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1. Chapter 1: Problem Statement & Related Work 

Defined as the time distance between two successive vehicles as they pass a point on a roadway 

(Highway Capacity Manual, 2010), vehicle headway is a fundamental measure in traffic flow 

theory. Accurate prediction of vehicle headway is crucial in various transportation applications, 

such as enhancing the preemptive collision avoidance warning capability of smart vehicles. This 

could have significant traffic safety implications, since the main causes of rear-end crashes, which 

typically constitute almost 30% of all police reported crashes, are the drivers’ inattention and 

following the front vehicle too closely, alone or in combination (Barfield and Dingus, 2014). 

Additionally, accurate prediction of vehicle headway can enhance the advanced traffic and vehicle 

control systems, such as connected and autonomous vehicles (CAVs), to maintain a minimum 

safety distance between platooning CAVs (Bian et al., 2019). 

Over the past decades, several statistical models have been proposed to analytically derive 

closed-form distributions for vehicle headway (see Li and Chen (2017) for a comprehensive 

review). However, accurate analytical modeling of inter-vehicle headway distribution is 

challenging due to a multitude of known and unknown random factors that can potentially shape 

the vehicle headway distribution, namely: 

a) driver heterogeneity, suggesting that different drivers show diverse perceptual reactions 

and desired headways (i.e., inter-driver heterogeneity) and even the same driver may 

behave differently over time and space (i.e., intra-driver heterogeneity), leading to 

distinct vehicle headway distributions with different variances (Taylor et al., 2015); 

b) asymmetric car-following driving behavior, which refers to the preference of drivers in 

maintaining short headways rather than long headways, resulting in rightly-skewed 

headway distributions (Chen et al., 2010); 

c) vehicle heterogeneity under mixed traffic, indicating that different vehicle classes or 

types (e.g., passenger cars and heavy-duty trucks) have distinct dimensions and 

performances (e.g., vehicle speed, acceleration, and deceleration), giving rise to irregular 

headway distributions along a roadway and across traffic lanes; and 

d) congested traffic flow conditions, under which vehicle speeds are lower than the free-

flow speed and inter-vehicle interactions are not negligible, which causes the headway 

distribution to be speed-dependent, bridging headway to the (microscopic) instantaneous 

speeds of vehicles (Zhang and Wang, 2014). 
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The complex effects of the above known and unknown heterogenous factors on inter-vehicle 

headway warrant the development of more advanced vehicle headway prediction models that can 

effectively accommodate them. Deep learning (Goodfellow et al., 2016) can serve as a promising 

candidate as it can “learn” highly nonlinear relationships governed by inter-vehicle headway 

“data” rather than imposing a priori known closed-form specification for vehicle headway and 

fitting the data to that specification. 

Such a data-driven approach to vehicle headway modeling has increasingly become more 

appealing with the emergence of unprecedented amounts of vehicle trajectory big data acquired 

from fixed-location sensors (for example, radars, loop detectors, and cameras) and mobile sensors 

(for instance, probe vehicles, connected vehicles, navigation applications, and unmanned aerial 

aircraft). The type of collected data have evolved from simple vehicle counts to rich vehicle 

trajectories, providing continuous time series data of heterogenous vehicle movements, which have 

been used in several traffic flow studies (see Li et al. (2020) for a recent review). 

Vehicle trajectory data are inherently regarded as time series data, where a sequence of 

kinematic measurements of each vehicle (e.g., vehicle position, velocity, and acceleration) are 

collected over time. Given the vehicle trajectory time series data, modeling vehicle headway would 

then become a univariate time series forecasting problem, wherein vehicle headways in the future 

time steps are predicted based on the sequential vehicle headway data in the past time steps. 

Among deep learning models, variants of recurrent neural network (RNN) architecture, such 

as the long short-term memory (LSTM) neural network (Hochreiter and Schmidhuber, 1997), are 

particularly suited for modeling time series data, because the output from previous time steps are 

used as input for the future time steps. Recurrent networks are popular in modeling various 

transportation phenomena, including car following and lane changing behavior (Huang et al., 

2018; Xie et al., 2019; Zhang et al., 2019), traffic speed (Gu et al., 2019), traffic flow (B. Yang et 

al., 2019), CAV trajectory planning (Lin et al., 2021), bike-sharing demand (Xu et al., 2018), on-

demand ride service demand (Ke et al., 2017), vehicle classification (Simoncini et al., 2018), 

parking occupancy (Yang et al., 2019), and traffic safety (Zhang et al., 2018). 

However, the emergence of high time-resolution vehicle headway time series data (for 

example, data points collected every 0.1 second), on the one hand, and the need for providing 

vehicle headway predictions over sufficiently long horizons to be applicable for traffic safety-

critical applications (e.g., the next 2-5 seconds to allow for driver perception-reaction time), on the 

other hand, call for multi-step-ahead (multi-horizon) time series models (e.g., 20 time steps into 

the future, where each time step is 0.1 second). To address this need, this project presents a state-

of-the-art deep learning model for multi-step-ahead time series forecasting, and trains the model 
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using the vehicle trajectory big data acquired from the USDOT’s Next-Generation Simulation 

(NGSIM) dataset (Traffic Analysis Tools: Next Generation Simulation - FHWA Operations). 

The remainder of the report is organized as follows. Chapter 2 presents the multi-step-ahead 

time series forecasting methodology. Data preparation and description are summarized in Chapter 

3, followed by the results of the model implementation on the USDOT’s NGSIM vehicle trajectory 

big data. The report concludes in Chapter 5 with a summary of the project and key findings. 
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2. Chapter 2: Methodology 

The multi-step-ahead time series prediction problem involves forecasting the future values of a 

target variable (i.e., vehicle headway) over multiple time steps in the future, given the historical 

values of the target variable and exogenous input variables. Specifically, considering a finite look-

back window 𝑘  and a finite look-ahead window 𝜏 , the 𝜏 -step-ahead prediction of the target 

variable made at time step 𝑡, as denoted by �̂�𝑡+𝜏, is based on the historical information about the 

target variable 𝑦𝑡−𝑘:𝑡 = {𝑦𝑡−𝑘, … , 𝑦𝑡} and input variables, the latter encompassing static inputs 𝒔 

(e.g., vehicle length) and time-varying inputs 𝒙𝑡−𝑘:𝑡 (e.g., vehicle acceleration). 

Acknowledging the uncertainty involved in future forecasts, this project seeks prediction 

intervals rather than point estimates of the target variable. More clearly, the model aims to predict 

�̂�𝑡+𝜏(𝑞), which is the 𝜏-step-ahead prediction of the target variable made at time step 𝑡 for the 𝑞th 

instance (i.e., sample) quantile. Note that, as a direct method of multi-step-ahead prediction, 

forecasts of �̂�𝑡+𝜏(𝑞) will be simultaneously made for all future time steps 𝜏 ∈ {1, … , 𝜏𝑚𝑎𝑥}. As 

shown in Eq. (1), the goal of the deep learning model presented in this chapter is to “learn” a 

nonlinear mapping 𝑓𝑞(. ) between the desired target variable and the historical input variables. 

 

�̂�𝑡+𝜏(𝑞) = 𝑓
𝑞
(𝑦

𝑡−𝑘:𝑡
, 𝒙𝑡−𝑘:𝑡, 𝒔, 𝜏)  (1) 

 

Figure 1 depicts the overarching structure of the presented deep learning model, dubbed 

Temporal Fusion Transformers (TFT) (Lim et al., 2021), which contains three main components: 

1) Variable Selection Network (VSN) using gating mechanisms, 2) short-term temporal processing 

using LSTM sequence-to-sequence encoder and decoder, and 3) long-term temporal processing 

using interpretable multi-head attention. What ensues elaborates on these three components. 

2.1. Input Variable Selection Using Gating Mechanisms 

Whether and how significantly each input variable can contribute to predicting the target variable 

(i.e., vehicle headway) is unknown a priori and should be “learned” from data. In addition, some 

input variables may be noisy and should be learned to be automatically removed to prevent from 

harming the model’s prediction performance. For these reasons, the Variable Selection Network 

(VSN) is included as a building block of the TFT model architecture, which leverages gating 

mechanisms to generate sample-wise variable selection weights, as illustrated below. 

Before feeding into the VSN, each raw input variable ( 𝒙𝑡 ∈ ℝ𝑚𝑥  and 𝒔 ∈ ℝ𝑚𝑠 ) is first 

transformed into a (𝑑𝑚𝑜𝑑𝑒𝑙)-dimensional vector representation, where 𝑑𝑚𝑜𝑑𝑒𝑙 corresponds to the 



5 

 

dimensions of the subsequent layers. The input variable transformation is performed using entity 

embeddings (Gal and Ghahramani, 2016) for categorical variables and linear transformation for 

continuous variables. 

 
 

Figure 1. The model architecture (Lim et al., 2021) 

The learned input variable transformations are then fed into the VSN to generate variable 

selection weights. To illustrate, let 𝝃𝑡
(𝑗)

∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙  denote the transformed input of the 𝑗th raw input 

variable at time step 𝑡 , and 𝚵𝑡 = [𝝃𝑡
(1)𝑇

, … , 𝝃𝑡
(𝑚𝑥)𝑇

]
𝑇

 be the flattened concatenation of all 

transformed input variables at time step 𝑡. The VSN takes 𝚵𝑡 and an external context vector 𝒄𝑠 —

which is obtained from a static input variable encoder and explained below— as inputs and feeds 

them through a Gated Residual Network (GRN) followed by a Softmax layer to generate the 

variable selection weights denoted by 𝒗𝑥𝑡
∈ ℝ𝑚𝑥  and 𝒗𝑠 ∈ ℝ𝑚𝑠 . For the time-varying input 

variables 𝒙𝑡 ∈ ℝ𝑚𝑥 , for example, Eq. (2) generates the corresponding VSN weights 𝒗𝑥𝑡
∈ ℝ𝑚𝑥. 

 

𝒗𝑥𝑡
= Softmax (GRN𝑣𝑥

(𝚵𝑡 , 𝒄𝑠))  (2) 
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The motivation for using GRN is to provide the model with the flexibility to adaptively control 

the degree of nonlinear processing as needed. In general, given a primary input 𝒂 and an optional 

context vector 𝒄, which refer respectively to 𝚵𝑡  and 𝒄𝑠  for the GRN intended for time-varying 

variable selection in Eq. (2), a GRN is presented in Eqs. (3)-(6). For samples with no optional 

context vector, the GRN treats the context input as zero, i.e., 𝒄 = 0. The GRN’s gating layers are 

based on Gated Linear Units (GLU), which provide the flexibility to suppress any parts of the 

model architecture that are not needed for a given input variable. More clearly, GLU allows the 

model to control the extent to which the GRN contributes to the primary input 𝒂, potentially 

skipping over the layer entirely, if necessary, since the GLU outputs could be all close to zero in 

order to suppress the nonlinear contribution (Lim et al., 2021). 

 

GRN𝜔(𝒂, 𝒄) = LayerNorm(𝒂 + GLU(𝜼1))  (3) 

𝜼1 = 𝑾1,𝜔 𝜼2 + 𝒃1,𝜔  (4) 

𝜼2 = ELU(𝑾2,𝜔 𝒂 + 𝑾3,𝜔 𝒄 + 𝒃2,𝜔)  (5) 

GLU𝜔(𝜼1) = 𝜎(𝑾4,𝜔 𝜼1 + 𝒃4,𝜔) ⊙ (𝑾5,𝜔 𝜼1 + 𝒃5,𝜔)  (6) 

 

wherein 𝜼1 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙  and 𝜼2 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙  are intermediate layers, LayerNorm(. ) is the standard 

layer normalization (Ba et al., 2016), and the subscript 𝜔 denotes weight sharing. The Exponential 

Linear Unit, ELU(. ), is used as the activation function in Eq. (5), which would act as an identity 

function if (. ) ≫ 0 and would generate a constant output when (. ) ≪ 0, leading to linear layer 

behavior. 𝑾(.) ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙 × ℝ𝑑𝑚𝑜𝑑𝑒𝑙  and 𝒃(.)  are respectively the weights and biases, ⊙  is the 

element-wise (Hadamard) product, and 𝜎(. ) is the sigmoid activation function that transfers its 

input argument (. ) into the [0,1] range. 

The input variable selection weights 𝒗𝑥𝑡
 (and 𝒗𝑠) generated through Eqs. (2)-(6) are then used 

to yield the representation vector for each input variable. For this purpose, each transformed input 

variable 𝝃𝑡
(𝑗)

 will first undergo an additional layer of nonlinear processing by feeding 𝝃𝑡
(𝑗)

 through 

its own GRN to yield its corresponding processed variable �̃�𝑡
(𝑗)

, as shown in Eq. (7). The processed 

input variables are then aggregated in Eq. (8) using their corresponding variable selection weights, 

yielding �̃�𝑡 as the output of the VSN.  

 

�̃�𝑡
(𝑗)

= GRN�̃�(𝑗) (𝝃𝑡
(𝑗)

)  (7) 

�̃�𝑡 = ∑ 𝑣𝑥𝑡

(𝑗)
 �̃�𝑡

(𝑗)

𝑚𝑥

𝑗=1

 (8) 
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where 𝑣𝑥𝑡

(𝑗)
 denotes the 𝑗th element of the variable selection weight vector 𝒗𝑥𝑡

. 

Finally, the optional context vector used in Eq. (3) is obtained as 𝒄𝑠 = GRN𝑐𝑠
(�̃�), wherein �̃� 

is the output of the variable selection network for static variable. 

2.2. Short-Term Temporal Processing Using LSTM Sequence-To-

Sequence Encoders and Decoders 

Given the inherent time-ordering of time series data, temporal processing on the output of the 

Variable Selection Network (VSN) introduced in the previous section (i.e., �̃�𝑡) is indispensable to 

learn the temporal dependencies among �̃�𝑡’s in neighboring points in time. To this end, a sequence-

to-sequence layer is employed, which is particularly suited for mapping an input sequence (i.e., 

past input values �̃�𝑡−𝑘:𝑡) to an output sequence (i.e., future input values �̃�𝑡+1:𝑡+𝜏𝑚𝑎𝑥
) when the 

lengths of the past and future sequences (i.e., look-back window 𝑘 and look-ahead window 𝜏𝑚𝑎𝑥, 

respectively) are different. The sequence-to-sequence layer involves an encoder, which processes 

the input sequence �̃�𝑡−𝑘:𝑡, and a decoder, which usually takes the final hidden state of the encoder 

in order to generate the output sequence �̃�𝑡+1:𝑡+𝜏𝑚𝑎𝑥
. In this project, the sequence-to-sequence 

layer employs long short-term memory (LSTM) encoders and decoders. 

LSTM has a multi-layer structure encompassing an input layer, recurrent hidden layers, and 

an output layer. Unlike the standard Recurrent Neural Network (RNN) that simply applies an 

element-wise nonlinearity to the affine transformation of the input layer and the recurrent hidden 

layer, LSTM uses “cells” that are connected recurrently to each other, replacing the usual hidden 

layers of standard RNN. The LSTM cell has three gating units, comprising the forget gate (𝑓𝑡), 

input gate (𝑖𝑡), and output gate (𝑜𝑡) at time step 𝑡, along with an internal “state” unit (𝒛𝑡) that 

collectively control the flow of information over time. For each cell, the inputs include the current 

input variables �̃�𝑡, previous hidden units 𝒉𝑡−1, and previous cell state 𝒛𝑡−1. The cell’s output is 𝒉𝑡 

which is feed forwarded to the next LSTM cell together with the updated state 𝒛𝑡. In each cell, the 

forget gate decides which historical information to pass to the state unit. Through the input gate, 

new information can be added and replace the outdated ones. Overall, the LSTM model is specified 

in Eqs. (9)-(13). 

 

𝑓𝑡 =  𝜎 (𝑾𝑓,�̃�  �̃�𝑡 + 𝑾𝑓,ℎ 𝒉𝑡−1 + 𝑏𝑓)  (9) 

𝑖𝑡 =  𝜎 (𝑾𝑖,�̃�  �̃�𝑡 + 𝑾𝑖,ℎ 𝒉𝑡−1 + 𝑏𝑖)  (10) 

𝑜𝑡 =  𝜎 (𝑾𝑜,�̃�  �̃�𝑡 + 𝑾𝑜,ℎ 𝒉𝑡−1 + 𝑏𝑜)  (11) 
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𝒉𝑡 = 𝑜𝑡 ⊙ tanh(𝒛𝑡)  (12) 

𝒛𝑡 =  𝑓𝑡 ⊙ 𝒛𝑡−1 + 𝑖𝑡 ⊙ tanh(𝑾𝑧,�̃�  �̃�𝑡 + 𝑾𝑧,ℎ  𝒉𝑡−1 + 𝑏𝑧)  (13) 

 

where 𝜎(. ) is the sigmoid activation function and tanh(. ) is the hyperbolic tangent activation 

function that squashes input values (. ) to the range between -1 and 1. 

The output of the LSTM sequence-to-sequence layer is a set of temporal variables 𝜙(𝑡, 𝑛), 

where 𝑛 ∈ [−𝑘, 𝜏𝑚𝑎𝑥] is the time position index. As depicted in Figure 1, a gating layer is utilized 

on top of the LSTM sequence-to-sequence layer, which yields �̃�(𝑡, 𝑛) in Eq. (14). 

 

�̃�(𝑡, 𝑛) = LayerNorm (�̃�𝑡+𝑛 + GLU�̃�(𝝓(𝑡, 𝑛)))  (14) 

 

2.3. Long-Term Temporal Processing Using Interpretable Multi-

Head Attention 

The LSTM sequence-to-sequence layer presented in the previous section can infer temporal 

dependencies, yet it may still fail to pick up long-term temporal dependencies due to the notorious 

vanishing gradient problem (Bengio et al., 1994). To tackle, an interpretable multi-head attention 

layer is placed on top of the LSTM sequence-to-sequence layer in order to integrate information 

from any time step using dynamically generated weights, allowing the model to focus on 

significant time steps in the past, regardless of how far back in the look-back window they are 

(Lim et al., 2021; Vaswani et al., 2017). 

Before feeding into the attention layer, the output of the LSTM sequence-to-sequence layer is 

first fed through a static enrichment layer (see Figure 1) specified in Eq. (15) in order to enhance 

the learned short-term temporal information (i.e., �̃�(𝑡, 𝑛) in Eq. (14)) with static metadata. 

 

𝜽(𝑡, 𝑛) = GRN𝜃(�̃�(𝑡, 𝑛), 𝒄𝑒)  (15) 

 

where 𝒄𝑒  is an optional context vector obtained in an analogous way to the context vector 

described in the VSN section. 

The learned outputs from the static enrichment layer are then used as input to the interpretable 

multi-head attention layer. To illustrate, let 𝚯(𝑡) = [𝜽(𝑡, −𝑘), … , 𝜽(𝑡, 𝜏𝑚𝑎𝑥)]𝑇 denote the matrix 

of static-enriched temporal information 𝜽(𝑡, 𝑛). Given 𝚯(𝑡), the interpretable multi-head attention 

layer yields 𝑩(𝑡) = [𝜷(𝑡, −𝑘), … , 𝜷(𝑡, 𝜏𝑚𝑎𝑥)]𝑇, as shown in Eq. (16) and described below. 

 

𝑩(𝑡) = InterpretableMultihead(𝚯(𝑡), 𝚯(𝑡), 𝚯(𝑡))  (16) 
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Conceptually, the standard attention layer (Vaswani et al., 2017) shown in Eq. (17) is a 

mechanism for a Key 𝑲 ∈ ℝ𝑁×𝑑𝑎𝑡𝑡𝑛  lookup based on a given Query 𝑸 ∈ ℝ𝑁×𝑑𝑎𝑡𝑡𝑛  in order to 

scale Values (i.e., input variables of the attention layer) 𝑽 ∈ ℝ𝑁×𝑑𝑉 , where 𝑁 is the total number 

of past and future time steps fed into the attention layer (i.e., 𝑁 = 𝜏𝑚𝑎𝑥 + 𝑘 + 1), 𝑑𝑎𝑡𝑡𝑛 = 𝑑𝑉 =

𝑑𝑚𝑜𝑑𝑒𝑙 𝑚𝐻⁄ , and 𝑚𝐻  is the number of attention heads as illustrated below. In Eq. (17), 

Attention(. , . , . )  represents the context vector output of the standard attention layer and the 

normalization function 𝐴(. , . ) gives the attention weights using Eq. (18). 

 

Attention(𝑸, 𝑲, 𝑽) = 𝐴(𝑸, 𝑲) 𝑽 (17) 

𝐴(𝑸, 𝑲) = Softmax(𝑸 𝑲𝑇 𝑑𝑎𝑡𝑡𝑛⁄ ) (18) 

 

The learning capacity of the standard attention mechanism can be enhanced using multi-head 

attention (Vaswani et al., 2017), which allows for attending to various parts of the input sequence 

differently. This is accomplished by performing several independent standard attention 

mechanisms, each referred to as a head ℎ ∈ {1, … , 𝑚𝐻}, and then concatenating the separate 

attention outputs from all heads [𝑯1, … , 𝑯𝑚𝐻
], as shown in Eqs (19)-(20). 

 

Multihead(𝑸, 𝑲, 𝑽) = [𝑯1, … , 𝑯𝑚𝐻
] 𝑾𝐻 (19) 

𝑯ℎ = Attention (𝑸 𝑾𝑄
(ℎ)

, 𝑲 𝑾𝐾
(ℎ)

, 𝑽 𝑾𝑉
(ℎ)

) (20) 

 

where 𝑾𝑄
(ℎ)

∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑎𝑡𝑡𝑛 , 𝑾𝐾
(ℎ)

∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑎𝑡𝑡𝑛 , and 𝑾𝑉
(ℎ)

∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑉 are respectively the 

weights for queries, keys, and values corresponding to head ℎ. 

The multi-head attention weights 𝐴(. , . )  can be made interpretable through a slight 

modification of the multi-head attention mechanism. For this purpose, note that the multi-head 

attention projects the Values 𝑽 differently for each head, as signified by the head-specific weights 

for Values, i.e., 𝑾𝑉
(ℎ)

. In the modified multi-head attention, referred to as the interpretable multi-

head attention and shown in Eqs. (21)-(22), the projected Values are shared across all heads, 

resulting in a common weight for all Values, i.e., 𝑾𝑉. With this modification, different heads only 

capture the interactions between Queries 𝑸  and Keys 𝑲 , and the outputs of all heads are 

concatenated into �̃�(𝑸, 𝑲) before multiplying by the Values 𝑽, according to Eq. (22). In other 

words, separate heads can learn distinct temporal patterns as suggested by the head-specific 

modified attention weights �̃�(𝑸, 𝑲), while equally attending to the Values 𝑽. �̃�(𝑸, 𝑲) allows for 

model interpretability through identifying the time steps that most significantly influence the 
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model’s outputs.  

 

InterpretableMultihead(𝑸, 𝑲, 𝑽) = �̃� 𝑾𝐻 (21) 

�̃� = �̃�(𝑸, 𝑲) 𝑽 𝑾𝑉 
 

     = {
1

𝑚𝐻
∑ 𝐴 (𝑸 𝑾𝑄

(ℎ)
, 𝑲 𝑾𝐾

(ℎ)
)

𝑚𝐻

ℎ=1

}  𝑽 𝑾𝑉 

 

     =
1

𝑚𝐻
∑ Attention (𝑸 𝑾𝑄

(ℎ)
, 𝑲 𝑾𝐾

(ℎ)
, 𝑽 𝑾𝑉

(ℎ)
)

𝑚𝐻

ℎ=1

 (22) 

 

To further improve the learning capacity of the model, the outputs of the interpretable multi-

head attention (i.e., 𝑩(𝑡) = [𝜷(𝑡, −𝑘), … , 𝜷(𝑡, 𝜏𝑚𝑎𝑥)]𝑇  in Eq. (16)) are further processed 

nonlinearly by feeding them through three additional gating layers, as specified in Eqs. (23)-(25). 

 

𝜹(𝑡, 𝑛) = LayerNorm (𝜽(𝑡, 𝑛) + GLU𝛿(𝜷(𝑡, 𝑛)))  (23) 

𝝍(𝑡, 𝑛) = GRN𝜓(𝜹(𝑡, 𝑛))  (24) 

�̃�(𝑡, 𝑛) = LayerNorm (�̃�(𝑡, 𝑛) + GLU�̃�(𝝍(𝑡, 𝑛)))  (25) 

 

2.4. Loss Function 

At each forecast time 𝑡, the target variable’s prediction in time step (𝑡 + 𝜏) is generated using a 

linear transformation of the output of the model’s last layer (i.e., �̃�(𝑡, 𝜏) as obtained in Eq. (25)). 

Note that prediction intervals for different quantiles 𝑞  (i.e., 5th, 50th, and 95th percentiles) are 

simultaneously provided in Eq. (26). 

 

�̂�𝑡+𝜏(𝑞) = 𝑾𝑞 �̃�(𝑡, 𝜏) + 𝑏𝑞  (26) 

 

The model is trained by minimizing the following loss function, which roughly measures the 

difference between the predicted and observed values of the target variable, accumulated over all 

quantiles. 

 

ℒ(𝛺, 𝑾) = ∑ ∑ ∑
𝑄𝐿(𝑦

𝑡
, �̂�(𝑡−𝜏)+𝜏(𝑞), 𝑞)

𝑀 𝜏𝑚𝑎𝑥

𝜏𝑚𝑎𝑥

𝜏=1𝑞∈𝒬𝑦𝑡∈𝛺

 (27) 

𝑄𝐿(𝑦, �̂�, 𝑞) = 𝑞 max(0, 𝑦 − �̂�) + (1 − 𝑞) max(0, �̂� − 𝑦) (28) 

  



11 

 

3. Chapter 3: Data 

This chapter provides a summary description of the vehicle trajectory dataset used for 

implementing the presented deep learning model. The presented deep learning model is trained 

using the Next Generation Simulation (NGSIM) vehicle trajectory big data on a portion of 

eastbound I-80 in San Francisco, California, which were collected by the Federal Highway 

Administration (FHWA) in April 2005 and updated in June 2020. 

The dataset provides the precise longitudinal and lateral positions of each vehicle relative to 

other vehicles within the study area at a high temporal resolution every one-tenth of a second 

(Traffic Analysis Tools: Next Generation Simulation - FHWA Operations). The length of the study 

area (Figure 2) is approximately 500 meters (1,640 feet), consisting of six freeway lanes. A total 

of 45 minutes of data are available in the full dataset, originally segmented into three 15-minute 

periods (16:00-16:15, 17:00-17:15, and 17:15-17:30). The three segments represent the transition 

periods between different traffic congestion levels. We use the full dataset (45 minutes) for 

training, validating, and testing the presented deep learning model, which amounts to 4,122,130 

data records describing the instantaneous movements of nearly 3,000 vehicles. 

  
Figure 2. Aerial view of the vehicle trajectory study area (left) and a digital video camera mounted on top 

of a building recording vehicle trajectory data in I-80 (right) (Traffic Analysis Tools: Next Generation 

Simulation - FHWA Operations) 

Besides using the vehicle trajectory data of highway I-80 for training, validating, and testing 

the model, data from another highway on southbound US-101 (also known as the Hollywood 

Freeway) in Los Angeles, California, are also utilized to further test the model fit on unseen data. 
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This also helps to evaluate the generalizability and transferability of the trained model. The US-

101 dataset comprises 4,398,832 records and represents the unique information of approximately 

3,500 vehicles. 

The raw vehicle trajectory data should be first preprocessed before feeding into the model. 

This starts with data cleaning, which involves the removal of noises and errors often found in any 

raw data. Then, a lower bound of 1 second is set for vehicle headway and the data records having 

shorter time headways are discarded. This is considered as a safety constraint so that the model 

can be useful in downstream applications of vehicle headway prediction, such as collision 

avoidance and CAV trajectory planning. 

Once data preprocessing is completed, the whole I-80 dataset is split into three groups for 

model training, validation, and testing purposes. Specifically, 65% of the dataset is used for model 

training and 15% is used for validation, while the remaining 20% is utilized for testing the 

prediction accuracy of the trained model. To this end, the trajectories of all vehicles are first sorted 

based on vehicle ID, reshaping into a multi-index dataset, given the time series nature of data for 

each recorded vehicle. The unique ID of each vehicle and the time index of each data record 

corresponding to the vehicle are used as two indices to sort the data. This ensures that the trajectory 

data of all vehicles are considered in the training, validation, and testing datasets. Once sorted, the 

data records of each vehicle are split into the training, validation, and test sets. 
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4. Chapter 4: Results 

This chapter presents the results of model implementation, specifically discussing the model 

performance, model interpretability, and benchmark comparison 

4.1. Model Performance 

Figure 3 exhibits the frequency distributions of the ground truth vehicle headways (denoted as 

“target”) and predicted headways (denoted as “p50” for the 50th percentile prediction interval) in 

highway I-80. The prediction look-ahead window is 20 time steps into the future, which is 

equivalent to 2 seconds noting that each time step is 0.1 second. As shown, the predicted headway 

distribution closely matches that of the ground truth headways, indicating a good model fit. 

Moreover, it can be verified that both the predicted and ground truth headways follow the right-

skewed log-normal distribution, which is not surprising as the right-skewness of the headway 

distribution is known to be rooted in the microscopic car-following behavior (Li and Chen, 2017). 

  
Figure 3. Predicted and target (ground truth) vehicle headway distributions in highway I-80 

Figure 4 plots the evolution of the vehicle headway over time for a random vehicle (vehicle 

ID = 2986). As shown, the predicted headways are close to the ground truth values. In addition, it 

is seen that the provided prediction intervals (i.e., 5th, 50th, and 95th percentile) can accurately 

identify the likely best- and worst-case values for the vehicle headway over time. 
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Figure 4. Headway evolution over time for a random vehicle (Notes: “target” refers to the ground truth 

headways; “p05”, “p50”, and “p95” denote the predicted headways at the 5th, 50th, and 90th prediction 

intervals) 

4.2. Model Interpretability 

In this project, we consider that the mesoscopic-scale vehicle headway at a time step may be 

affected by the vehicle headway at previous time steps as well as eight input variables 

encompassing 1) microscopic traffic measures, including the instantaneous speeds of the subject 

vehicle and preceding vehicle, acceleration of the subject vehicle, and lane position of the 

subjective vehicle, 2) macroscopic traffic measures, including traffic flow rate, and 3) vehicle 

class, length, and width. The importance of each of these variables in terms of the extent of 

contribution to the vehicle headway prediction are calculated using the variable selection weights 

𝒗𝑥𝑡
 described in Eq. (2). Results are shown in TABLE 1, highlighting the significant effects of the 

vehicle headway in previous time steps and the vehicle length on the future vehicle headway 

values. 

TABLE 1. Model interpretation 

Input variable Variable importance Input variable Variable importance 

Subject vehicle velocity 0.037 Subject vehicle length 0.431 

Subject vehicle acceleration 0.120 Subject vehicle width 0.091 

Preceding vehicle’s velocity 0.069 Subject vehicle class 2 0.052 

Flow rate 0.010 Subject vehicle class 3 0.426 

Lane 2 0.036   

Lane 3 0.044   

Lane 4 0.061   

Lane 5 0.010   

Lane 6 0.012   

Lane 7 0.008   

Subject vehicle headway 0.569   
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4.3. Benchmark Comparison 

To further evaluate the model performance, we compare the goodness-of-fit of the proposed 

model, in terms of the mean absolute error (MAE) calculated as 𝑀𝐴𝐸 =  (∑ |�̂� − 𝑦|𝑁
𝑖=1 ) 𝑁⁄ , with 

two state-of-the-art benchmark deep learning models, namely a deep autoregressive model 

(denoted as “DeepAR” (Salinas et al., 2020)) and a sequence-to-sequence model (denoted as “Seq-

2-Seq”), using the same training data. Notably, the much smaller MAE values of the presented 

TFT model serve as a clear indication that it outperforms the other two benchmarks. 

 
Figure 5. Model comparison against two state-of-the-art benchmark deep learning models for multi-step-

ahead time series forecasting 
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5. Chapter 5: Conclusions 

This project contributes to the traffic flow studies through the application of a novel interpretable 

deep learning model to empirical vehicle trajectory data in order to predict the vehicle headway 

over multiple time steps into the future. Compared to the existing statistical probability distribution 

models of time headway, the presented deep learning model can directly “learn” the complex and 

highly nonlinear headway distribution from the data, rather than relying on a closed-form 

mathematical model. This allows to overcome the common issues in headway modeling stemming 

from the heterogenous influence of various random factors on headway. Of note among such 

factors is traffic congestion, which causes the (mesoscopic) headway distribution to depend on the 

(microscopic) instantaneous speeds of vehicles. In addition, mixed traffic conditions comprising 

multiple vehicle classes (e.g., cars and trucks) give rise to heterogenous headway distributions 

along a roadway and across traffic lanes. Also, human drivers have distinct perceptual reactions 

and desired headways (i.e., inter-driver heterogeneity) and even the same driver may behave 

differently over time and space (i.e., intra-driver heterogeneity), leading to distinct headway 

distributions with different variances. Last but not least is the asymmetric driving behavior, which 

refers to the preference of drivers in maintaining short headways rather than long headways, 

resulting in rightly-skewed headway distributions. 

Compared to recurrent deep networks, the proposed deep learning model can overcome the 

issue of back-propagated error decay (a.k.a. vanishing gradient problem), thus can exhibit superior 

capability for multi-step-ahead vehicle headway time series prediction with long temporal 

dependency. The model is trained and tested using the vehicle trajectory data from the USDOT’s 

Next Generation Simulation (NGSIM) dataset. We investigate eight input features influencing 

vehicle headway, including both microscopic traffic measures (i.e., instantaneous speeds of the 

subject and leading vehicles, acceleration of the subject vehicle, and lane position of the subjective 

vehicle) and macroscopic traffic flow rate, as well as vehicle information (i.e., vehicle class, length, 

and width). 
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