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Abstract— This paper presents an adaptive safe control
method that can adapt to changing environments, tolerate large
uncertainties, and exploit predictions in autonomous driving.
We first derive a sufficient condition to ensure long-term safe
probability when there are uncertainties in system parameters.
Then, we use the safety condition to formulate a stochastic
adaptive safe control method. Finally, we test the proposed
technique numerically in a few driving scenarios. The use of
long-term safe probability provides a sufficient outlook time
horizon to capture future predictions of the environment and
planned vehicle maneuvers and to avoid unsafe regions of
attractions. The resulting control action systematically mediates
behaviors based on uncertainties and can find safer actions
even with large uncertainties. This feature allows the system to
quickly respond to changes and risks, even before an accurate
estimate of the changed parameters can be constructed. The
safe probability can be continuously learned and refined. Using
more precise probability avoids over-conservatism, which is a
common drawback of the deterministic worst-case approaches.
The proposed techniques can also be efficiently computed in
real-time using onboard hardware and modularly integrated
into existing processes such as predictive model controllers.

I. INTRODUCTION

Background. Driving in adverse conditions (e.g. icy roads
with low traction) is challenging for both human drivers and
autonomous vehicles. The vehicle parameters can vary by
operating conditions, and the control strategy must adapt to
changes quickly. These parameters may have significant un-
certainties before their changes can be accurately estimated.
The uncertainties due to unmodeled dynamics and noise
in sensing, localization, and estimation can be substantial.
Moreover, the vehicles’ states can have unsafe regions of
attractions, in which controllability and stability are sig-
nificantly reduced. The likelihood of entering such regions
depends on the future road condition (traction, curvature,
etc.), planned maneuvers and actions, predictions of the
environments, and their levels of uncertainty. Therefore, it
is critical for an autonomous vehicle to adapt to changes,
mediate behaviors based on uncertainties, exploit predictions,
and do them in an integrated manner.

Related work. Various techniques have been developed
for advanced driving assistance systems (ADASs) and au-
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tonomous vehicles (AVs). Many of these techniques are
developed in deterministic worst-case frameworks: H-infinity
controllers [1], robust sliding mode controllers [2], [3], fuzzy
logic controllers [4]–[6], and control barrier functions [7],
[8]. These techniques can often be efficiently computed but
require full system models and small bounded uncertainties
(errors). In large uncertainties, these techniques may not
perform well. Ensuring safety for all possible errors may be
infeasible. The performance may not degrade gracefully for
increasing uncertainties due to overly conservative actions.

When there are unknown parameters or changes in the
internal and external parameters, techniques have been de-
veloped for parameter estimation and fast adaptation. Some
combine parameter estimates (e.g., Kalman filter, Bayesian
filter) and additional modifications in control to account for
uncertainties [9]–[11]. The modification in control techniques
is often built on worst-case frameworks and similarly as-
sumes the availability of accurate estimates. Others direct
estimate the control parameters using PID tuning [12], [13],
interactive learning methods [14]–[16], adaptive control [17].
These methods’ performance guarantees (convergence) often
require the system dynamics to take some specific structures,
and they often do not exploit future predictions.

Various model predictive control (MPC) techniques have
been developed to better exploit future predictions and
balance different performance objectives [18]–[22]. These
methods look into future time horizons and use predictions
to achieve better performance. As the number of possible
trajectories grows exponentially to the outlook time horizon,
there are often stringent tradeoffs between outlook time
horizon and computation burdens.

To better account for uncertainties, many methods use
stochastic frameworks. Examples of these techniques are
stochastic MPC [23] and chance-constrained MPC [24].
Control of distributions and constraints of probability can
be efficiently computed under certain assumptions such as
linear dynamics and Gaussian disturbances. However, for
general (nonlinear) systems, there do not exist lightweight
algorithms suitable for online or onboard computation. The
tradeoff between outlook time horizon and computation load
can be even more stringent because constraining long-term
probability requires characterizing the evolution of complex
state distributions over time.

Our contributions. Motivated by these challenges, we
propose a stochastic adaptive safe control technique that
accounts for internal parameter changes, planned vehicle
control, and the prediction of environmental factors. The
technique efficiently (myopically) finds a control action with
ensured long-term safe probability. The method can both
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flexibly adapt to changes and remain robust in a steady state
by mediating behaviors based on the levels of parameter
uncertainties. The long-term safe probability can represent
a variety of performance/safety specifications, and its proba-
bility measure can be continuously learned based on driving
data.

Specifically, we derive a sufficient condition for control-
ling the safe probability within a desirable range. The safety
condition is then used to construct a safe control algorithm
that can be efficiently computed in real-time and modularly
embedded into existing decision-making processes. The al-
gorithm accounts for the distribution of uncertainties and
finds appropriate control actions even in the presence of large
uncertainties. Such features allow safer and faster responses
to changes before sufficient samples become available or
before the parameter estimates converge. Moreover, it can be
modularly added into an existing decision-making process:
for example, it can be incorporated into the MPCs to balance
multiple objectives while ensuring chance-constrained safety
conditions for nonlinear affine control systems without the
assumption of Gaussian distributions. The resulting algo-
rithms can properly control the long-term safe probabilities,
which are defined based on future trajectories and intended
control action, allowing that information to be used for
producing more stable and safer action. Furthermore, the
long-term safe probability can be learned continuously using
past driving data, which allows the control policy to be
individually fine-tuned based on its common driving con-
ditions. By extending the outlook time horizon, preventive
control actions can be executed before the system reaches a
state where maintaining safety is no longer possible. Finally,
the framework requires few assumptions in the choice of
models: it can be adapted to different vehicle dynamics or
tire models, ranging from white-box to gray-box to black-box
models. The model also does not need to be differentiable—a
common requirement when deterministic safe control algo-
rithms that involve the computation of (Lie) derivatives to
be applied.

The rest of this paper is organized as follow. We first
present the vehicle dynamics, controller structures, and de-
sign objectives in Section II. Then, we present the proposed
safe control framework and prove its performance guarantees
in Section III. Finally, we present a few case studies of
autonomous driving in Section IV and discuss the advantages
of the proposed approaches.

II. PROBLEM STATEMENT

In this section, we introduce the generic vehicle dynamics
in section II-A, controller in section II-B, and the safety
specifications in section II-C.

A. Vehicle Dynamics
We use x 2 Rm to represent the state of the vehicle and

u 2 Rn to represent the control action. The dynamics of x
depends on the physics and mechanics of the vehicle and the
control action. We use

ẋ = Fx(x, ⇠) + Fu(x)u, (1)

with some possibly nonlinear functions Fx, Fu to represent
the dynamics. The vehicle dynamics are parameterized by
⇠ 2 Rl. The values of ⇠ can change over time, so its
exact values may not be accessible by the controller. The
system dynamics in (1) is affine to the control action u.
The proposed technique is agnostic to the choice of vehicle
models, and thus Fx and Fu can be high-dimensional and
highly nonlinear functions and/or built from data.

In order to implement the controller in digital systems, we
discretize (1) as follows.

xk+1 = F (xk, uk, ⇠k). (2)

Let (2) be the discretized system dynamics, where F is a
function derived from (1). Let xk and uk be the value of
xt and ut evaluated at the discrete time point t = k�t,
respectively, where �t is the sampling time of the digital
controller.

B. Nominal controller

We assume the existence of an estimator for the vehicle
parameters ⇠. Let ⇠̂k denote the latest estimate of ⇠ available
at time step k. We allow the estimator to operate in different
time scale from the controller or be updated intermittently.
We additionally assume that the estimator gives the posterior
of the estimate. Let z denote the vehicle state and estimated
parameter at time k, i.e.,

zk =
⇥
xT

k
, ⇠̂k

⇤T 2 Rm+l. (3)

The distribution of zk is determined from the vehicle dy-
namics, the estimator, and environmental changes.

The system is equipped with a nominal optimization-based
(MPC) controller of the following form:

uk:k+H = argmin
uk:k+H2U

J(xk:k+H , uk:k+H) (4a)

s.t. C(xk:k+H , uk:k+H) ⌫ 0 (4b)

xi+1 = F̂ (xi, ui, ⇠̂k), i = k, · · · , k +H (4c)

where xk:k+H = {xk, xk+1, · · · , xk+H}, and uk:k+H =
{uk, uk+1, · · · , uk+H}. Here, H is the MPC outlook hori-
zon, and the optimization domain U is the admissible set
of control actions. In this optimization problem, the cost
function J(xk:k+H , uk:k+H) for system state and control is
minimized. Condition (4b) represents the constraints in the
vehicle states and controls (e.g., steering angle limits). The
left hand side of (4b), C(xk:k+H , uk:k+H), is a vector valued
function of xk:k+H , uk:k+H , and the inequality of (4b) is
taken point-wise. Condition (4c) accounts for the knowledge
of the system dynamics, which approximates the original
dynamics (2), i.e., F ⇡ F̂ . This controller is designed based
on the performance specifications of the system and does
not necessarily account for the safety specifications, which
is described in the next subsection.
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C. Safety specifications
We represent the safe event using a set S 2 Rm defined

as the 0-superlevel set of a function � : Rm ⇥ Rl ! R, i.e.,

S(⇠) = {x : �(x, ⇠) � 0}, (5)

where the function �(x, ⇠) involves the internal state of
the vehicle x and external/environmental variables ⇠ (e.g.,
friction coefficients). The safety specifications is then given
by the following condition: the vehicle state stays within the
safe set, i.e.,

x 2 S(⇠). (6)

A major challenge to ensure (6) arises from the uncertainties
in the system. For example, safety depends on ⇠, and when
it changes, the controller must adapt its action before an
accurate estimate of ⇠ can be constructed from samples.
When the uncertainty of ⇠ is large, it can be impossible to
have (6) with probability 1. Moreover, ensuring (6) for all
possible worst cases may not be feasible and/or leads to un-
necessarily conservative control actions, which compromise
the robustness and performance of the system. Instead, we
aim to control the safety probability defined below.

Specifically, we want to ensure x 2 S(⇠) during an
outlook time window T (k) = {k, k + 1, · · · , k + T} with
probability 1� ✏: i.e., at any time k 2 Z+,

P(x⌧ 2 S(⇠⌧ ), 8⌧ 2 T (k)) � 1� ✏. (7)

Here ✏ can be interpreted as the tolerance level for unsafe
events. The outlook time horizon T should be sufficiently
long to avoid myopic behaviors that are unsafe. Note that the
outlook time horizon T does not need to be identical to the
outlook horizon H of the MPC controller (4). The benefit
of choosing different T and H will be explained later in
Remark 2.

III. ALGORITHM STATEMENT

In this section, we present the proposed safety condition
in section III-A, and the proposed safe adaptation algorithm
in section III-B.

A. Proposed Safety and Recovery Condition
In this subsection, we propose an adaptive safe control

method that exploits prediction and mediates behaviors based
on the level of uncertainties. We first derive a sufficient
condition that ensures safe probability based on a novel
probabilistic forward invariance condition. The key novelty
of this condition is that it can ensure long-term safety
probability to be ensured using a myopic controller that
can be computed in real-time onboard computation, while
standard control barrier function (CBF) based methods often
lead to unsafe behaviours because of the long tail distribution
of the unsafe events. The long-term safety probability can be
computed offline and be continuously learned using the driv-
ing history. The controller only needs to myopically evaluate
the immediate control action using a linear constraint, which
can be easily integrated into optimization-based planning and
control processes (e.g., MPC [18]–[20], [23], [24]).

Let A denote the following discrete-time generator.

Definition 1 (Discrete-time Generator). The discrete-time
generator A of a discrete-time stochastic process {yk 2
Rn}k2Z+ with sampling interval �t evaluated at time k is
given by

AG(yk) =
E[G(yk+1)|yk]�G(yk)

�t
(8)

whose domain is the set of all functions G : Rn ! R of the
stochastic process.

The discrete-time generator can be considered as the
discrete-time counterpart of the infinitesimal generator for
a continuous-time process.

Let  (z) be the probability of the vehicle originating from
state zk = z at time k to remain safe during outlook time
horizon T (k), i.e.,

 (z) := P(x⌧ 2 S(⇠⌧ ), 8⌧ 2 T (k)|zk = z). (9)

Note that, conditioned on zk = z, this probability does not
depend on k.1 In order to ensure safety of the system, we
propose to constrain the control action uk to satisfy the
following conditions at all time k 2 Z+:

A (zk) � ��( (zk)� (1� ✏)). (10)

Here, � : R ! R is a function of  (zk) � (1 � ✏). When
 (zk)  1 � ✏, the value of A (zk), if positive, can be
interpreted as the the recovery rate. Condition (10) essentially
constrains the discrete-time generator of  (zk) to be lower
bounded by ��( (zk)� (1� ✏)).
Remark 1. Since function  (zk) gives the safety probability
of the system in the time horizon T (k), it encodes infor-
mation of prediction on the future as well as the level of
uncertainties.

We impose the following two conditions for �(q):
Requirement 1: �(q) is strictly concave or linear in q.
Requirement 2: �(q)  q, 8q 2 R.

Condition (10) with design requirements 1 and 2 guarantees
the safe probability condition (7) to hold, as stated below.

Theorem 1. Consider the open-loop system (2). Let �(q)
satisfy requirements 1 and 2. If the state and parameter
estimation originate at z0 = z with  (z) > 1 � ✏, and the
control action satisfies (10) at all time, then the following
condition holds:

P(x⌧ 2 S(⇠⌧ ), 8⌧ 2 T (k)) � 1� ✏ (11)

for all time k 2 Z+. Here, the probability is taken over zk
conditioned on z0 = x, and  in (9) gives the probability
of safety of the future trajectories {z}{k+1,k+2,··· ,k+T}
conditioned on zk.

Proof. See extended version of this paper [25].

Note that the left hand side of (11) is equivalent
to E [P(x⌧ 2 S(⇠⌧ ), 8⌧ 2 T (k))], where the expectation is

1This property holds because the system dynamics in (2) is time-
invariant. The functions Fx and Fu do not depend on time.
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taken over zk conditioned on z0 = x, and  in (9)
gives the probability of safety of the future trajectories
{z}{k+1,k+2,··· ,k+T} conditioned on zk.

B. Proposed Safe Adaptation Algorithm
Next, we show that A (zk) can be approximated using

a linear function of uk when the sampling interval �t is
sufficiently small. With z defined in (3), let D(z) denote the
first m entries of the gradient of  (z) evaluated at z, i.e.,

D(z) = [D(1)(z), D(2)(z), · · · , D(m)(z)]T 2 Rm, (12)

where

D(i)(z) =
 (z +�(i))� (z ��(i))

2�
. (13)

Here, � is the step size to calculate the finite difference
of the safety probability, �(i) denotes a vector that takes a
scalar value of � in i-th entry and 0 otherwise. Note that
D(z) has the same dimension with the state x.

We make the following assumptions:

lim
�t!0

E

zk+1 � zk
�t

�
=


Fx(xk, uk, ⇠̂k) + Fu(xk)uk

0

�

(14)

lim
�t!0

1

2�t
E
⇥
(zk+1 � zk)

TM(zk+1 � zk) | zk
⇤
= ck (15)

lim
�t!0

1

�t
E [R2 (zk, zk+1) | zk] = 0. (16)

Here, M is a matrix of appropriate dimension, ck is a
constant ck, and R2 denotes the terms with order greater
than 2 in the Taylor expansion of  , i.e., R2 (zk, zk+1) =

o
⇣
kzk+1 � zkk2

⌘
. Condition (14) assumes the limit of the

derivative of x equals to the dynamics with the estimated
parameter, and the estimated parameter is not changing in
the infinitesimal time. This holds for ordinary differential
equation (ODE) systems with additive Gaussian noise, which
is commonly assumed in stochastic safe control commu-
nity [26], [27]. It is assumed in (14) that information about
the future value of ⇠̂ is not available. Condition (15) says
the second order term in the Taylor expansion of  equals
to some constant ck. Note that this term does not necessarily
vanish (e.g., Ito’s calculus), but it will not depend on u.
Condition (16) implies that terms higher than third order
will vanish.

Lemma 1. Assume (14)–(16) hold. Then, the following
condition holds.

lim
�t!0

A (zk) = D(zk) · (Fx(xk, ⇠̂k) + Fu(xk)uk + ck).

(17)

Proof. See extended version of this paper [25]

From Lemma 1, we can use sufficiently small sampling
interval �t and evaluate condition (10) using

D(zk) ·(Fx(xk, ⇠̂k)+Fu(xk)u+ck) � ��( (zk)�(1�✏)).
(18)

Since D, Fx, Fu and  are all constant given xk and
⇠̂k, condition (18) is linear in u, thus can be used in LQ

or convex problem without losing convexity. Therefore, it
can be easily integrated into existing optimization-based
controllers (e.g., [28]–[31]) without much extra computa-
tional [18], [32]. For example, we can impose (18) as an
addition constraints in the nominal MPC controller (4), i.e.,

uk:k+H = argmin
uk:k+H2U

J(xk:k+H , uk:k+H), (19a)

s.t. (4b), (4c) and (18). (19b)

This controller exploits prediction through both MPC for-
ward rollout and the long-term safety probability function
 (z) in (9), with different outlook horizon H and T ,
respectively.
Remark 2. The computation load of the MPC controller (4)
often scales exponentially with its time horizon H . Interest-
ingly, the safety condition (10) can be used to ensure safety
during horizon T without requiring the MPC controller to
extend its outlook horizon to T . Thus, if the value D in (12)-
(13) is computed offline, the computation load of the MPC
controller only needs to scale with H(⌧ T ).

The overall safe control strategy is given by Algorithm 1.
At each time step k, Algorithm 1 functions as follows. In
line 5, it obtains from the estimator the latest estimate ⇠̂k for
the system parameter ⇠. In line 6, it evaluates the functions  
and D at zk either using online or offline computation. These
values can be obtained by sampling the system dynamics (1)
or (2), or can be continuously learned from the past driving
data. In line 7, it finds an control action uk either using the
optimization problem (19). This control action uk is executed
in line 8, and its impact on xk+1 is observed in line 4 at the
next time step.

Algorithm 1 Safe control algorithm
1: Initialize �z
2: k  0
3: while k < Kmax do
4: Observe xk

5: Obtain ⇠̂k from the estimator
6: Obtain  (zk) and D(zk)
7: Find uk  solve {uk in (19)}
8: Execute action uk

9: k  k + 1
10: end while

IV. EXPERIMENT

We evaluated the efficacy of the proposed adaptive safe
control method with simulation on a four-wheel 3-DoF
vehicle. The design goal is to track a reference path without
slipping. We present the vehicle dynamics in section IV-A,
the controller and the design specification in section IV-B,
and the results and discussions in section IV-C.

A. Vehicle Model
We consider the vehicle model presented in [33] and Bur-

ckhardt’s tire model based on the Kamm friction circle [34].

1665

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 28,2022 at 15:23:05 UTC from IEEE Xplore.  Restrictions apply. 



\e/ #: ���	��� �����	��

+
+
+
+
&
&
&
&

�
�
�
�


��


��


��


��

��

��

��

��

��

��

��

��

�

�

�

�

²

²

²

²

�
�
�
�
�
�
�
�
�

�

�

�

�
�
�
�

�&��(����(�,�����+�����(.
�&��(�&���(�,�����+�����(.
&��&����(�,�����+�����(.
&��&�&���(�,�����+�����(.
��'(������&�������(���&��(����(�,������&�*������(��(�!���(
��'(������&�������(���&��(�&���(�,������&�*������(��(�!���(
��'(������&�������(��&��&����(�,������&�*������(��(�!���(
��'(������&�������(��&��&�&���(�,������&�*������(��(�!���(
��������(,�������''�'�"���#����&����(��'.'(��������&��(����(
,������&�*������(��(�!���(
��������(,�������''�'�"���#����&����(��'.'(��������&��(�&���(
,������&�*������(��(�!���(
��������(,�������''�'�"���#����&����(��'.'(�������&��&����(
,������&�*������(��(�!���(
��������(,�������''�'�"���#����&����(��'.'(�������&��&�&���(
,������&�*������(��(�!���(
��'(������&�������(���&��(��-��
��'(������&�������(��&��&��-��
��'(�������(,����,����'�����&��(��-��
��'(�������(,����,����'����&��&��-��

��

��

²��

²��

²��

²��

&��

&��

&��

&��
+
��

+
��

+
��

+
��
.���

-���

-��

+���

3
�

��

��

��
��� ��� �%6;�3JQ �;7=;9%9JF J1E;M01;MJ J1% N%13�6%

Fig. 1: Freebody diagram of the vehicle.

Fig. 1 shows the diagram of the vehicle model. In this model,
each tire is associated with a longitudinal and lateral force.
We use Ft to denote the total tire force on each of the
four wheels, calculated as the squared sum of the lateral
and longitudinal tire force. The saturated tire grip force is
given by

Fsat = µmg/4, (20)

where m is the vehicle mass, and g is gravitational acceler-
ation constant, µ is the friction coefficient between the tire
and road (referred to as c1 in Burckhardt’s tire model). The
vehicle system’s state and control actions are

x = [xCoG, yCoG,  , vx, vy, r, !fr, !fr, !rl, !rr, �]
T

(21)

u =
h
Te, �̇

iT
, (22)

where xCoG, yCoG, and  are the vehicle’s inertial pose, vx
and vy are the vehicle’s frame velocities, r is the yaw rate,
!fl, !fr, !rl, and !rr are the tire angular rates, � is the
steering angle, Te is the input torque from the differential and
�̇ is the steering rate. The specific choice of parameters for
simulation are summarized in Table I. The friction coefficient
µ is the unknown parameter ⇠ in our simulation, by adding
an additive zero-mean Gaussian noise with variance �2 to
µ. Please see extended version of this paper [25] for more
details of the vehicle model.

B. Controllers and Design Specifications

The performance specification is to track a reference
trajectory. This can be achieved by a linear time-varying
MPC controller (LTV-MPC) of the form (4) with

F̂ (x, u) = Alin xe +Blin ue, (23a)

J(x, u) =
1

2
xT

e
Qxe +

1

2
uT

e
Rue, (23b)

C(x, u)  0, (23c)

TABLE I: Simulation Parameters

Parameter Definition Value
Cf cornering stiffness for front tire 6680 N/rad
Cr cornering stiffness for rear tire 6680 N/rad
ba aerodynamic drag coefficient 100 Ns/m
br tire drag coefficient 100 Ns/m
µ tire to road friction coefficient 0.03
m mass of the vehicle 1500 kg
g gravitational acceleration 9.8 m/s2
Lf front wheel distance to vehicle center 1.070 m
Lr rear wheel distance to vehicle center 1.605 m
W width of the vehicle 1.517 m
Iz rotational inertia about the center 2600 kgm2

where xe = x�xr, ue = u�ur with [xr, ur] be the reference
trajectory, Alin and Blin are the Jacobian of a reduced-order
linearized vehicle dynamics at each time step, with states x =
[xCoG, yCoG,  , vx, vy, r]T and controls u = [v̇x, �]T [35].
The reference trajectories [xr, ur] are obtained from a B-
spline based planner and reference generator demonstrated
in [33]. The objective J is the weighted quadratic penalties
on the trajectory tracking error xe and the difference between
the actual control and the reference control ue. Constraint
function C limits the control inputs of the vehicle system
within a certain range. LTV-MPC linearizes the system at
each time step, and predicatively optimize the control input
in a given horizon H to make sure the vehicle is tracking the
reference trajectory while satisfying necessary constraints.
However, we do not add any safety specific constraints
in LTV-MPC. This is because LTV-MPC uses a reduced
state space model of the vehicle and the tire force dynamic
is highly nonlinear and under-actuated in this state space.
Moreover, the nonlinearity of tire-force dynamics and the
under-actuated nature of the safety specification prevents
control barrier function methods to be used for constructing
a linear constraint.

The safety specification is to limit each tire’s total force
within a certain percentage ⌘ 2 (0, 1) of the maximum tire
force Fsat, beyond which the vehicle starts to slip. The safety
condition is defined by (5) with

�(x, ⇠) = min
⇢
1�

✓
4Ftfl

⌘⇠mg

◆2

, 1�
✓
4Ftfr

⌘⇠mg

◆2

,

1�
✓
4Ftrl

⌘⇠mg

◆2

, 1�
✓
4Ftrr

⌘⇠mg

◆2 �
,

(24)

where ⇠ = µ is the friction coefficient, Ftfl and Ftrr, etc,
are the tire forces on front left wheel, rear right wheel, etc.
With this definition, if any of the four tire’s total force Ft

exceed ⌘Fsat, function �(x, ⇠) in (24) will become negative
indicating that safety is being compromised. Accordingly,
the proposed controller is given by (19) whose parameters
are defined by (23). This controller essentially add to LTV-
MPC a linear constraint (18) that ensures the long-term safe
probability and probabilistic recovery speed.
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Fig. 2: Impact of uncertainty on safety (left) and performance
(right).

Fig. 3: Total tire force of each wheel.

C. Results

Impact of uncertainty on safety and performance. Fig 2
shows the safety and performance for varying levels of
uncertainties for the proposed method and the LTV-MPC.
The safety is measured by the averaged value of the safety
specification function (24), the performance is measured by
the averaged cost function value, and the level of uncertainty
is measured by �. In contrast to LTV-MPC, the proposed
method has a more graceful degradation in safety and per-
formance. With the proposed method, the tire force always
stayed within 85% of its saturation (Fig. 3) and produced
stable trajectories (Fig. 4 left). This can be achieved because
the proposed controller will look into the future and impose
a more effective safe control on the system once the safety
probability has an tendency of dropping, i.e., the system
state is getting close to some potentially unsafe regions.
With LTV-MPC, the total tire force started to exceed the
maximum desired saturation rate from around 8 seconds.
This is because LTV-MPC can not directly account for the
safety specifications in its constraints, as mentioned in the
previous section.

Safety versus performance tradeoffs. Fig. 5 shows the
tradeoffs between the safety and performance for the pro-
posed method and the LTV-MPC. The proposed methods
have an improved tradeoff than LTV-MPC. This is achieved
because it can systematically trade-off long-term safety vs
performance by varying the tolerance level ✏. With a looser

Fig. 4: Trajectory of the vehicle for varying uncertainty �
(left) and tolerance ✏ (right).

Fig. 5: Safety v.s. performance tradeoffs

safety requirement, more aggressive control was produced to
improve performance (Fig. 4 right).

Time horizon, computation load, and safety. Fig. 6 shows
the effect of the MPC outlook time horizon H and resulting
computation load and safety. The computation load grows
with H in the order of O(H3) [36], [37]. However, reducing
H does not compromise safety because the proposed meth-
ods only requires myopic evaluation to achieve long-term
safety.

V. CONCLUSION

This paper proposes a stochastic adaptive safe control
technique for adverse driving conditions that can exploit
prediction, mediate behaviors based on uncertainty, and
adapt to changes. We demonstrate its reliability, efficiency,

Fig. 6: Impact of MPC time horizon H on computation load
(left) and safety (right).
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and modularity through theoretical and numerical studies.
The reliability is due to its provable guarantee of long-
term safe probability or probabilistic recovery speeds. The
computational efficiency of imposing chance constraints in
nonlinear systems is achieved through a novel use of prob-
abilistic forward invariance conditions. Finally, the derived
safety condition can be modularly integrated into existing
controllers, which largely improves its applicability.
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