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Abstract— In this paper, we consider using barrier function-
based approaches for the safe control problem in stochastic
systems. In the presence of stochastic uncertainties, a myopic
controller that ensures safe probability in infinitesimal time
intervals may suffer from the accumulation of unsafe probabil-
ity over time and result in a small long-term safe probability.
Meanwhile, increasing the outlook time horizon may lead to
significant computation burdens and delayed reactions, which
also compromises safety. To tackle this challenge, we define a
new notion of forward invariance on ‘probability space’ as op-
posed to the safe regions on state space. This new notion allows
the long-term safe probability to be framed into a forward
invariance condition, which can be efficiently evaluated. We
use this safety condition to propose a controller that evaluates
infinitesimal outlook horizon and guarantees long-term safe
probability or fast recovery probability. The proposed controller
ensures the safe probability does not decrease over time or
informs the exposed levels of risks (unsafe probability) when it
becomes infeasible. The performance of the proposed controller
is evaluated in numerical simulations. Finally, we show that this
framework can also be adapted to characterize the speed and
probability of forward convergent behaviors, which can be of
use to finite-time Lyapunov analysis in stochastic systems.

I. INTRODUCTION

Autonomous systems (e.g., robots and self-driving vehi-
cles) must make safe control decisions in real-time and in
the presence of various uncertainties. The control of such
safety- and delay-critical systems rely extensively on bar-
rier function-based approaches. For deterministic or worst-
case systems that possess small and bounded noise, bar-
rier function-based approaches can provide provable safety
with low computational cost [1], [2], [3]. Its computation
efficiency mainly arises from two features: computation
efficiency arising from a myopic controller (feature 1) and
from the use of analytical/affine safety conditions (feature 2).
However, these two features did not necessarily translate to
stochastic systems whose uncertainty is captured by random
variables with unbounded support, as we will discuss below.
This paper overcomes this difficulty by characterizing a
sufficient condition for ‘invariance’ in the probability space.
This condition guarantees that the unsafe probability stays
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below a tolerable level while preserving the above two
features, as detailed below.

Feature 1: Computation efficiency arising from a myopic
controller. In a deterministic system, safety can be guaranteed
if the state never moves outside the safe set within an
infinitesimal outlook time interval. This property allows a
myopic controller, which only evaluates the infinitesimal
outlook time interval (immediate future time), to keep the
system safe at all times. A myopic evaluation requires much
less computation than methods that evaluate a long time
horizon because the computational load to evaluate possible
future trajectories significantly increases with the outlook
time horizon.

In a stochastic system whose uncertainty has unbounded
support, however, the probability of staying within the safe
set in the infinitesimal outlook time interval is strictly less
than one. In other words, there will always be a non-zero
tail probability to move outside of the safe set. This tail
probability can accumulate over time and result in a small
long-term safe probability. This problem persists even when
stochastic systems are modeled in a worst-case framework,
and the tail probability beyond the assumed size of uncer-
tainties is sufficiently small. The lack of long-term safety
guarantees suggests the need for a more refined temporal
characterization of long-term safe/unsafe probabilities.

Feature 2: Computation efficiency arising from the use of
analytical/affine safety conditions. In a deterministic system,
the condition for the state to stay within the safe set in an
infinitesimal time can be translated as requiring the vector
field of the state to stay within the tangent cone of the safe
set [4]. A sufficient condition of this requirement for affine
control systems can be expressed using analytic inequalities
that are affine in the control action and thereby can be
integrated into quadratic programs (see [5] and references
therein).

In a stochastic system, however, constraining the mean
trajectory to satisfy this condition without bounding the
higher moments has no control over the tail probability of
the state moving outside of the safe region. This suggests
the need for a more refined spatial characterization of unsafe
behaviors and state distribution.

Therefore, ensuring safety in a stochastic system needs
more refined temporal and spatial characterization of
safe/unsafe behaviors during a long outlook time interval.
However, refined temporal characterization requires tracing
the long-term evolution of complex dynamics, environmental
changes, control actions, as well as their couplings, and
refined spatial characterization requires characterization of
the state distribution, tails, and conditional value at risk.
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Both compromise the above two features and can impose
a significant computational burden. Such heavy computation
can even compromise safety due to slower response, despite
the use of more optimized actions.

A. Related Work

Prior work has yielded diverse approaches for finer
time/space characterization in stochastic systems. These ap-
proaches can be approximately classified into three main
types based on their choice of tradeoffs: long-term safety
with heavy computation (approach A), myopic safety with
low computation (approach B), and long-term conservative
safety with low computation (approach C). It shall be noted
that all wrestle with the above-mentioned tradeoffs between
longer-term safety vs. faster response (computational bur-
den).

Approach A: long-term safety with heavy computation.
There exists extensive literature that considers a long time
horizon and/or the state distribution (or higher moments
of the state distribution) at the expense of high computa-
tion costs. For example, various model predictive control
(MPC) and chance-constrained optimization include safety
constraints in a long time horizon (see [6], [7] and references
therein). Reachability-based techniques use the characteriza-
tion of reachable states over a finite/infinite time horizon to
constrain the control action so that the state reaches or avoids
certain regions [8]. Within barrier function-based approaches,
the safety condition can be formulated as constraints on
the control action that involve the conditional value-at-
risk (CVaR) of the barrier function values [9]. While these
techniques can find more optimal control actions that are
safe in the long term, they often come with significant
computation costs. The cause is twofold: first, possible
trajectories often scale exponentially with the length of the
outlook time horizon; and second, tails or CVaR involve
the probability and mean of rare events, which are more
challenging to estimate than nominal events. Such stringent
tradeoffs between estimating longer-term safe probability vs.
computation burden limit the utility of these techniques in
delay-critical systems for more expansive (longer time scale
or precise characterization of the state distribution) control
action evaluation.

Approach B: myopic safety with low computation.:
Motivated by the latency requirement in real-time safety-
critical control, a few approaches use myopic controllers that
constrain the probability of unsafe events in an infinitesimal
time interval. For example, the stochastic control barrier
function use a sufficient condition for ensuring that the
state, on average, moves within the tangent cone of the safe
set [10]. The probabilistic barrier certificate ensures certain
conditions of the barrier functions to be satisfied with high
probability [11], [12]. The myopic nature of these methods
achieves a significant reduction in computational cost but can
result in unsafe behaviors in a longer time horizon due to the
accumulation of tail probabilities of unsafe events.

Approach C: long-term conservative safety with low com-
putation.: To have a faster response but still achieve longer-

term safety, other approaches use probability and/or martin-
gale inequalities to derive sufficient conditions for constrain-
ing the evolution of barrier function values in a given time
interval [3], [13], [14]. These sufficient conditions are given
analytically and are elegantly integrated into the convex
optimization problems to synthesize controllers offline or
verify control actions online. The controllers based on these
techniques often require less online computation to find
the action that guarantees longer-term safety. However, due
to the approximate nature of the probabilistic inequalities,
the control actions can be conservative and unnecessarily
compromise nominal performance.

Contribution of this paper
This paper proposes an efficient algorithm that ensures

safety during a fixed or receding time horizon. The algorithm
is based on a new safety condition that is sufficient to
control the unsafe probability in a given time interval to
stay above the tolerable risk levels.1 This safety condition is
constructed by translating probabilistic safety specifications
into a forward invariance condition on the level sets of the
safe probability. The use of forward invariance allows safety
at all time points to be guaranteed by a myopic controller
that only evaluates the state evolution in an infinitesimal
future time interval. For affine control systems, the condition
is affine to the control action and thus can be evaluated
using convex/quadratic programs. Our framework may be
useful in characterizing the speed and probability of forward
convergence in finite-time Lyapunov analysis of stochastic
systems.

Below, we summarize the advantages of the proposed
algorithms.

Advantage 1: Computation efficiency. The proposed
method only myopically evaluates the immediate future using
closed-form safety constraints. Thus, it can have reduced
computational burdens than approach A.

Advantage 2: Provable guarantee in long-term safe prob-
ability. The closed-form safety constraints are derived from
the safe probability during a receding or fixed time horizon.
Thus, the proposed method can have more direct control over
the probability of accumulating tail events than approach B.

Advantage 3: Intuitive parameter tuning using exact safety
vs. performance tradeoffs. The proposed method uses exact
characterizations of safe probability. Thus, it allows the
aggressiveness towards safety to be directly tuned based on
the exact probability, as opposed to probabilistic bounds or
martingale approximations used in approach C. Moreover,
when the condition becomes infeasible, one can deduce
the exposed risk levels (unsafe probability). This property
contrasts with the cases in a deterministic framework in that
risk levels after a violation of the safety condition may be
unknown and can largely depend on the choice of barrier
functions.2

1Here, we consider two types of unsafe probability: the probability
of exiting the safe set in a time interval when originated inside and the
probability of recovering to the safe set when originated outside.

2This is because the barrier functions may not necessarily have physical
or operational meanings.
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II. PRELIMINARY

Let R, R+, Rn, and Rm×n be the set of real numbers, the
set of non-negative real numbers, the set of n-dimensional
real vectors, and the set of m×n real matrices, respectively.
Let x[k] be the k-th element of vector x. Let f : X → Y
represent that f is a mapping from space X to space Y . Let
1{E} be an indicator function, which takes 1 when condition
E holds and 0 otherwise. Let 0m×n be an m × n matrix
with all entries 0. Given events E and Ec, let P(E) be the
probability of E and P(E|Ec) be the conditional probability
of E given the occurrence of Ec. Given random variables X
and Y , let E[X] be the expectation of X and E[X|Y = y] be
the conditional expectation of X given Y = y. We use upper-
case letters (e.g., Y ) to denote random variables and lower-
case letters (e.g., y) to denote their specific realizations.
The Hessian of a scalar valued function ϕ(x) is denoted as
Hessϕ(x).

Definition 1 (Infinitesimal Generator). The infinitesimal
generator A of a stochastic process {Yt ∈ Rn}t∈R+

is

AF (y) = lim
h→0

E[F (Yh)|Y0 = y]− F (y)

h
(1)

whose domain is the set of all functions F : Rn → R such
that the limit of (1) exists for all y ∈ Rn.

III. PROBLEM STATEMENT

Here, we introduce the control system in subsection III-A,
characterize two types of safety in subsection III-B, state the
controller design goals in subsection III-C, and outline the
control policy in subsection III-D.

A. Control System Description

We consider the following time-invariant stochastic affine
control system:

dXt = (f(Xt) + g(Xt)Ut) dt+ σ(Xt)dWt, (2)

where Xt ∈ Rn is the system state, Ut ∈ Rm is the control
input, and Wt ∈ Rω captures the system uncertainties. Here,
Xt can include both the controllable states of the system and
the uncontrollable environmental variables such as moving
obstacles. We assume that Wt is the standard Wiener process
with 0 initial value, i.e., W0 = 0,Wt ∼ N (0, t). The value
of σ(Xt) is determined based on the size of uncertainty in
the state, unmodeled dynamics, and environmental variables.
The control action Ut is determined at each time by the
control policy introduced in subsection III-D. We assume
that accurate information of the system state can be used for
control.

The safe region of the state is specified by the zero super
level set of a continuous barrier function ϕ(x) : Rn → R,
i.e.,

C(0) = {x ∈ Rn : ϕ(x) ≥ 0} . (3)

We use

C(L) := {x ∈ Rn : ϕ(x) ≥ L} (4)

to denote the set with safety margin L. Accordingly, we use
int C(0) = {x ∈ Rn : ϕ(x) > 0} to denote the interior of the
safe set, C(0)c = {x ∈ Rn : ϕ(x) < 0} to denote the unsafe
set, ∂C(L) = {x ∈ Rn : ϕ(x) = L} to denote the boundary
of the L super level set.

B. Probabilistic Characterization of Safe Behaviours

The system must satisfy two types of probabilistic safety
specifications: forward invariance (type I) and forward con-
vergence (type II).

1) Forward Invariance (type I): The forward invariance
property refers to the system’s ability to keep its state within
a set when the state originated from the set. The probabilistic
forward invariance to a set C(L) can be quantified using

P (Xτ ∈ C(L),∀τ ∈ [t, t+ T ] | Xt = x ) (5)

for some time interval [t, t + T ] conditioned on an initial
condition Xt = x ∈ C(L). Probability (5) can be computed
from the distribution of the following two random variables:3

Φx(T ) := inf{ϕ(Xt) ∈ R : t ∈ [0, T ], X0 = x}, (6)
Γx(L) := inf{t ∈ R+ : ϕ(Xt) < L,X0 = x}. (7)

Here, Φx(T ) is the worst-case safety margin from the bound-
ary of the safe set ∂C(0) during [0, T ], and Γx(L) is the time
when the system exits from C(L) for the first time. We can
rewrite (5) using the two random variables (6) and (7) as

P (Xτ ∈ C(L),∀τ ∈ [t, t+ T ] | Xt = x ) (8)
= P (Xτ ∈ C(L),∀τ ∈ [0, T ] | X0 = x) (9)
= P(Φx(T ) ≥ L) (10)
= P(Γx(L) > T ) = 1− P(Γx(L) ≤ T ). (11)

Here, equality (9) holds due to the time-invariant nature of
the system and control policies.

2) Forward Convergence (type II): The forward conver-
gence property indicates the system’s capability for its state
to enter a set when the state originated from outside the
set. This probabilistic forward convergence can be quantified
using

P (∃τ ∈ [t, t+ T ] s.t. Xτ ∈ C(L) | Xt = x ) (12)

for some time interval [t, t + T ] conditioned on an initial
condition Xt = x ∈ C(L)c. Similar to the case of forward
invariance, probability (12) can also be computed from the
distribution of the following two random variables:3

Θx(T ) := sup{ϕ(Xt) ∈ R : t ∈ [0, T ], X0 = x}, (13)
Ψx(L) := inf{t ∈ R+ : ϕ(Xt) ≥ L,X0 = x}. (14)

Here, Θx(T ) indicates the distance to the boundary of the
safe set ∂C(0), and Ψx(L) is the duration for the state to

3 These random variables are previously introduced and analyzed
in [15].
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enter the set C(L) for the first time. We can also rewrite
(12) using the two random variables (13) and (14) as

P (∃τ ∈ [t, t+ T ] s.t. Xτ ∈ C(L) | Xt = x ) (15)
= P (∃τ ∈ [0, T ] s.t. Xτ ∈ C(L) | X0 = x ) (16)
= P(Θx(T ) ≥ L) (17)
= P(Ψx(L) ≤ T ). (18)

C. Design goals

The design goal is to ensure long-term safety guarantees
given as probabilistic forward invariance or convergence con-
ditions. When the goal is to guarantee probabilistic forward
invariance (type I), we aim to ensure the following condition:
for each time t ∈ R+,

P
(
Xτ ∈ C(Lt),∀τ ∈ [t, t+ Tt]

)
≥ 1− ϵ, (19)

for some ϵ ∈ (0, 1). From now on, all probabilities are
conditioned on the initial condition X0 = x unless otherwise
noted. Here, Lt is the desired safety margin, and Tt is
the outlook time horizon. For each time t, condition (19)
constrains the probability of staying within the safe set with
margin Lt during the time interval [t, t + Tt] to be above
1− ϵ.

When the goal is to guarantee probabilistic forward con-
vergence (type II), we aim to ensure the following condition:
for each time t ∈ R+,

P
(
∃τ ∈ [t, t+ Tt] s.t. Xτ ∈ C(Lt)

)
≥ 1− ϵ, (20)

for some ϵ ∈ (0, 1). Here, Tt is the convergence time and
Lt is the convergence accuracy.

In both cases, the value of ϵ ∈ (0, 1) is chosen based
on risk tolerance. In (19) and (20), the probabilities are
taken over the distribution of Xt and its future trajectories
{Xτ}τ∈(t,t+Tt] conditioned on X0 = x. The distribution
of Xt is generated based on the closed-loop system of
(2) and (24), which are defined in subsection III-D. The
distribution of {Xt}t∈(t,t+Tt] are allowed to be defined by a
probability measure generated by other closed (or open) loop
systems. For example, one can use the measure defined by
the closed-loop system involving (2) and (23), the measure
defined by optimal control actions with respect to some
objective functions, or the measure defined by reachability
methods [16], [17]. The scope of this paper is to present a
general framework. We leave the computational techniques
of any specific choices of measures as future work.

We consider either fixed time horizon or receding time
horizon. In the fixed time horizon, safety is evaluated at each
time t for a time interval [t, t+H] of fixed length H . In the
receding time horizon, we evaluate, at each time t, safety
only for the remaining time [t,H]. The outlook time horizon
for each case is given by

Tt =

{
H, for fixed time horizon,
H − t, for receding time horizon.

(21)

The safety margin is assumed to be either fixed or time
varying. Fixed margin refers to when the margin remains

constant at all time, i.e., Lt = ℓ. For time-varying margin,
we consider the margin Lt that evolves according to

dLt = fℓ(Lt), L0 = ℓ, (22)

for some continuously differentiable function fℓ.4 The values
of Tt and {Lt}t∈[0,∞) are determined based on the design
choice.

D. Control Policy

The control policy is composed of a nominal controller
and additional modification scheme to ensure the safety
specifications illustrated in subsections III-B and III-C. The
nominal controller is represented by

Ut = N(Xt), (23)

which can be arbitrary depending on the original control task
and does not necessarily account for the safety specifications
defined below. To adhere to the safety specifications, the
output of the nominal controller is then modified by another
scheme. The overall control policy involving the nominal
controller and the modification scheme is represented by

Ut = KN (Xt, Lt, Tt), (24)

where KN : Rn × R × R → Rm is a deterministic function
of the current state Xt, safety margin Lt, and time horizon
Tt to the current control action Ut. In KN , the subscript
N represents its dependence on the nominal controller N .
The policy of the form (24) assumes that the decision rule is
time-invariant,5 and that the control action can be uniquely
determined for each (Xt, Lt, Tt). This policy is also assumed
to be memory-less in the sense that it does not use the
past history of the state {Xτ}τ<t to produce the control
action Ut. The assumption for memory-less controller is
reasonable because the state evolution dXt of system (2)
only depends on the current system state Xt.6 We restrict
ourselves to the settings when f , g, σ, N , and KN have
sufficient regularity conditions such that both the closed loop
system involving (2) and (23) and the system involving (2)
and (24) have unique strong solutions.7

IV. PROPOSED METHOD

Here, we present a sufficient condition to achieve the
safety requirements in subsection IV-A. Based on this con-
dition, we propose a safe controller in subsection IV-B.

Before presenting these results, we first define a few
notations. To capture the time-varying nature of Tt and Lt,
we augment the state space as

Zt := [Tt, Lt, X
⊺
t ]

⊺ ∈ Rn+2. (25)

The dynamics of Zt satisfies the following SDE:

dZt = (f̃(Zt) + g̃(Zt)Ut)dt+ σ̃(Zt)dWt. (26)

4This representation also captures fixed margin by setting fℓ(Lt) ≡ 0.
5 The mappings N , KN do not change over time.
6 Note that f(Xt), g(Xt), and σ(Xt) are time-invariant functions of

the system state.
7Conditions required to have a unique strong solution can be found

in [18, Chapter 5], [19, Chapter 1], [20, Chapter II.7] and references therein.
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Here, f̃ , g̃, and σ̃ are defined to be

f̃(Zt) :=

 fT
fℓ(Lt)
f(Xt)

 ∈ R(n+2), (27)

g̃(Zt) :=

[
02×n

g(Xt)

]
∈ R(n+2)×m, (28)

σ̃(Zt) :=

[
02×n

σ(Xt)

]
∈ R(n+2)×ω. (29)

In (27), the scalar fT is given by

fT :=

{
0, in fixed time horizon,
−1, in receding time horizon,

(30)

and the function fℓ is given by (22).

Remark 1. The Lie derivative of a function ϕ(x) along the
vector field f(x) is denoted as Lfϕ(x) = f(x) · ∇ϕ(x).
The Lie derivative (Lgϕ(x)) along a matrix field g(x) is
interpreted as a row vector such that (Lgϕ(x))u = (g(x)u) ·
∇ϕ(x).

A. Conditions to Assure Safety

When safety is specified using forward invariance condi-
tion (type I) and is given in (19), we define

F(Zt) := P (ΦXt
(Tt) ≥ Lt) = P (ΓXt

(Lt) > Tt) . (31)

Otherwise, when safety is specified using forward conver-
gence condition (type II) and is given in (20), we define

F(Zt) := P (ΘXt
(Tt) ≥ Lt) = P (ΨXt

(Lt) ≤ Tt) . (32)

The probability is taken over the same distributions of
{Xτ}τ∈[t,Tt] that are used in the safety requirement (19)
and (20). The values of Tt and Lt (known and deterministic)
are defined in (21) and (22) depending on the design choice
of receding/fixed time-horizon and fixed/varying margin.

Additionally, we assume that f , g, σ, and ϕ are chosen
such that AF(Zt) exists for all Z ∈ Rn+2 and U ∈ Rm.
When the control action Ut is given by the Ut = u, from
Itô’s Lemma,8 its value can be computed as

AF(Zt) := Lf̃F(Zt) + (Lg̃F(Zt))u

+
1

2
tr ([σ̃(Zt)]

⊺
HessF(Zt) [σ̃(Zt)]) .

(33)

We propose to constrain the control action Ut to satisfy the
following condition at each time t:

AF(Zt) ≥ −α (F(Zt)− (1− ϵ)) . (34)

Here, α : R → R is assumed to be a monotonically-
increasing, strictly concave or linear function that satisfies
α(0) ≤ 0. From (33), condition (34) is affine in Ut.
This property allows us to integrate condition (34) into a
convex/quadratic program.

8Itô’s Lemma is stated as below: Given a n-dimensional real valued
diffusion process dX = µdt + σdW and any twice differentiable scalar
function f : Rn → R, one has df =

(
Lµf + 1

2
tr (σσ⊺ Hess f)

)
dt +

LµσdW.

The existing safety conditions in deterministic systems are
often designed to find control actions so that the vector
field of the state does not point outside of the safe set
around its boundary. In other words, the value of the barrier
function will be non-decreasing in the infinitesimal future
outlook time horizon whenever the state is close to the
boundary of the safe set. However, such myopic decision-
making may not account for the fact that different directions
of the tangent cone of the safe set may lead to vastly
different long-term safe probability. In contrast, the proposed
condition (34) nests the long-term safe probability in F, and
are guaranteed to steer the state toward the direction with
non-decreasing long-term safe probability when the tolerable
long-term unsafe probability is about to be violated.

Assumption 1. The mappings f , g, σ, N , and KN have
sufficient regularity conditions, such that F(z) in (31) or (32)
is a continuously differentiable function of z ∈ Rn+2 and
E[F(Zt)] is differentiable in t.

Lemma 1. Consider the closed-loop system of (2) and (24).
Assume that Assumption 1 holds. If system (2) originates at
X0 = x with F(z) > 1 − ϵ, and the control action satisfies
(34) at all time, then the following condition holds:9

E [F(Zt)] ≥ 1− ϵ (35)

for all time t ∈ R+.

Theorem 1. Consider the closed-loop system of (2) and (24).
Assume that Assumption 1 holds. Let F be defined as type
I in (31). If the system state originates at X0 = x with
F(z) > 1−ϵ, and the control action satisfies (34) at all time
t ∈ R+, then condition (19) holds.

Theorem 2. Consider the closed-loop system of (2) and (24).
Assume that Assumption 1 holds. Let F be defined as type
II in (32). If the system state originates at X0 = x with
F(z) > 1−ϵ, and the control action satisfies (34) at all time
t ∈ R+, then condition (20) holds.

The proofs of Lemma 1, Theorem 1, and Theorem 2 are
given in the extended version of this paper [21].

B. Safe Controller

Here, we propose a safe controller based on the safety
conditions introduced in subsection IV-A. In this controller,
the value of F is defined as type I in (31) when the safety
specification is given as forward invariance condition, and
as type II in (32) when the safety specification is given as
forward convergence condition.

We frame the safe controller as a constrained optimization
of the form

KN (Xt, Lt, Tt) = argmin
u

J(N(Xt), u)

s.t. (34).
(36)

9Here, the expectation is taken over Xt conditioned on X0 = x, and
F in (31) or (32) gives the probability of forward invariance/convergence
of the future trajectories {Xτ}(t,t+Tt] starting at Xt.
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Here, J : Rm × Rm → R is an objective function that
penalizes the deviation from the desired performance, the
nominal control action, and/or the costs. It is also designed to
satisfy the assumptions of lemma 1 to comply with the safety
specification (19) or (20). The constraint of (36) imposes that
(34) holds at all time t, and can additionally capture other
design restrictions in its objective function and constraints.10

When (Lg̃F(z)) ̸= 0 for any z, there always exists u that
satisfy the constraint (34).

When F is defined based on the closed-loop system
involving (2) and (23), its value can be computed offline.
Given the offline evaluation, the controller only needs to
myopically evaluate the closed-form inequality conditions
(36) in real time execution. In such cases, its computation
load is comparable to common myopic barrier function-based
methods in a deterministic system.

V. EXAMPLE USE CASE

In this section, we show the efficacy of our proposed
method in an example use case. The source code for simu-
lation is available upon request.

A. Setting

We consider the control affine system (2) with f(Xt) ≡
AXt = 2Xt, g(Xt) ≡ 1, σ(Xt) ≡ 2. The safe set is defined
in (3) and the barrier function is chosen to be ϕ(x) := x−1.
The safety specification is given as the forward invariance
condition. The nominal controller is a proportional controller
N(Xt) = −KXt with K = 2.5. The closed-loop system
with this controller has an equilibrium at x = 0 and tends
to move into the unsafe set in the state space. We run
simulations with dt = 0.1 for all controllers. The initial state
is set to be x0 = 3.

We compare our proposed controller with three existing
safe controllers designed for stochastic systems. Below, we
present their simplified versions.
• Proposed controller: The safety condition is given by (34).

We choose type I in (31) with fixed time horizon and time-
invariant zero margin, i.e., P (ΦXt(H) ≥ 0), with H = 10.
The value of AF from (33) is acquired by sampling 10000
trajectories and applying the finite difference method.

• Stochastic control barrier functions (StoCBF) [10]: The
safety condition is given by

Aϕ(Xt) ≥ −αϕ(Xt), (37)

where α > 0 is a constant. This condition constrains the
average system state to move within the tangent cone of
the safe set.

• Probabilistic safety barrier certificates (PrSBC) [11]: The
safety condition is given by

P (dϕ(Xt, Ut) + αϕ(Xt) ≥ 0) ≥ 1− ϵ, (38)

where α > 0 is a constant. This condition constrains the
state to stay within the safe set in the infinitesimal future
interval with high probability.

10For example, KN is Lipschitz continuous when J(N(x), u) =
u⊺H(x)u with H(x) being a positive definite matrix (pointwise in x).

• Conditional-value-at-risk barrier functions (CVaR) [9]:
The safety condition is given by

CVaRβ

(
ϕ(Xtk+1

)
)
≥ γϕ(Xtk) (39)

where γ ∈ (0, 1) is a constant, {t0 = 0, t1, t2, · · · } is a
discrete sampled time of equal sampling intervals. This is a
sufficient condition to ensure the value of CVaRk

β(ϕ(Xtk))
conditioned on X0 = x to be non-negative at all sampled
time tk∈Z+

. The value of CVaRk
β(ϕ(Xtk)) quantifies the

evaluation made at time t0 = 0 about safety at time tk.
The parameter α in the proposed controller, StoCBF and

PrSBC has a similar effect, and the parameter ϵ is the
tolerable probability of unsafe events both in the proposed
controller and PrSBC. Thus, we choosed the same values
of α and ϵ for these algorithms for a fair comparison.
Specifically, we use α = 1 for all controllers except for
CVaR, ϵ = 0.1 for the proposed controller and PrSBC. We
use γ = 0.65 and β = 0.1 for CVaR.

We consider the following two scenarios:
• Worst-case safe control: We use the controller that satis-

fies the safety condition with equality at all time to test the
safety enforcement power of these safety constraint. Such
control actions are the riskiest actions that are allowed
by the safety condition. The use of such control actions
allows us to evaluate the safety conditions separately from
the impact of the nominal controllers.

• Switching control: We impose safe controller only when
the nominal controller does not satisfy the safety con-
straint. We implement this by replacing the constraints
in (36) with safety conditions for different controllers
presented in section V-A.

B. Results

Fig. 1 shows the results in the worst-case setting. The
proposed controller can keep the expected safe probability
E[F(Xt)] close to 0.9 all the time, while others fail to keep
it at a high level. A major cause of such failures is due to
the accumulation of rare event probability. This comparison
shows the advantage of having a provable guarantee for
non-decreasing long-term safe probability. For comparable
parameters, the safety improves from StoCBF to PrSBC to
CVaR. This is also expected as constraining the expectation
has little control of higher moments, and constraining the tail
is not as strong as constraining the tail and the mean values
of the tail.

Fig. 2 shows the results in the switching control setting.
We obtained the empirical safe probability by calculating
the number of safe trajectories over the total trials. In this
setting, the proposed controller can keep the state within
the safe region with the highest probability compared to
other methods, even when there is a nominal control that
acts against safety criteria. This is because the proposed
controller directly manipulates dynamically evolving state
distributions to guarantee non-decreasing safe probability
when the tolerable unsafe probability is about to be violated,
as opposed to when the state is close to an unsafe region.
Our novel use of forward invariance condition on the safe
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Fig. 1: Results in the worst-case setting. Left plot shows the
average system state over 100 trajectories. Right plot shows
the expected safe probability.
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Fig. 2: Results in the switching control setting. Left plot
shows the averaged system state of 100 trajectories with
its standard deviation. Right plot shows the empirical safe
probability.

probability allows a myopic controller to achieve long-term
safe probability, which cannot be guaranteed by any myopic
controller that directly imposes forward invariance on the
safe set.

VI. CONCLUSION

In this paper, we considered the problem of ensuring long-
term safety with high probability in stochastic systems. We
proposed a sufficient condition to control the long-term safe
probability of forward invariance (staying within the safe
region) and forward convergence (recovering to the safe
region). We then integrated the proposed sufficient condition
into a computationally efficient myopic controller. Finally,
we evaluated the performance of our proposed controller in a
numerical example. Although beyond the scope of this paper,
the proposed framework can also be used to characterize the
speed and probability of system convergence and may be
useful in finite-time Lyapunov analysis in stochastic systems.
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