is based on the physics of the system
(e.g., in a truck platooning system, the vehicles in behind
make control decisions based on the vehicles before them).
Another example is based on pre-defined priority (e.g., in
an intersection, emergency vehicles such as ambulance have
higher priority in making control decisions compared to other
vehicles).

C. Proof of Theorem 1

Lemma 2. Let S be an event with marginal probability P(S)
and conditional probability P(S|Y ), where Y is a random
variable with probability density function fY (y). Then, we
have the following condition.

E[P(S|Y )] = P(S). (34)

Proof (lemma 2). We have

E[P(S|Y )] =

∫ ∞

−∞
P(S|Y = y)fY (y)dy (35)

= P(S) (36)

due to the law of total probability. ■

Proof (theorem 1). We first show that

E[Ψk(Xk)] = E[Ψk(Q
i
k)], ∀i ∈ {1, 2, · · · ,M}. (37)

We have

E[Ψk(Xk)]

=E[P(Sk|Xk)] (38)
=P(Sk) (39)

=E[P(Sk|Qi
k)], ∀i ∈ {1, 2, · · · ,M} (40)

=E[Ψk(Q
i
k)], ∀i ∈ {1, 2, · · · ,M}. (41)

Here, (38) and (41) is due to definition (16), and (39) and
(40) is due to lemma 2. Therefore, for all i ∈ {1, 2, · · · ,M},
we have

E[−γ(Ψk(Q
i
k)− (1− ϵ))]

=− γ(E[Ψk(Q
i
k)]− (1− ϵ)) (42)

=− γ(E[Ψk(Xk)]− (1− ϵ)) (43)
=E[−γ(Ψk(Xk)− (1− ϵ))]. (44)

Here, (42) and (44) is due to design requirement 1. In



addition, for all i ∈ {1, 2, · · · ,M}, we have

E[AΨk(Q
i
k)]

=E[
E[Ψk+1(Xk+1)|Qi

k]− E[Ψk(Xk)|Qi
k]

∆t
] (45)

=
E[E[Ψk+1(X

i
k)|Qi

k]]

∆t
− E[E[Ψk(X

i
k)|Qi

k]]

∆t
(46)

=
E[Ψk+1(Xk+1)]

∆t
− E[Ψk(Xk)]

∆t
(47)

=
E[E[Ψk+1(Xk+1)|Xk]]

∆t
− E[Ψk(Xk)]

∆t
(48)

=E[
E[Ψk+1(Xk+1)|Xk]−Ψk(Xk)

∆t
] (49)

=E[AΨk(Xk)]. (50)

Here, (45) and (50) is due to (17), and (47) and (48) is due
to the law of total expectation. From (44) and (50), we know
that

E[AΨk(Q
i
k)] ≥ E[−γ(Ψk(Q

i
k)− (1− ϵ))] (51)

implies

E[AΨk(Xk)] ≥ E[−γ(Ψk(Xk)− (1− ϵ))]. (52)

Here, (51) holds because of safety condition (18).
Next, we use mathematical induction to prove (19). Con-

dition (19) holds for k = 0 due to the assumption on initial
condition. We suppose (19) holds at time k > 0, and show
(19) holds at time k + 1. Let

E[Ψk(Xk)] = E[P(Sk|Xk)] = 1− ϵ+ h (53)

for some b > 0. We define the set of events Vi and variables
vi, hi, and δi, i ∈ {0, 1}, as follows:

V0 = {Ψk(Xk) < 1− ϵ} , (54)
V1 = {Ψk(Xk) ≥ 1− ϵ} , (55)
v0 = E [Ψk(Xk) | V0] = 1− ϵ− δ0, (56)
v1 = E [Ψk(Xk) | V1] = 1− ϵ+ δ1, (57)
h0 = P(V0), (58)
h1 = P(V1). (59)

The left hand side of (53) can then be written as

E[Ψk(Xk)]

=E [Ψk(Xk) | V0]P(V0) + E [Ψk(Xk) | V1]P(V1)

=v0h0 + v1h1. (60)

From

E [Ψk(Xk) | V0] < 1− ϵ,

E [Ψk(Xk) | V1] ≥ 1− ϵ,
(61)

we obtain

δ0 ≥ 0 (62)

and

δ1 ≥ 0. (63)

Moreover, {bi}i∈{0,1} satisfies

P(V0) + P(V1) = h0 + h1 = 1. (64)

Combining (53) and (60) gives

1− ϵ+ h = v0h0 + v1h1. (65)

Applying (56) and (57) to (65) gives

1− ϵ+ h = (1− ϵ− δ0)h0 + (1− ϵ+ δ1)h1, (66)

which, combined with (64), yields

h = δ1h1 − δ0h0. (67)

On the other hand, we have

E [γ (Ψk(Xk)− (1− ϵ))]

=P(V0) (E [γ (Ψk(Xk)− (1− ϵ)) | V0])

+ P(V1) (E [γ (Ψk(Xk)− (1− ϵ)) | V1]) (69)
=h0 (E [γ (Ψk(Xk)− (1− ϵ)) | V0])

+ h1 (E [γ (Ψk(Xk)− (1− ϵ)) | V1]) (70)
=h0 (γ (E [Ψk(Xk)− (1− ϵ) | V0]))

+ h1 (γ (E [Ψk(Xk)− (1− ϵ) | V1])) (71)
=h0 (γ (−δ0)) + h1 (γ (δ1)) (72)
=γ (−h0δ0 + h1δ1) (73)
=γ(h) (74)
≤h. (75)

Here, (70) is due to (58) and (59); (71) is obtained from
design requirement 1; (72) is based on (56) and (57); (73)
is due to design requirement 1 and (64); (74) is due to (67);
and (75) is due to design requirement 2. From (69) to (75),
we have

E [−γ (Ψk(Xk)− (1− ϵ))] ≥ −h. (76)

Recall that the control action is chosen to satisfy (18). Now,
we take the expectation over both side of (18) to obtain

E[AΨk(Xk)] ≥ E[−γ(Ψk(Xk)− (1− ϵ))]. (77)

From (17), we have

AΨk(Xk) =
E[Ψk+1(Xk+1)−Ψk(Xk)|Xk]

∆t
. (78)

Therefore, (77) can be written as

E[E[Ψk+1(Xk+1)−Ψk(Xk)|Xk]]

∆t
≥E[−γ(Ψk(Xk)− (1− ϵ))]. (79)

Using the law of total expectation, we have

E[Ψk+1(Xk+1)−Ψk(Xk)]

∆t
≥E[−γ(Ψk(Xk)− (1− ϵ))]. (80)



Combining (53), (76), (80) and design requirement 2 yields

E[Ψk+1(Xk+1)]

≥E[Ψk(Xk)] + E[−γ(Ψk(Xk)− (1− ϵ))]∆t (81)
≥1− ϵ+ h− h∆t (82)
=1− ϵ+ h(1−∆t). (83)

Since ∆t≪ 1 and h ≥ 0, we have

E[Ψk+1(Xk+1)] ≥ 1− ϵ. (84)

V. NUMERICAL SIMULATION

In this section, we test the empirical performance of the
proposed method using numerical simulation. We consider a
multi-agent system whose setting resembles the group robot
operations. Examples of such operations include warehouse
robots operations and swarm vehicle operations. The simula-
tion runs for a total time of tmax. The system consists a total
of M autonomous agents. Let superscript i denote the i-th
agent. All agents are governed by the following nonlinear
dynamical system:

dpxit = vit cos(θ
i
t)dt (85)

dpyit = vit sin(θ
i
t)dt (86)

dvit = aitdt+ σvidW vi (87)

dθit = ϕi
tdt+ σϕidWϕi, (88)

where pxi and pyi are the position, vi is the speed, ϕi is the
heading angle, ai is the acceleration, and ϕi is the steering
rate. The amount of uncertainty is characterized by W vi

and Wϕi, which we assume are the independent Brownian
motions with 0 initial value. For all i ∈ {1, 2, · · · ,M}, let

Xi
t :=

[
vit
θit

]
, U i

t :=

[
ait
ϕi
t

]
,W i :=

[
W vi

Wϕi

]
Gi :=

[
1 0
0 1

]
Σi :=

[
σvi 0
0 σϕi

]
. (89)

Thus, (87) and (88) can be written as

dXi
t = GiU i

tdt+ΣidW i. (90)

To implement the controller in digital system, we discretize
the time into sampled points of equal interval ∆t, i.e., tk =
k∆t, ∀k ∈ Z+, such that (90) can be written in discrete time
as

Xi
k+1 = F i(U i

k,W
i
k). (91)

Let pxi0 and pyi0 be the starting point of agent i, and pxigoal
and pyigoal be the goal of agent i. The set of agents whose
information is available to agent i at time k is given by

Ai
k = {j :

√
(pxik − pxjk )2 + (pyik − pyjk )2 ≤ r}, (92)

where r is the maximum range that an agent can broadcast
its state and control action information. The operational goal

for each agent i is to follow a reference trajectory Xri that
enables them to reach the goal, i.e.,

Xri
k =

[
vmax

atan2(
pyi
goal−pyi

k

pxi
goal−pxi

k

)

]
, (93)

where vmax is the maximum speed. The nominal controller
aims to follow this reference using a proportional controller,
i.e.,

N i(Qi
k) = K(Xi

k −Xri
k ), ∀i ∈ {1, 2, · · · ,M}, (94)

where K is the controller gain. In addition to the nominal
controller, which is considered to give the most aggressive
control action, we also assume there exists a controller that
gives the most conservative control action. One example is a
controller that makes the vehicle decelerate in the maximum
rate, i.e.,

Ri(Xi
k) =

[
−sign(vik)amax

0

]
, ∀i ∈ {1, 2, · · · ,M}, (95)

where amax is the maximum acceleration rate. In addition to
the aforementioned agent, we also add an agent, labeled M+
1, who does not execute safe control policies and whose state
is completely unobservable to other agents. However, the
other agents knows the initial location, the system dynamics,
and the control policy of this agent. Specifically, the system
dynamics of this agent is identical to other agents except for
having larger uncertainties, and the control policy is identical
to the nominal control policy for the other agents, given in
(94). The safety specification for all agent is given by

Sk = {
√
(pxiτ − pxjτ )2 + (pyiτ − pyjτ )2 ≥ l,

∀τ ∈ {k, k + 1, · · · , k + T}, i, j ∈ {1, 2, · · · ,M + 1}, i ̸= j},
(96)

where l is the lowest safe distance, and T is the outlook time
horizon. We implement the controller based on Algorithm 1.
The objective function in (33) is given by

J i(N(Qi
k), u

i) = ||N(Qi
k)− ui||2, ∀i ∈ {1, 2, · · · ,M}.

(97)

The key simulation parameters are shown in Table I. In the
simulation, we use

γ(h) = h− 10. (98)

Using the same randomly generated starting points and
goals, we run simulation with the nominal controller
and the proposed control policy. The results are il-
lustrated in Figure 2, and Figure 3. A video of
the simulation showing the evolution of the trajecto-
ries is available at https://github.com/haomingj/Probabilistic-
Safety-Certificate-for-Multi-agent-Systems.

Analysis. The proposed controller is able to ensure safety
while preserving the performance of the system. This is
shown in Figure 2, where all vehicles reach their goals in
the simulation time. In addition, in Figure 3, the successful
achievement of the safety objective at all times shows the
proposed controller’s ability to maintain safety under a few



Parameter Value Parameter Value
∆t 0.01 T 100
K 1 l 0.5
r 10 vmax 10

amax 20 ϵ 0.15
M 15 tmax 20

σvi, ∀i 2 σϕi, ∀i 2

TABLE I: Key parameters in the simulation.

Fig. 2: Agent trajectories with nominal controller (left) and
proposed controller (right). The triangles show the starting
point and direction for the agents and the circles show
the goal regions. The dashed line shows the trajectory of
the unobservable agent. All agents reach their goals within
simulation time.

challenging conditions. Firstly, the system (85) to (88) is
nonlinear. Secondly, the agents only have partial system
state information specified in Ai and cannot evaluate the
full safety condition. The state information of one of the
agent is completely inaccessible to other agents, which
breaks of the assumptions of many existing method since
the barrier function cannot be explicitly evaluated. Thirdly,
the safety condition is composed of multiple barrier functions
representing the distance between all agent pairs. This barrier
function can be non-differentiable with respect to state since
the closest agent to ego agent may change any time. Since
most existing methods are not designed to ensure long term

Fig. 3: The minimum distance between any 2 agents (includ-
ing the unobservable agent) for the nominal controller and
the proposed controller (left) and the expected long term safe
probability of the proposed method (right). For the nominal
controller, the safety specification is violated several times.
For the proposed controller, the safety specification is never
violated, and the expected safe probability is maintained over
1− ϵ.

safety and performance under uncertainty as well as incorpo-
rating a binary composition of multiple barrier functions that
can only be evaluated locally based on partial information
or cannot be explicitly evaluated, comparison with existing
methods is not included in the simulation.

VI. CONCLUSION

In this paper, we propose a safety certificate for multi-
agent systems that ensures long term safety and performance
using myopic controllers, achieves safety without overly
compromising performance, and provides global guarantee
on safety and performance conditions that can not be suffi-
ciently evaluated with the information locally available to
each agent. We verify the effectiveness of the proposed
method in a simulation setting concerning group robot oper-
ation.

■
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