
Control of Automated Vehicles in
Vehicle-Pedestrian Environment

DISCLAIMER 

The contents of this report reflect the views of the authors, who are responsible for 
the facts and the accuracy of the information presented herein. This document is 
disseminated in the interest of information exchange. The report is funded, partially 
or entirely, under [grant number 69A3552344811] from the U.S. Department of 
Transportation’s University Transportation Centers Program. The U.S. Government 
assumes no liability for the contents or use thereof. 

FINAL REPORT

September 30, 2024 

Muhammad Saim (https:/ / orcid.org/0009-0004-7228-285X)
Sarah Al-Shareeda; (https://orcid.org/ 0000-0001-6337-0453)

Keith Redmill (https://orcid.org/0000-0003-1332-1332)
Umit Ozgiiner, PI (https://orcid.org/0000-0003-2241-7547)



1. Report No.

.

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

Safety in Connected Automated Vehicles in the 

presence of Vulnerable Road Users 
 

5. Report Date

July 1, 2023 – June 30, 2024

6. Performing Organization Code

.

7. Author(s)

E Muhammad Saim (https:/ / orcid.org/0009-0004-7228-285X)

Sarah Al-Shareeda; (https://orcid.org/ 0000-0001-6337-0453)

Keith Redmill (https://orcid.org/0000-0003-1332-1332)

Umit Ozgiiner, PI (https://orcid.org/0000-0003-2241-7547)

8. Performing Organization Report

No.

.

9. Performing Organization Name and Address

The Ohio State University

Center for Automotive Research

930 Kinnear Road

Columbus, OH 43212

10. Work Unit No.

11. Contract or Grant No.

Federal Grant No. 69A3552344811

12. Sponsoring Agency Name and Address

Safety21 University Transportation Center

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

13. Type of Report and Period

Covered

Final Report (July 1, 2023-June 30,

2024)

14. Sponsoring Agency Code

USDOT

15. Supplementary Notes

Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

Enter information not included elsewhere, such as translation of (or by), report supersedes, old edition

number, alternate title (e.g. project name), hypertext links to documents or related information in the form of

URLs, PURLs (preferred over URLs - https://purl.org/docs/index.html), DOIs (http://www.doi.org),

insertion of QR codes, copyright or disclaimer statements, etc. Edit boilerplate FHWA statement above if

needed. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy

of the information presented herein. This document is disseminated in the interest of information exchange. The report

is funded, partially or entirely, by a grant from the U.S. Department of Transportation’s University Transportation

Centers Program. However, the U.S. Government assumes no liability for the contents or use thereof.

16. Abstract

Automated Vehicles (AV’s) can intermingle with pedestrians and cyclists when they are driving slowly in so-
called “shared spaces”.  In our previous work, we studied AVs' energy consumption and safety when occluded 
pedestrians appear suddenly in front of the AV. We will continue investigating and developing our "value of 
information" based approach to evaluate additional sensors in the infrastructure. One can consider regular 
intersections and focus on specific configurations. 
We have initiated a study on "indecisive pedestrians". These are pedestrians who may stop or turn back while 
crossing the street, depending on their assessment of the approaching vehicle. We  assume that the vehicle will 
also make a decision on stopping, continuing and/or dodging the pedestrian.  

17. Key Words

Automated vehicles, pedestrians, unsignalized intersections,

vulnerable road users, safety.

18. Distribution Statement

No restrictions.

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this

page)

Unclassified

21. No. of

Pages

33

22. Price

.

https://orcid.org/0000-0003-1332-1332
https://orcid.org/0000-0003-2241-7547


Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

 



1  

 

Contents 

1 Introduction 3 

 

2  FSM-based Control of Automated Vehicles using 

Sufficient Conditions and Decision Matrices 

2.1 Introduction  

2.1.1 Simulation Case Study . 

2.2 Background  

2.3 Methodology  

2.3.1 System Process 

2.3.2 Vehicle Model . 

2.3.3 Pedestrian Model . 

2.3.4 Distance and Time Estimation 

2.3.5 Pedestrian Region Evaluation . 

2.3.6 Sufficient Conditions (SCs) .. 

2.3.7 Decision Matrix and Analysis for Vehicle Control System 

2.3.8 Hierarchical Controller for Vehicle 

2.4 Simulation Setup, Results, and Discussion 

2.5 Conclusion 

 

5 

5 

5 

6 

8 

8 

9 

9 

9 

11 

12 

13 

14 

16 

17 



2 

Effect of Pedestrians and Crowds on Vehicle Motion and Traffic Flow 
 

 

3 FSM-based Control of Automated Vehicles in presence of 

Indecisive Pedestrian 19 

3.1 Introduction. 19 

3.1.1 Simulation Case Study 19 

3.2 Summary of Methodology 20 

3.2.1 Outcomes. 21 

Bibliography 23 

 

 

APPENDIX Autonomous Vehicle and Pedestrian Collison Avoidance 

From a Deep Reinforcement Learning Viewpoint    25 

 

 



Chapter 1 

3 

 

 

Introduction 

 
Vehicle-pedestrian interactions pose a complex safety issue. Ideally, vehicles should react 

safely to any pedestrian behavior, but pedestrian movement itself can be unpredictable 

and difficult to model. This challenge is underscored by a 2019 National Highway Traffic 

Safety Administration (NHTSA) report [1] which highlights an increase in pedestrian 

fatalities from 2008 to 2017, even amidst the development and deployment of advanced 

driver-assistance systems (ADAS). As autonomous driving systems progress, pedestrian 

safety becomes an even more critical concern. 

These systems must be adept at handling both common situations, like pedestrians 

crossing at crosswalks, and less frequent, riskier scenarios, such as a pedestrian emerg­ 

ing unexpectedly from between parked cars. To navigate these interactions effectively, 

accurate models of pedestrian behavior are crucial. 

One prevalent approach within research is the Social Force Model, which helps predict 

pedestrian movement. This model is particularly valuable because data-driven methods often 

struggle with rare or risky behaviors due to a lack of training data on such edge cases. 

Beyond solely modeling behavior, the vehicle also needs to predict pedestrian inten­ 

tions. Key questions include: Does the pedestrian intend to cross the road? If so, in which 

direction? Similar to the adoption of model-predictive control for non-linear control tasks, 

predicting pedestrian intention can significantly enhance the safety of vehicle-pedestrian 

interactions. This allows the vehicle to react proactively to pedestrian movements, leading 

to safer outcomes. 

Pedestrians crossing unsignalized intersections, mid-road sections, or jaywalking rely on 

perceived gaps in traffic, called "time gaps." This refers to the estimated time it takes a 

vehicle to reach the pedestrian's intended crossing point. Current research prioritizes 

collecting data on pedestrian behavior in various crossing scenarios. This data is then 

used to analyze two key aspects: 

Time Gap Assessment: How pedestrians judge the available time gap. 

Gap Acceptance: Whether pedestrians are willing to cross within that gap. 

These analyses are conducted by fitting the data to statistical models, either traditional or 

machine learning-based. The model's performance in predicting pedestrian behavior is 

then evaluated. Real-world testing of these scenarios can be dangerous. Therefore, 

researchers leverage simulation environments to create controlled scenarios for rigorous 

testing. This approach has evolved from generic simulations to more targeted scenarios that 

pinpoint the limitations of control systems designed to enhance pedestrian safety. Our 

research has also utilized scenario generation methods to thoroughly evaluate our 
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own control system design. 

This Report describes how to design Control of Automated Vehicles to minimize pedes­ 

trian casualties and accidents. Rest of the report is organized as follows. Chapter two presents 

a research problem that describes how to assess risk while ego vehicle is making control 

action to avoid collisions with pedestrians. chapter three explains if encountering indecisive 

pedestrian how control of ego vehicle can be designed to avoid collision. 
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FSM-based Control of Automated 

Vehicles using Sufficient 

Conditions and Decision Matrices 

 
This chapter is derived from the work yet to be published. 

 

2.1 Introduction 

2.1.1 Simulation Case Study 

The case study that is considered to show the general nature and effectiveness of the vehicle 

and pedestrian guidance system is shown in Fig. 2.1. p and v are pedestrian and vehicle 

respectively. dgap is the distance between vehicle and pedestrian, dcross is the distance between 

the pedestrian starting and ending point, dback is the distance between pedestrian and starting 

point s and dremain is the distance between pedestrian and ending point e. The problem 

mentioned in the Fig. 2.1, pedestrians can display a range of behaviors such as surprise stop, 

moving back, and moving forward. The vehicle in Fig. 2.1 can also accelerate, decelerate, 

dodge and move with constant speed. The main challenge in the problem scenario is to 

estimate the accurate time taken by a vehicle and a pedestrian to travel a certain distance 

(dcross and dgap) while their speeds can be variable. The goal is to devise pedestrian and 

vehicle guidance systems that can assess the possibility of collision and guide pedestrian and 

vehicle appropriately to avoid a collision. Furthermore, the guidance system can also 

identify situations when collision avoidance is impossible and will make decisions to not 

enter in those situations. The simplest case is considered where a pedestrian is moving in the 

lateral direction and the vehicle is moving in the longitudinal direction. This is a decentralized 

control problem and vehicles and pedestrians are autonomous entities and can make decisions 

independently. This case is used to show that a general solution can be used to assess the time 

gap between pedestrians and vehicles. This time gap can then used in pedestrian and vehicle 

guidance systems to avoid collisions. Decision Matrices (DMs) are presented to assess 

appropriate decision-making and when systems would be unable to avoid a collision. These 

DMs are then used in designing hierarchical controller. 

Some assumptions have been considered. when a Vehicle Control System (VCS) is 

designed it is assumed that pedestrian behavior (forward.  backward.  wait, speed up) 
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Figure 2.1: Problem Scenario. 

 

is known. The position and speed of vehicles and pedestrians are known and contain a limited 

amount of error. Speed and position information assumptions are realistic as the latest 

communication systems such as 4G/5G networks make low-speed communication effective 

and reliable. Furthermore, it is assumed that vehicle capability (constant speed, brake, hard 

brake, dodge left, and dodge right) is also known. A qualitative analysis of the risk 

involved while pedestrian and vehicle are in shared space are shown in Tab. 2.1. A high-

risk situation means that this is a high risk of collision and low risk defines safe maneuver 

from the perspective of both vehicle and pedestrian. For example, take the situation when 

the pedestrian is turning back and the vehicle is dodging right to avoid the collision. 

Assume the pedestrian is closer to the finish point and decides to turn back suddenly. In such 

a scenario, there is a possibility of collision because the pedestrian and the vehicle can collide 

in the left half portion of the lane. The Problem Scenario is created to address several 

problems. Collision avoidance in case pedestrians and vehicles show 

sudden erratic behavior, last instant when collision can be avoided, and predicting the 

accurate position of pedestrian and vehicle at time t at a location where pedestrian and vehicle 

have a chance of collision. For example, consider a case when a pedestrian decides to 

suddenly go back and vehicle will have to take collision avoidance measures and also to 

assess when collision is not avoidable. This analysis will help determine taking safe decisions 

and low-risk actions to avoid vehicle-pedestrian collisions. 

The following novel contributions have been reported in this chapter 

• Case Study to avoid vehicle-pedestrian collision 

• Accurate prediction of pedestrian and vehicle future position when they have variable 

velocity 

•  Decision Matrix for vehicle and pedestrian guidance system for collision avoidance 

and risk analysis 

• General sufficient conditions for vehicle-pedestrian scenarios 

• Proof of derived sufficient conditions 

 

 

2.2 Background 

In this section, studies conducted to assess the time gap by pedestrians, contesting shared 

spaces with pedestrians, and the limitations of studies are discussed. 

Authors in [2] defined pedestrian critical gap to be (2.1) where distpcross is the length 

of crosswalk or road width. Vp is the speed of the pedestrian and ms is the safety margin. 
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Table 2.1: Qualitative Analysis of Risk from Vehicle and Pedestrian Viewpoint 

 
Vehicle Action Pedestrian Action 

 Continue Stop Speed up Turn Back 

Slow & Stop Low Risk High Risk Low Risk Low Risk 

Dodge Left Low Risk High Risk High Risk Low Risk 

Dodge Right Low Risk High Risk Low Risk High Risk 

Constant Low Risk High Risk High Risk High Risk 

 

Any vehicle time gap less than this pedestrian critical gap will result in a collision and correct 

assessment of the vehicle time gap is essential. In another study [3] data was collected using 

a video camera in the city center of Athens. Data collected consists of two categories; 

accepted gap and rejected gap. A logarithmic model was designed to fit the data and finally, 

model performance is presented. Model elasticity was also evaluated and using the results 

following correlations were found. Traffic conditions were found to be the most important 

determinant of pedestrian crossing behavior. A very similar study is also conducted [4]. One 

noteworthy observation is that females accept longer gap times compared to men. Authors 

in [5] also collected data from the mid-section pedestrian crossing and found a minimum 

time gap (3s or 75 ft). 

gap= distpcross/Vp + ms (2.1) 

Another approach [6] collected pedestrian crossing data from a very different region 

(Hyderabad, India) and also generated a logarithmic model to fit the data. Results show 

that the gap is correlated with several factors: pedestrian speed, crossing direction, rolling 

gap, and vehicle speed. In [7], authors used the binary logit technique to model pedestrian 

crossing behavior using data collected. The model shown is linear and surprisingly accurate 

in assessing accepted and rejected gaps for the data collected. 

The research discussed above is on specific scenarios and even then there is no guarantee 

of no collision avoidance as statistical models always have some inaccuracy. Furthermore, 

work done on gap acceptance also points out errors in the gap perception of pedestrians, the 

higher the speed of the vehicle, the pedestrians tend to accept lower gaps which means 

pedestrians focus on the distance factor when considering gap which leads us to the 

conclusion that a guiding system is required to assist pedestrians. 

Other approaches include contesting shared spaces between pedestrians and vehicles. In 

[8] article, authors used a game theoretic approach to decide whether a particular shared space 

will be occupied by a pedestrian or a vehicle. [9] shows a general method to model a range 

of pedestrian behaviors and [10] uses machine learning methods to solve the same problem. 

All approaches mentioned are data dependent and related to contesting shared space during 

vehicle-pedestrian interaction. Authors in [11] have evaluated very similar work that we are 

focusing on. They modified the trajectory of the vehicle by predicting the next pedestrian 

position using the LSTM algorithm. LSTM cannot 100% guarantee correct prediction of 

pedestrian position and might result in collision secondly vehicle has to be at relatively 

same speed as the pedestrian to avoid collision. In our work, we aim to solve the problem 

when vehicle speed is much greater and can assess safe regions and avoid collision. 

Although modeling pedestrian gap acceptance behavior can be useful for the decision­ 

making of automated vehicles it can result in accidents as the results do not provide 
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Figure 2.2: System Process 

 

theoretical guarantees. Furthermore, pedestrians tend to have a flawed understanding of 

the gap when vehicle speed increases. Therefore, this work is focused on providing vehicle 

and pedestrian guidance systems that will provide a safety guarantee under sufficient con­ 

ditions considering worst-case behavior from vehicles. The study takes single pedestrian and 

single vehicle behavior to evaluate critical vehicle and pedestrian time gaps to ensure no 

collision if sufficient conditions are satisfied. These conditions can then be implemented in 

handheld devices, mid-section crossings, and vehicle controllers to guide pedestrians and 

vehicles to cross vehicle-pedestrian shared spaces. 

 

2.3 Methodology 

In this section, the overall system, pedestrian and vehicle modeling, and their control, derived 

sufficient conditions and their proof, and decision matrix for the pedestrian and vehicle 

guidance systems are presented. 

 

2.3.1 System Process 

The system process is shown in Fig. 2.2. The vehicle and pedestrians are controlled through 

Hierarchical-Finite State Machine (H-FSM) based controllers, a similar method is used in 

[12]. Vehicle Control System (VCS) receive vehicle and pedestrian location and vehicle 
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capability and recommend appropriate responses, forward, back, wait, and speed up to 

pedestrians and appropriate responses, constant speed, brake, hard brake, dodge left, and 

dodge right to vehicle to avoid collision. This is a decentralized Control problem with two 

autonomous entities that can make their decisions independently of each other. They make 

their decisions based on their desired speed and collision avoidance. The vehicle guidance 

system receive speed and location information using a communication link. Both vehicles 

and pedestrians have GPS sensors to estimate speed and location. 

 

2.3.2 Vehicle Model 

The vehicle is modeled using kinematic bicycle model as shown in equations (2.2), (2.3), 

(2.4), and (2.34). Xv, Yv, [vvx Vvy] and 0v is the x coordinate, y coordinate, velocity and 

heading of the vehicle respectively. /5 is the steering angle. vv (2.35) is the speed of the vehicle 

and L is the length of the bicycle. and acceleration is given by (2.5). 

(2.2) 

 

 

(2.3) 

 

 

(2.4) 

 

(2.5) 

 

2.3.3 Pedestrian Model 

A pedestrian is modeled as a point mass model as shown in equations (2.6), and (2.7). 

Where Xp,Vpx, and iipx are the position, speed, and acceleration of the pedestrian in the 

x coordinate system. Since pedestrian position i]p in y coordinate system is constant it is 

not required to model. 

(2.6) 

 

(2.7) 

 

2.3.4 Distance and Time Estimation 

Time traveled while the brake is applied to the dynamic object and is approximated as 

a quadratic equation shown in (2.8). Where d(to), v(to), and a(to) are the magnitude of 

position, speed, and acceleration of the object respectively at initial time to. And (2.9) is the 

distance taken by the dynamic object until time t 

 
 

-v(to) + Ԅ v(to)2 
- 4d(to)a(to) 

it= 
2a(to) 

dt = d(to) + (t - to)v(to) + (t -  to)2 a(to) 

 

(2.8) 

 

(2.9) 

The method described above is shown in [13]. To compensate for errors in transmission 

and measurements some terms are introduced.  It is assumed that the variance of the 
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measurement error and transmission error is known. Variance in distance because of 

measurement and transmission error is represented as 6.d (2.10) where 6.dm and 6.dt is 

the variance of error due to measurement and transmission respectively. Similarly, variance 

in speed because of measurement and transmission error is represented as 6.v (2.11) where 

6.vm and 6.vt is the variance of error due to measurement and transmission respectively. 

In Fig. 2.1 we have shown some terms d:ap (2.13), lremain (2.14), lenter (2.15), lcenter 

(2.16), and lback (2.12). Where x8, Xe,Xc, and xd are the x coordinate of the starting 

point, x coordinate of the ending point, lane center, and x coordinate of a point at the 

lane edge respectively. Collision is defined as (2.17). Where 81 is a small constant. 
 

if locally available 

if transmitted 

if locally available 

if transmitted 

 

(2.10) 

 

 

(2.11) 

 

(2.12) 

 

(2.13) 

 

(2.14) 

d-enter = Xs - Xd (2.15) 

d-center = Xs - Xe (2.16) 

 

(2.17) 

 

Distance and Time Estimation for Vehicle 

While vehicle distance and time are calculated it is assumed that pedestrian behavior is known 

and the vehicle adjusts its behavior accordingly to either achieve the goal or to avoid 

collision. The vehicle is assumed to display three fundamental types of behavior (constant, 

decelerate, and dodge). Time taken is shown in (2.18). Distance covered by the vehicle is 

shown in (2.21). For vehicle dodging behavior a fixed change in trajectory length either from 

the left or right. Fixed change in curve length is represented by a constant kdodge as shown 

in (2.19). 
 

ld:apvl /(vv - 6.v) constant 

t9apv = tt decelerate 

{ 
ld:apvl * /(vv - 6.v) dodge 

d:apvl = d:apv + kdodge 

 
(2.18) 

 

 

(2.19) 

 

 

(2.20) 
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constant 

decelerate 

dodge 

 
(2.21) 

Time Estimation for Pedestrian 

While pedestrian distance and time are calculated it is assumed that vehicle behavior is known 

and pedestrians adjust their behavior accordingly to either achieve the goal or to avoid 

collision. Pedestrian is assumed to exhibit three types of behavior(forward, stop, backward). 

In case the pedestrian is moving forward its time is evaluated in (2.22). Where tx is the time 

taken by the pedestrian from the current speed to the desired speed. This value is measured 

while running experiments. Although, the original work was done to measure the time from 

a certain speed to come to a stop the same equations can be used if we want to estimate 

the time from a stop to a certain speed. 

 

(2.22) 

 

In the case, when pedestrian comes to a stop time evaluated is shown in (2.23). 

 

istop =  it (2.23) 

In the case, when the pedestrian goes backward from the middle of the lane time 

evaluated is shown in (2.24). The time when speed is dynamic is multiplied by a factor of 

2 because first the speed will go to zero from Vpmax and move -Vpmax. 

 

ld ack - d I 

tback = 2tx + lvp@ WJ (2.24) 

In case when pedestrian is at edge of the lane time to enter in a danger zone is evaluated 

as shown in (2.25). Similarly, tcenter (2.26) is also evaluated. 

 

 

tenter= ix+ 

 

 

 

icenter =  ix + 
 

 

2.3.5 Pedestrian Region Evaluation 

*  lenter- d * 

lvv - WJ 

*  icenter- d 

* 
lvv - WJ 

(2.25) 

 

 

(2.26) 

Sufficient conditions are relevant to the Pedestrian Region (PR). A state machine is de­ 

signed as shown in Fig. 2.3. The states define the PR relevant to the lane. Four states 

are defined as Outside Lane (OL), Lane Edge (LE), Left Half Lane (LHL), and Right Half 

Lane(RHL). State transitions are shown in Tab. 2.2. 
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Figure 2.3: State diagram for detecting pedestrian position with respect to road lane 

Table 2.2: State Machine Transition Conditions 

Transition Condition 

91 Xp-Xs<62lxp-Xe<62 

92 a'enter > Xp -  Xs > Old:nter > Xp -  Xe > 0 

93 Xp -  Xs > Xenter & Xp -  Xe < 0 

94 Xp -  Xs > d:nter & Xp -  Xe > 0 

 

2.3.6 Sufficient Conditions (SCs) 

As relevant SCs is based on PR relative to the lane. SCs are presented for three separate cases. 

First case: pedestrian is outside lane. SC required for pedestrian-safe crossing are shown in 

(2.27). Second Case: Sufficient Condition when pedestrian in at Lane Edge is (2.28). Third 

Case: when the pedestrian is inside the lane is shown in (2.27) and (2.29). If (2.27) is true 

pedestrian will simply cross, otherwise if (2.29) holds pedestrian will move back to the 

starting position to avoid collision. There are certain situations where collision avoidance 

will not be possible and its details are mentioned in the section Decision Matrices for Vehicle 

and Pedestrian Guidance Systems. 

 

S1 : tremain < tgapv (2.27) 

 

S2 : tenter > tgapv (2.28) 

 

S3  : tremain > tgapv&tbaek < tgapv (2.29) 
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Table 2.3: Sufficient Conditions for Vehicle Guidance System 

 
Sufficient Conditions 

11 tremain < tgapv 

12 tenter > igapv 

13 tback < igapv 

14 0req :S 0max 

15 db< ld apl 

16 dhb < ld apl 

17 icenter < igapv 

Table 2.4: Combination of Sufficient Conditions for Vehicle Guidance System I 

 

 Sufficient Conditions 

Ml 11! 

M2 Ml & 12! 

M3 M2 & 14! 

M4 M3 & 15! 

M5 M4 & 16! 

M6 13! 

M7 M6 & 14! 

M8 M7 & 15! 

M9 M8 & 16! 

MlO 14! 

Mll MlO & 15! 

M12 Mll & 16! 

 

SCs relevant to vehicle control are shown in Tab. 2.3 and Tab. 2.4. where db and 

dhb are the distances the vehicle moves when smooth and hard deceleration is applied 

respectively. They are calculated using (2.8) and (2.9) when -ak and -amax is applied 

respectively using equation (2.5). 

 

2.3.7 Decision Matrix and Analysis for Vehicle Control System 

The nomenclature for Vehicle Decision Matrix is shown in Tab. 2.6. Decision Matrices for 

VCS are shown in Tab. 2.7, Tab. 2.9, and Tab. 2.8. 

The Decision Matrices highlight that some situations will cause a collision and no 

safety measure can be taken if such a situation is encountered. VCS is also capable of 

making safety avoidance measures before satisfying SCs where collision H is shown in 

Tab. 2.7, Tab. 2.9, and Tab. 2.8 The combination of relevant sufficient conditions utilized 

are shown in Tab. 2.5, Tab. 2.4, and Tab. 2.3 . Therefore, the goal of the VCS is to make 

sure such a scenario is not encountered apart from satisfying sufficient conditions. In Tab. 

2.7, Tab. 2.9, and Tab. 2.8 it can be observed that in N6, Nl1, and N14 vehicle will collide 

with the pedestrians and last safe instant where a collision can be avoided will be the 

sufficient conditions N5, NlO, and N13 while the pedestrian is in forward, back, and wait 

state respectively. 
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Table 2.5: Combination of Sufficient Conditions for Vehicle Guidance System II 

 
 Sufficient Conditions 

Nl Ml & 12 

N2 M2 & 14 & 17 

N3 M2 & 14 & 17! 

N4 M3 & 15 

N5 M4 & 16 

N6 M5 

N7 M6 & 14 & 17 

N8 M6 & 14 & 17! 

N9 M7 & 15 

NlO M8 & 16 

N11 M9 

N12 MlO & 15 

N13 M11 & 16 

N14 M11 & 16! 

Table 2.6: Nomenclature for VCS 

 

Command Symbol 

Constant Speed C 

Brake B 

Hard-Brake HB 

Hit H 

Indecisive I 

Dodge Left DL 

Dodge Right DR 

Table 2.7: Decision Matrix for VCS when Pedestrian is in Forward State I 

 
 Combination of Sufficient Conditions 

 11 Nl N2 N3 N4 N5 N6 

01 C C DL DR B HB H 

LE C C DL DR B HB H 

RHL C I DL DR B HB H 

LHL C I DR DR B HB H 

 

2.3.8 Hierarchical Controller for Vehicle 

The hierarchical Controller for Vehicle (HCV) is shown in Fig. 2.2. Finite State Machine for 

Vehicle (FSMV) for High-Level Controller is shown in Fig. 2.4. FSMV has five states 

Constant, Brake, Hard Brake, Dodge Left, and Dodge Right. State transitions are shown 

in Tab. 2.10. For the low-level controller, Stanley controller is used as shown (2.30), where 

k, ks are constants and esteer (2.31) is the angular error between current heading 0v and the 

required heading angle 0des to follow the trajectory. The vehicle acceleration is controlled 

through a low-level controller based on the Proportional Integral (PI) controller shown in 

(2.32). where Kp and ki are scalars and e = [ex, eyf  is shown in (2.33). where Vdx, and 
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Table 2.8: Decision Matrix for VCS when Pedestrian is in BACK State II 

 
 Combination of Sufficient Conditions 

 L3 N7 N8 N9 NlO N11 

OL C C C C C C 

LE C C C C C C 

RHL C DL DR B HB H 

LHL C DR DR B HB H 

Table 2.9: Decision Matrix for VCS when Pedestrian is in Wait State III 

 

 Combination of Sufficient Conditions 

 L4 & L7 L4 & L7! N12 N13 N14 

OL C C C C C 

LE C C C C C 

RHL DL DL B HB H 

LHL DR DR B HB H 

 

Vdy is the desired velocity taken from a predefined vehicle trajectory. 
 

6 = 0des + -1 kesteer 
I
 (2.30) 

tan K 
s + 1Vv 

 

 

(2.31) 

 

(2.32) 

 

e = [ee:y] = [ d x-  vx] 
Vdy -  Vvy 

 

 

 

Table 2.10: Transition Conditions for FSMV 

(2.33) 

 

(2.34) 

 

(2.35) 

 

Symbol Transition Condition 

tc1 LlllL2IIL3 

tc2 L2!&Ll!&L3!&L4 

tc3 L2!&Ll!&L3!&L4!&L5 

tc4 (Ll!&L2!&L3!&L4!&L5!&L6)&(g3) 

tc5 (Ll!&L2!&L3!&L4!&L5!&L6!)&(g4) 
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Figure 2.4: Finite State Machine for Vehicle High Level Controller 

 

2.4 Simulation Setup, Results, and Discussion 

The simulation Environment used to show the effectiveness of the method is shown in Fig. 

2.5. The red rectangle is the vehicle small the red circle is the pedestrian. The triangles 

are starting and ending locations. Red lines are lane boundaries and the blue dotted line is 

the trajectory. The modeling used for a pedestrian and a vehicle are described in section 2.3.3, 

and 2.3.2 respectively. The Pedestrian and the vehicle have a mass M of 10 and 30 Kg 

respectively. The pedestrian has a maximum speed and maximum acceleration 

of 0.5 m/ s, and 0.1 m/ s2, similarly vehicle has a maximum speed and acceleration of 8 

m/ s, and 3 m/ s2
. given these values db and dhb for the vehicle are evaluated as 4.3 meters 

and 3.3 meters respectively when -1 and -2 deceleration is applied. and for pedestrians. 

The time to reach from Oto 0.5 m/ sis 0.08 seconds and from 0.5 to -0.5 is 0.16 seconds. Similarly, 

the distances covered are 0.03 meters and 0.077 meters respectively. The results for two case 

studies are presented. 

 

Case I 

In this scenario, the environment used shows the effectiveness of the VCS and it is assumed 

that pedestrian behavior is known. The pedestrian is placed again in the middle of the road 

but is in the wait state. The vehicle starts from 30 meters in the y direction and has a 

constant speed of 8 m/ s. Since sufficient condition, L4 Tab. 2.2 satisfies Command 

issued by VCS to the vehicle is Brake with deceleration -1 m / s2 and the vehicle starts 

decelerating to stop the collision. Results are shown in Fig. 2.6. The blue curve is the gap 

maintained by the vehicle and then the vehicle starts decelerating and comes to a halt 
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Figure 2.5: Simulation Setup 
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Figure 2.6: Gap Between Pedestrian and Vehicle Case I 

 

when the gap is approximately 2 meters verifying the methodology. 

 

Case II 

In this scenario, the environment used shows the effectiveness of the VCS dodging the 

pedestrian to avoid a collision.  The pedestrian starts from the starting position with 

a speed of 0.3m/ s and continues moving forward. Transition Condition tc4 in Fig. 2.4, 

Tab. 2.10 and vehicle dodge left to avoid the collision. the vehicle moves with a constant 

speed of 8m/s and the trajectory is modified using a Gaussian function as shown in (2.36). 

The results are shown in Fig. 2.7 and Fig. 2.8. In Fig. 2.7 trajectory generated (blue) and 

the trajectory followed (green) by the vehicle is shown while the yellow line is the trajectory 

of the pedestrian. In Fig. 2.8 gap vs pedestrian region is shown. It can be observed that when 

the pedestrian is in the right half Lane vehicle is crossing since the gap is closer to zero and 

when the pedestrian reaches the left half of the Lane vehicle has already crossed signifying 

a gap of more than 15 meters. 

 

(2.36) 

 

 

2.5 Conclusion 

Pedestrians are prone to accidents and make flawed decisions based on their understanding 

of critical gaps in a vehicle-pedestrian shared space. To solve this problem a conventional 
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Figure 2.7: Trajectory of a vehicle while dodging left Case II 
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Figure 2.8: Gap Between Pedestrian and Vehicle Case III 

 

approach is developed. This study focuses on providing theoretical guarantees under a range 

of pedestrian and vehicle behaviors for safe vehicle and pedestrian crossings, mak­ ing the 

appropriate safe decision to avoid collisions, and evaluating limits of collision avoidance 

capability. The study covers cases when pedestrians make sudden changes in their behavior 

(Back, Wait) and appropriate decision-making (decelerate, dodge) to avoid a collision. 

Decision Matrices are provided to guide pedestrians in case vehicle behavior changes while 

a pedestrian is in a shared space and vice versa. Simulation results show that the proposed 

method is effective. The solution proposed is scalable as the required infrastructure is already 

in place because automated vehicles and most pedestrians carry handheld devices with 

communication capability and location detection sensors. Auto­ mated vehicles and 

pedestrians already carry GPS sensors and communication capability. Future work involves 

an extension of current work to multi-lanes and intersection crossings. 
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Chapter 3 

 

FSM-based Control of Automated 

Vehicles in presence of an Indecisive 

Pedestrian 

 
This chapter is derived from the work yet to be published. 

 

3.1 Introduction 

Recent accidents involving pedestrians and Autonomous Vehicles (AVs) raise critical ques­ 

tions about safety, even when pedestrian actions contribute to the incident. While some may 

argue that pedestrians bear the primary responsibility in certain cases, the potential for 

AVs to take preventive measures should still be explored. 

Some of the case studies are presented below to highlight the need for safety critical vehicle 

control. Arizona Accident: A pedestrian crossing a highway at night without lights, while 

dragging a bicycle, was misclassified as an object by the AV, resulting in a collision [14]. 

GM's Cruise accident: A pedestrian crossed against a red light and was struck by a 

manually driven vehicle. Thrown into an adjacent lane, the pedestrian was nearly struck 

again by a following AV from GM Cruise, which barely stopped in time and then dragged 

the pedestrian to the side of the road. These examples demonstrate the limitations of current 

AV technology and the need for improved pedestrian detection and response systems [15]. 

Waymo Dataset: Data from Waymo, a self-driving car company, suggests that a sig­ 

nificant portion of collisions involving AVs occur due to unpredictable pedestrian behavior 

[16]. 

These incidents underscore the importance of designing control systems for AVs that can 

mitigate collisions even in the face of unexpected pedestrian actions. 

 

3.1.1 Simulation Case Study 

This study investigates a simulated environment (shown in Fig. 3.1) designed to evaluate 

control strategies for autonomous vehicles (AVs) in avoiding collisions with pedestrians. The 

AV can perform actions like swerving (dodge), braking, and emergency braking (hard brake) 

while navigating longitudinally through the road.  The pedestrian, with limited 
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Figure 3.1: Problem Scenario. 

 

movement options (forward, backward, and stop), can also change its goal and direction 

unexpectedly. The key variable is the initial distance between the vehicle and the pedes­ 

trian, denoted as dgap· The primary goal of this research is to develop a control strategy 

for AVs that can effectively prevent collisions with pedestrians, even in situations where the 

pedestrian's intentions are unclear. 

The following outline the unique contributions of this study are the following 

 

• A physics based control strategy to avoid collision and optimal control 

• Comparison of designed control strategy with statistical controller 

 

3.2 Summary of Methodology 

Figure 3.2 illustrates the overall system process. The autonomous vehicle (AV) is equipped 

with LiDAR (Light Detection and Ranging), GPS (Global Positioning System), and IMU 

(Inertial Measurement Unit) sensors. The vehicle utilizes its own approximate model and 

fuses this information with GPS data to achieve more accurate positioning. Pedestrian 

location data is detected using LiDAR. After filtering and processing this information, the 

AV calculates the time gap between itself and the pedestrian. 

Based on the calculated time gap, the AV employs a hierarchical control system to devise 

a collision avoidance strategy. This may involve actions like braking, swerving, or 

maintaining course depending on the situation. The pedestrian is modeled with a vision 

system that estimates the distance and speed of the approaching vehicle. This information is 

then used to make a decision about crossing the road. Additionally, the pedestrian is modeled 

with a Finite State Machine (FSM) controller that randomly switches between different 

pedestrian states (e.g., waiting, crossing, etc.). This randomness makes it impos­ sible for the 

AV to perfectly predict the pedestrian's goal and next move. A secondary controller will be 

developed in future work. This controller will attempt to estimate the pedestrian's intention 

based on available data and use that information to devise a control strategy. The 

performance of this intention-aware controller will then be compared to the current strategy 

that relies solely on time gap information. 

Figure 3.3 depicts a critical element of the control strategy design. Here, a two-lane road 

is divided into five distinct regions based on a pre-defined design specification. Notably, the 

"pedestrian unknown region" should not exceed half the width of a lane accord- 
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Figure 3.2: Problem Scenario. 

 

Table 3.1: Decision Matrix to avoid collision with pedestrian 

 
Pedestrian Region Vehicle Decision    

 Dodge Left Dodge Right Lane Change Brake Hard Brake 

1 True False False True True 

2 False False True True True 

3 False True False True True 

 

 

ing to this specification. Leveraging this defined region and the pedestrian's maximum speed, 

we can estimate a time range for the pedestrian's potential movement. This time range is 

then used to assess the pedestrian's most likely location within that timeframe. Based on this 

assessment, the AV's control system can determine the appropriate action to take (e.g., 

swerving, braking, maintaining speed, or slowing down) to prevent a colli­ sion. Following 

the definition of these regions, a decision matrix is generated as shown in Table 3.1. This 

Decision Matrix detail the specific actions the AV's control system should take based on the 

pedestrian's location within each region. 
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3.2.1 Outcomes 

This study aims to develop a physics-based control method for autonomous vehicles (AVs) 

that prioritizes collision avoidance. We will then evaluate the performance of this method 

compared to control strategies that rely on pedestrian intention estimation. 

The primary objective is to determine whether a physics-based control approach sur­ 

passes other prediction methods in terms of ensuring pedestrian safety in autonomous vehicle 

operation. 

 

 

 
 

 

 

Figure 3.3: Problem Scenario. 
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APPENDIX 
 

Autonomous Vehicle and Pedestrian Collison Avoidance 

From a Deep Reinforcement Learning Viewpoint 
 

 

Below is a description of the current achieved goal where the vehicle is an intelligent DRL agent. 

The ultimate goal is to make both the vehicle and pedestrian intelligent agents. This work is 

ongoing. 

 

A1. Introduction 

Navigating pedestrian-populated environments is a challenging task for autonomous vehicles (AVs). 

The uncertainty introduced by pedestrians and unpredictable road users adds complexity to the AV's 

decision-making process. Addressing this challenge is crucial to ensuring both safety and efficiency. 

Recent advancements in artificial intelligence, particularly Deep Reinforcement Learning (DRL), have 

shown promising results for solving AV-pedestrian collision problems [1-4]. Research has extended to 

handling pedestrian crossing uncertainty and interaction dynamics between AVs and pedestrians [5-7]. 

This work describes developing a DRL-based collision avoidance system for AVs, focusing on a 

scenario where a vehicle must avoid a pedestrian at a crossing. 

 

A2. Addressed Scenario 

The problem addressed in this work involves a typical pedestrian crossing scenario, as illustrated in 

Fig. A1. Here, the AV moves towards a crossing line. In contrast, a pedestrian crosses the road 

perpendicularly. The AV must take real-time actions to avoid colliding with the pedestrian while 

maintaining efficient progress. The challenge is balancing safety and speed, ensuring the AV avoids 

unnecessary braking while preventing collisions. 

 
Fig. A1. Addressed Scenario 

 

A3. Translating to DRL World 

 

The described scenario is translated into a DRL setup. The AV is modeled as an intelligent agent in a 

simulated environment, where it continuously receives the state of the environment, including the 

positions and velocities of both the vehicle and the pedestrian. The AV can take five actions: driving 

straight (0), braking (1), dodging right (2), and dodging left within lane (3) and beyond lane (4). The 

agent aims to navigate the crossing without colliding with the pedestrian while optimizing its speed 

and progress through a structured reward function. 
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A3.1. Reward Function 

 

In this system, collision avoidance is enforced through a sophisticated reward structure. The main 

components of the reward function are: 

• Safe distance reward: This reward encourages the AV to maintain a distance of at least 5 units 

from the pedestrian, with higher rewards for greater distances. 

• Collision penalty: The AV is penalized heavily for any collision risk with the pedestrian. If 

the pedestrian is within 5 units of the AV and a collision is imminent based on future velocity 

predictions, the AV is penalized up to 10 points. 

• Progress reward: The AV is rewarded for moving closer to the crossing line, encouraging 

continuous progress rather than unnecessary stops. 

• Speed reward: Maintains an optimal speed range between 4 and 5 units, rewarding the AV 

for staying within this safe speed range while penalizing slower or excessively fast driving. 

 

The system's collision logic is based on predicting the relative positions of the AV and pedestrian over 

time. The risk of collision is computed by predicting future positions and velocities. If the expected 

distance between the AV and the pedestrian becomes dangerously small, the collision risk increases, 

and the AV is penalized. This logic ensures that the AV takes appropriate actions before a collision 

occurs. 

 

A3.2 Proximal Policy Optimization (PPO) Implementation 

 

We use a Proximal Policy Optimization (PPO) method to train the AV’s decision-making policy. PPO 

is chosen for its robustness and stability in handling such controlling tasks. The vehicle's policy=actor 

network outputs a categorical distribution over the discrete action space, while the value=critic network 

estimates the expected future reward. The actor is trained iteratively, using mini-batch updates and 

clipped probability ratios to prevent drastic updates. The PPO method ensures that the AV's policy 

evolves smoothly over time. The training involves: 

• Running the AV through multiple episodes in the environment. 

• Collecting state-action-reward transitions. 

• Using this data to update the policy. 

The system uses a replay buffer to store experiences, with prioritized experience replay focusing on 

important transitions. This enhances the system's learning efficiency, allowing it to focus on higher-

risk scenarios and more valuable learning opportunities. 

 

A4. Preliminary Results 

 

A4.1 Training Performance 

 

The vehicle agent is trained over 40,000 frames, with PPO updates performed periodically using mini-

batches sampled from the replay buffer. The results demonstrate effective learning, with the agent 

achieving increasingly higher accumulated and average rewards and lower collision rates as training 

progressed. Fig.A2 illustrates a sample of accumulated and average rewards over the training iterations. 

The average reward over 100 episodes reached a stable value, indicating the policy’s convergence. 



 

 

 
Fig. A2. Training’s Accumulated and Averaged Reward 

A4.2 Collision Avoidance and Action Analysis 

 

Analysis of the collision rates and action distribution, Fig. A3, shows that the vehicle the agent learns 

to avoid collisions effectively. The success rate for collision-free episodes reached 99%, in line with 

results from other DRL-based pedestrian avoidance studies. The vehicle in this sample chooses to 

drive straight or dodge right or left outside lane when approaching the pedestrian at the crossing line, 

depending on the pedestrian’s position. This behavior mimics human driving patterns in similar real-

world scenarios. Additionally, braking was used minimally, only when necessary to avoid imminent 

collisions. 
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Fig. A3. Training’s Collisions Rates and Actions Distribution 

A5. Conclusion and Future Work 

 

The PPO-based DRL agent successfully navigated the pedestrian crossing scenario, balancing collision 

avoidance with minimal speed reduction. The designed reward structure effectively encouraged the 

vehicle to take necessary actions only when required, avoiding unnecessary braking and dangerous 

collisions. A key direction for future steps involves modeling indecisive pedestrian behavior. By 

extending the system to a multi-agent setup where both the pedestrian and vehicle are treated as 

independent agents, we aim to capture more complex, real-world interactions. This multi-agent scene 

will allow us to model unpredictable pedestrian movements, such as sudden stops or changes in 

direction, requiring the vehicle to adapt its strategy dynamically. Such scenarios are increasingly 

important as autonomous driving technologies become more prevalent. 
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