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Chapter 1

Introduction

1.1 Background

Risk quantification and reachability analysis are crucial for safety-critical
autonomous control systems. For example, these techniques are widely used
in stochastic safe control [1,2], safe exploration [3,4], and safe reinforcement
learning [5,6,7,8]. However, it is challenging to accurately quantify long-term
risks and find maximally safe control policies for complex nonlinear systems.
There are stringent trade-offs between accuracy, time horizon, sample com-
plexity, and computation. Such tradeoffs are particularly stringent when the
risk is associated with rare events and the dimensions of the systems are
high [9]. In addition, unsafe events, risky states, and long-term trajecto-
ries can be prohibitively costly to sample from physical systems. Motivated
by these challenges, this paper proposes an efficient Physics-Informed Re-
inforcement Learning (PIRL) that can estimate long-term maximal safety
probabilities with short-term data that do not contain many unsafe events.

1.2 Related work

Many learning-based techniques were developed to quantify various forms of
risk. For deterministic systems (worst-case framework), RL techniques were
adapted for reachability analysis [10]. For stochastic systems, policy gradi-
ent approaches were used to minimize CVaR and coherent risk measures [11].
Deep Q-learning was used to learn the probabilities of constraint violations
of time horizon one (at each time), which are then used to constrain learning
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and exploration [5, 8]. Estimation of long-term probabilities under maxi-
mally safe actions is an optimization problem with multiplicative costs over
time whose optimality conditions were characterized [12]. However, solving
such optimization problems is not trivial, particularly for high-dimensional
systems. Although techniques such as taking logarithms are often used to
convert multiplicative costs into summations in practice, such techniques
cannot be used directly in this setting (Remark 1 for details). Here, we show
that long-term safety probabilities (in the form of multiplicative costs of ex-
pected index functions) are transferable to additive costs, for which many
RL methods can be used.

Although RL has the potential to offer scalable risk quantification tech-
niques, one may not know how accurate the converged solutions and general-
ization to states or time horizons whose samples are unavailable. This is prob-
lematic if the quantified risk is to be used in safety-critical systems, because
the safety of subsequent decision-making techniques depends on accurate risk
quantification. To tackle these challenges, we propose to leverage Physics-
Informed Neural Networks (PINN) [13]. PINN has a demonstrated potential
in generalization due to the use of physics constraints [14, 15]. PINN-based
approach has been used to quantify safety probabilities of a given controller
with provable generalization [16]. Here, we derive a PDE characterizing the
safety probability and integrate it into a PIRL framework.

Due to the integration of RL and PINN, the proposed framework has the
following advantages.

• Expansion of feasible regions: By exploring a maximally safe controller,
the set of state spaces with tolerable risks is expanded. When the
maximal safety probability is used to constrain action and exploration,
the system is expected to be less conservative (see Fig. 4.1).

• Learning from sparse rewards in space and time: The proposed method
can learn from binary rewards that are also sparse in time and achieve
objectives similar to reward shaping (see Fig. 4.3). This is achieved
by leveraging physics constraints to extract and propagate information
from neighbors and boundaries.

• Generalization to longer-horizon and unsampled risky states: The pro-
posed method can estimate long-term safety probability using short-
term samples and achieve comparable learning effect using reduced
number of unsafe events (see Fig. 4.4). This feature is beneficial when
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samples from long-term trajectories are unavailable or when risky states
are costly to sample.

The proposed method is built on Deep Q-Network (DQN) algorithm [17], but
the framework is generalizable to other deep RL techniques. While several
PIRL frameworks have been proposed (see [18] for a review), to the best of
our knowledge, this work is the first to combine an RL problem with PINN for
the purpose of estimating maximal safety probabilities and the corresponding
policies.

1.3 Notation

Let R and R+ be the set of real numbers and the set of nonnegative real
numbers, respectively. Let Z and Z+ be the set of integers and the set of non-
negative integers. For a set A, Ac stands for the complement of A, and ∂A for
the boundary of A. Let ⌊x⌋ ∈ Z be the greatest integer less than or equal to
x ∈ R. Let 1[E ] be an indicator function, which takes 1 when the condition
E holds and otherwise 0. Let P[E|X0 = x] represents the probability that the
condition E holds involving a stochastic process X = {Xt}t∈R+ conditioned
on X0 = x. Given random variables X and Y , let E[X] be the expectation
of X, and E[X|Y = y] be the conditional expectation of X given Y = y. We
use upper-case letters (e.g., Y ) to denote random variables and lower-case
letters (e.g., y) to denote their specific realizations. For a scalar function ϕ,
∂xϕ stands for the gradient of ϕ with respect to x, and ∂2

xϕ for the Hessian
matrix of ϕ. Let tr(M) be the trace of the matrix M .
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Chapter 2

Problem Statement

We consider a control system with stochastic noise of w-dimensional Brown-
ian motion {Wt}t∈R+ starting from W0 = 0. The system state Xt ∈ X ⊂ Rn

evolves according to the following stochastic differential equation (SDE):

dXt = f(Xt, Ut)dt+ σ(Xt, Ut)dWt, (2.1)

where Ut ∈ U ⊂ Rm is the control input. Throughout this paper, we as-
sume sufficient regularity in the coefficients of the system (2.1). That is, the
functions f and σ are chosen in a way such that the SDE (2.1) admits a
unique strong solution (see, e.g., Section IV.2 of [19]). The size of σ(Xt) is
determined from the uncertainties in the disturbance, unmodeled dynamics,
and prediction errors of the environmental variables.

For numerical approximations of the solutions of the SDE and optimal
control problems, we consider a discretization with respect to time with a
constant step size ∆t under piecewise constant control processes. For 0 =
t0 < t1 < · · · < tk < . . . , where tk := k∆t, k ∈ Z+, by defining the discrete-
time state Xk := Xtk with an abuse of notation, the discretized system can
be given as

Xk+1 = F u(Xk,∆Wk), (2.2)

where ∆Wk := {Wt}t∈[tk,tk+1), and F u stands for the state transition map
derived from (2.1) under a Markov control policy u : [0,∞)×X→ U. From an
optimal control perspective, using a Markov policy is not restrictive when the
value function has a sufficient smoothness under several technical conditions
(see [19, Theorem IV.4.4] and Assumption 1 below). Note that using a piece-
wise constant control process with a Markov policy u implies that the control
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process is given as Ut = u(δ(t), Xδ(t)), for t ∈ R+, where δ(t) := ⌊t/∆t⌋∆t,
and the discretized system (2.2) has the Markov property at the discrete
times [20].

Safety of the system can be defined by using a safe set C ⊂ X. For the
discretized system (2.2) and for a given control policy u, the safety proba-
bility Ψu of the initial state X0 = x for the outlook horizon τ ∈ R can be
characterized as the probability that the state Xk stays within the safe set C
for k ∈ Nτ := {0, . . . , N(τ)}, where N(τ) := ⌊τ/∆t⌋, i.e.,

Ψu(τ, x) := P[Xk ∈ C, ∀k ∈ Nτ | X0 = x, u]. (2.3)

Then, the objective of this paper can be described as follows.

Problem 1. Consider the system (2.2) starting from an initial state x ∈ C.
Then, estimate the maximal safety probability defined as

Ψ∗(τ, x) := sup
u∈U

Ψu(τ, x), (2.4)

where U is the class of bounded and Borel measurable Markov control policies.

For the results stated in the next section, we assume the following tech-
nical conditions:

Assumption 1. We stipulate that

(a) U is compact.

(b) f , σ and their first and second partial derivatives with respect to the
state are continuous.

(c) σ(x, u) is an n×n matrix, such that for all (x, u) ∈ X×U and ξ ∈ Rn,∑n
i,j=1 σij(x, u)ξiξj ≥ γ|ξ|2, where γ > 0.

(d) Cc is a bounded closed subset of X with ∂C, a three-times continuously
differentiable manifold.

(e) Ψu(τ, x) converges to Ψu
c (τ, x) := P[Xt ∈ C, ∀t ∈ [0, τ ] |X0 = x, u] as

∆t→ 0.

The assumptions (a) to (d) are used for assuring the smoothness of the
value function discussed in Sec. 3.2. The assumption (e) is needed to ensure
the consistency between the safety probability in the discrete time and the
PDE condition in the continuous time, and similar conditions are achieved
in [20,21].

6



Chapter 3

Proposed Framework

Here we present a physics-informed RL framework for safety probability es-
timation. For this, a problem formulation with additive cost is presented in
Sec. 3.1, and a PDE characterization for the safety probability is derived in
Sec. 3.2. The proposed framework is presented in Sec. 3.3.

3.1 Problem Formulation with Additive Cost

Problem1 can be regarded as a stochastic optimal control problem with a
multiplicative cost to be maximized, because the objective function Ψu is
naively written as follows:

Ψu(τ, x) =E[1 [Xk ∈ C, ∀k ∈ Nτ ] |X0 = x, u]

=E

[
N(τ)∏
k=0

1[Xk ∈ C]

∣∣∣∣∣X0 = x, u

]
, (3.1)

Remark 1. To convert a multiplicative cost into an additive cost, there are
two typical ways taken in RL problem formulations. One is to use a log scale
translation of the return. However, this approach fails in the case of the
safety probability. This is because each term is conditioned on the previous
steps, and thus the reward at the time step k can not be represented as a
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function of the state Xk as follows:

logΨu(τ, x) = logP[∩N(τ)
k=0 Ek|X0 = x, u]

= logP[E0|X0 = x, u]P[E1|E0, X0 = x, u]

· P[E2|E1, E0, X0 = x, u] · · ·

= log

N(τ)∏
k=0

P[Ek|Ek−1, . . . , E0, X0 = x, u]

=

N(τ)∑
k=0

logP[Ek|Ek−1, . . . , E0, X0 = x, u], (3.2)

where Ek represents the condition that Xk ∈ C. The second approach is to
augment the state space by considering a sequence of observations as a state,
i.e., {x0, x1, . . . , xk}. In this paper, we will consider an augmented state
that is only one-dimension higher than the original state, which significantly
reduces the dimension of the state space.

In this paper, by 1) introducing an appropriate augmented system, and
2) using the idea in [22] of representing the cost in a form of sum of multi-
plicative costs, we show that the above multiplicative cost can be naturally
transformed to an additive cost. For this, we consider a variable Hk that
represents the remaining time before the outlook horizon τ is reached, i.e.,

H0 = τ, Hk+1 = Hk −∆t. (3.3)

Then, let us consider the augmented state space S := R×X ⊂ Rn+1 and the
augmented state Sk ∈ S, where we denote the first element of Sk by H̃k and
the other elements by X̃k, i.e.,

Sk = [H̃k, X̃
⊤
k ]

⊤, (3.4)

where we use the tilde notation to distinguish between the original dynamics
(2.2) and those for the additive cost representation introduced below. For
the state Sk, consider the stochastic dynamics starting from the initial state

S0 = s := [τ, x⊤]⊤ ∈ S (3.5)

with τ ∈ R given as follows: for ∀k ∈ Z+,

Sk+1 =

{
F̃ u(Sk,∆Wk), Sk /∈ Sabs,
Sk, Sk ∈ Sabs,

(3.6)
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with the function F̃ u given by

F̃ u(Sk,∆Wk) :=

[
H̃k −∆t

F u(X̃k,∆Wk)

]
, (3.7)

and the set of absorbing states Sabs given by

Sabs := {[τ̃ , x̃⊤]⊤ ∈ S | τ̃ < 0 ∨ x̃ ∈ Cc}. (3.8)

The notion of absorbing state is commonly used in RL literature [23], and
we have Sk = [H̃k, X̃

⊤
k ]

⊤ = [Hk, X
⊤
k ]

⊤ for the states satisfying Sk /∈ Sabs, but
not for Sk ∈ Sabs where the state Sk transitions to itself.

Then, the following proposition states that the multiplicative cost repre-
sentation (3.1) can be transformed to an additive cost by using the augmented
dynamics (3.6).

Proposition 1. Consider the system (3.6) starting from an initial state s =
[τ, x⊤]⊤ ∈ S and the reward function r : S → R given by

r(Sk) := I[H̃k ∈ G] I[Sk /∈ Sabs] (3.9)

with G := [0,∆t). Then, for a given control policy u, the value function vu

defined by

vu(s) := E

[
∞∑
k=0

r(Sk)

∣∣∣∣∣ S0 = s, u

]
(3.10)

takes a value in [0, 1] and is equivalent to the safe probability Ψu(τ, x), i.e.,

vu(s) = Ψu(τ, x). (3.11)

Proof. See AppendixA. ■

Since the reward function r contains the term I[Sk /∈ Sabs], the reward is
always zero for Sk ∈ Sabs. Thus, the value function vu can also be written as

vu(s) = E

[
Nf∑
k=0

r(Sk)

∣∣∣∣∣ S0 = s, u

]
, (3.12)

where Nf is the first entry time to Sabs given by

Nf := inf {j ∈ Z+ |Sj ∈ Sabs} . (3.13)
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Thus, we can consider an episodic RL problem by treating Sabs as the termi-
nal states. The action-value function qu(s, a), defined as the value of taking
an action a ∈ U in state s and thereafter following the policy u, is given by

qu(s, a) := E

[
Nf∑
k=0

r(Sk)

∣∣∣∣∣ S0 = s, U0 = a, u

]
. (3.14)

The objective of RL is to find the optimal action-value function defined as

q∗(s, a) := sup
u∈U

qu(s, a). (3.15)

3.2 PDE Characterization of Safety Proba-

bility

To implement the technique of PINN, a PDE condition is introduced in this
subsection. This is achieved based on the Hamilton-Jacobi-Bellman (HJB)
theory of stochastic optimal control for a class of reach-avoid problems [24].
The safety problem can be regarded as a special case of reach-avoid problems,
which determines whether there exists a control policy such that the process
X reaches a target set A prior to entering an unsafe set B. In [24], for the
continuous-time setting of the SDE (2.1), an exit-time problem is considered
to characterize the function given by

V ū(ts, x) := E[I[X ts,x;ū
Te

∈ A]], Te := min(TB, tf), (3.16)

where the process {X ts,x;ū
t }t∈[ts,tf ] represents the unique strong solution of

(2.1) for the time interval of [ts, tf ] starting from the state x under the control
process ū, which belongs to the set Uts of progressively measurable maps into
U. The random variable TB stands for the first entry time to B. By taking
A := C and B := Cc, the function V ū(ts, x) can be rewritten as

V ū(ts, x) = E[I[X ts,x;ū
Te

∈ C]] (3.17)

= E[I[X ts,x;ū
t ∈ C, ∀t ∈ [ts, tf ]]], (3.18)

where the second equality holds because I[X ts,x;ū
Te

∈ C] = 1 if and only if the
state Xt stays in C = Bc for t ∈ [ts, tf ] (see [24, Proposition 3.3] for a precise
discussion). Thus, with Assumption 1(d), we have

V ū(tf − τ, x) = lim
∆t→0

Ψu(τ, x) = lim
∆t→0

vu(s), (3.19)
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when we choose the control process ū such that it determines the control
input as Ut = u(t,Xt).

In [24], the optimal value function V ∗(ts, x) := supū∈Uts
V ū(ts, x), is char-

acterized as a solution of an HJB equation. However, it does not admit a
classical solution due to the discontinuity of the payoff function given by the
indicator function. Instead, V ∗ becomes a discontinuous viscosity solution of
a PDE under mild technical conditions [24, Theorem 4.7]. Furthermore, to
allow the use of numerical solution techniques mainly developed for continu-
ous or smooth solutions, it is shown in [24] that one can construct a slightly
conservative but arbitrarily precise way of characterizing the original solution
by considering a set Aϵ smaller than A, where Aϵ := {x ∈ A | dist(x,Ac) ≥ ϵ},
with dist(x,A) := infy∈A ∥x− y∥. Following [24], to derive a PDE condition
to implement PINN, we consider the following function:

quϵ (s, a) := E

[
Nf∑
k=0

rϵ(Sk)

∣∣∣∣∣ S0 = s, U0 = a, u

]
, (3.20)

where the function rϵ is given by

rϵ(Sk) := I[H̃k ∈ G] I[Sk /∈ Sabs] lϵ(X̃k), (3.21)

with Cϵ := {x ∈ C | dist(x, Cc) ≥ ϵ} and

lϵ(x) := max

{
1− dist(x, Cϵ)

ϵ
, 0

}
. (3.22)

Theorem 1. Consider the system (3.6) derived from the SDE (2.1) and
suppose that Assumption 1 holds. Then, for all s ∈ S and a ∈ U, q∗(s, a) =
limϵ→0 q

∗
ϵ (s, a), where q∗ϵ (s, a) := supu∈U quϵ (s, a). Furthermore, the function

q∗ϵ (s, a) is the continuous viscosity solution of the following partial differential
equation in the limit of ∆t→ 0: for s ∈ (0,∞)× C,

∂sq
∗
ϵ (s, a

∗)f̃(s, a∗)

+
1

2
tr
[
σ̃(s, a∗)σ̃(s, a∗)⊤∂2

sq
∗
ϵ (s, a

∗)
]
= 0, (3.23)

where the function f̃ and σ̃ are given by

f̃(s, a) :=

[
−1

f(x, a)

]
, σ̃(s, a) :=

[
0

σ(x, a)

]
, (3.24)
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and a∗ := arg supa∈U q∗(s, a). The boundary conditions are given by

q∗ϵ ([0, x
⊤]⊤, a∗) = lϵ(x), ∀x ∈ X, (3.25)

q∗ϵ ([τ, x
⊤]⊤, a∗) = 0, ∀τ ∈ R, ∀x ∈ ∂C. (3.26)

Proof. See AppendixB. ■

Remark 2. Under Assumption 1 and further regularity conditions on the pay-
off function (i.e., differentiability), the PDE (3.23) can be understood in the
classical sense (see e.g., [19, Theorem IV.4.1]). This means that the PDE
condition can be imposed by the technique of PINN using automatic differ-
entiation of neural networks.

3.3 Physics-informed RL (PIRL) Framework

Here we present the proposed PIRL framework. While in principle any RL
algorithms can be considered, here we focus on an extension of the Deep
Q-Network (DQN) algorithm [17] as a simple but practical example. The
optimal action-value function q∗(s, a) will be estimated by using a function
approximator Q(s, a; θ) with the parameter θ.

The proposed algorithm is presented in Algorithm1. The overall structure
follows from the DQN algorithm, while we added new statements in the lines
14 to 19 to take samples for PINN and modified the loss function L used
in the line 21. Following the framework of PINN [13], our loss function L
consists of the three terms of LD for the data loss of the original DQN, LP

for the physics model given by the PDE (3.23), and LB for the boundary
conditions (3.25) and (3.26), i.e.,

L =LD + λLP + µLB, (3.27)

where λ and µ are the weighting coefficients, and the specific form of each loss
is given below. After the initializations of the replay memory D, the function
approximator Q, and its target function Q̂, the main loop starting at the line
4 iterates M episodes, and the inner loop starting at the line 6 iterates the
time steps of each episode. Each episode starts with the initialization of the
state s0 = [h0, x

⊤
0 ]

⊤ in the line 5, which is sampled from the distribution PD

given by

PD(s0) =

{
1/|ΩD|, h0 = τD ∧ x0 ∈ ΩD,

0, otherwise,
(3.28)
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where τD ∈ R+ is the time interval of the data acquired through the DQN
algorithm, which can be smaller than τ . The set ΩD ⊂ X is the domain of
possible initial states, and |ΩD| is its volume. At each time step k, through
the lines 7 to 10, a sample of the transition (sk, ak, rk, s

′
k) of the state sk,

the action ak, the reward rk, and the next state s′k is stored in the replay
memory D. In the lines 11 to 13, a random minibatch SD of transitions is
taken from D, and the set YD of the target values is calculated using the
target q-function Q̂, where the j-th element yj of YD is given by1

yj =

{
rj, for terminal s′j,

rj +maxa Q̂(s′j, a; θ̂), otherwise.
(3.29)

Then, the loss function LD is given by

LD(θ;SD,YD) =
1

|SD|
∑
j

(yj −Q(sj, aj; θ))
2. (3.30)

To calculate the loss term LP, a random minibatch SP = {sl} is taken at
the line 15. Each element sl = [hl, x

⊤
l ]

⊤ is sampled from the distribution PP

given by

PP(sl) =

{
1/(τ |ΩP|), hl ∈ [0, τ ] ∧ xl ∈ ΩP,

0, otherwise,
(3.31)

with ΩP ⊂ C that specifies the domain where the PDE (3.23) is imposed.
In the line 16, the set of greedy actions AP = {a∗l } is calculated by a∗l =
argmaxa Q(sl, a; θ). Then, the PDE loss LP can be defined as

LP(θ;SP,AP) =
1

|SP|
∑
l

WP(sl, a
∗
l ; θ)

2 (3.32)

with the residual function WP(sl, a
∗
l ; θ) given by

WP(sl, a
∗
l ; θ) :=∂sQ(sl, a

∗
l ; θ)f̃(sl, a

∗
l )

+
1

2
tr
[
σ̃(sl, a

∗
l )σ̃(sl, a

∗
l )

⊤∂2
sQ(sl, a

∗
l ; θ)

]
. (3.33)

1The index j is independent of the time step k. Random sampling from different
time steps improves the stability of learning process by reducing non-stationarity and
correlation between updates [17].
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For the boundary loss LB, as stated in the line 18, a minibatch SB = {sm}
with sm = [hm, x

⊤
m]

⊤ is taken by using the distribution PB(s) given by

PB(s) =


1/(2|ΩP|), hm = 0 ∧ xm ∈ ΩP,

1/(2τ |ΩB|), hm ∈ [0, τ ] ∧ x ∈ ΩB,

0, otherwise.

(3.34)

where ΩB ⊂ ∂C stands for the lateral boundary. The loss LB can be defined
as

LB(θ;SB,AB) =
1

|SB|
∑
m

WB(sm, a
∗
m; θ)

2, (3.35)

with the set AB = {a∗m} of greedy action and the residual WB given by

WB(sm, a
∗
m; θ) = Q(sm, a

∗
m; θ)− lϵ(xm). (3.36)

Finally, at the line 21, the parameter θ is updated to minimize the total loss
L based on a gradient descent step. The parameter θ̂ of the target function
Q̂ used in (3.29) is updated at the line 22 with a smoothing factor η ∈ (0, 1].

With this algorithm, the length of each episode scales with the parameter
τD, and it can be chosen as equal to the outlook horizon τ or shorter. When
we set τD < τ , the PDE constraint is imposed on the entire time domain of
[0, τ ], and the safety probability is learned only from experiences with shorter
time interval τD. In this case, the safety probability predicted by the PINN
has bounded error [16, Theorem6]. This is beneficial in the situation where
long-term trajectories for rare unsafe events can be hardly obtained.
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Algorithm 1 DQN integrated with PINN

1: Initialize replay memory D to capacity Nmem

2: Initialize function Q with random weights θ
3: Initialize target Q function Q̂ with weights θ̂ = θ
4: for episode = 1 : M do
5: Initialize state s0 = [h0, x

⊤
0 ]

⊤ ∼ PD(s0)
6: for k = 1 : Nf do
7: /* Emulation of experience */
8: With probability ϵ select a random action ak

otherwise select ak = argmaxa Q(sk, a; θ)
9: Execute action ak

and observe reward rk and the next state sk+1

10: Store transition (sk, ak, rk, s
′
k) in D

11: /* Sample experiences */
12: Sample random minibatch SD of

transitions (sj, aj, rj, s
′
j) from D

13: Set YD = {yj} as in Eq. (3.29)
14: /* Sample minibatch for PDE */
15: Sample minibatch SP with sl ∼ PP(s)
16: Set AP with a∗l = argmaxa Q(sl, a; θ)
17: /* Sample minibatch for boundary conditions */
18: Sample minibatch SB with sm ∼ PB(s)
19: Set AB with a∗m = argmaxa Q(sm, a; θ)
20: /* Update of weights */
21: Perform a gradient descent step on

loss function L in Eq. (3.27) with respect to θ
22: Update target weight θ̂ ← ηθ + (1− η)θ̂
23: end for
24: end for
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Chapter 4

Numerical Example

This section demonstrates the effectiveness of the PIRL algorithm through a
proof-of-concept numerical example. Consider the SDE (2.1) with the state
space X := {x = [x1, x2]

⊤|x ∈ R2}, the control space U := [−1, 1] ⊂ R, and
the functions f and σ given by

f(x, u) =

[
−x3

1 − x2

x1 + x2 + u

]
, σ(x, u) =

[
0.2 0
0 0.2

]
. (4.1)

This example is based on [25] and has an unstable equilibrium point x∗ =
[0, 0]⊤, satisfying f(x∗, 0) = 0. Here, we consider the safe set C given as
follows1:

C = {x ∈ X | (1− x2
2) > 0}. (4.2)

For the implementation of the proposed DQN based algorithm, which admits
a discrete action space, the control was restricted to u ∈ {−1.0, −0.5, 0, 0.5, 1.0}.
This restriction does not affect the results when the underlying optimal con-
trol problem has a “bang-bang” nature [26]. For the function approximator
Q, we used a neural network with 3 hidden layers with 32 units per layer and
the hyperbolic tangent (tanh) as the activation function. The batch sizes
are |SD| = |SB| = |SP| = 64, and the weighting coefficients were chosen as
µ = 1 and λ = 1 × 10−2. The initial state of each episode was randomly
sampled from PD with ΩD = {[x1, x2] ∈ R2 | |x1| ≤ 1.5, |x2| ≤ 1.0}. The
set ΩP and ΩB were given as ΩP = {[x1, x2] | |x1| ≤ 1.5, |x2| ≤ 0.9} and

1To satisfy Assumption 1(d), one can arbitrarily chose a sufficiently large bounded set
Cc to cover a part of unsafe region in X of interest.
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(a) Nominal controller (b) Proposed PIRL

Figure 4.1: Safety probability for the outlook horizon of τ = 2.0.

Figure 4.2: Learning progress.

ΩB = {[x1, x2] | |x1| ≤ 1.5, |x2| = 1.0}, respectively. Our implementation is
available at here2.

Benefit of maximally safe policy and probability. Figure 4.1 shows the
safety probability for the outlook horizon τ = 2.0 with (a) nominal controller
and (b) controller learned by PIRL. Here, the nominal controller was obtained
by using the technique of feedback linearization and then applying the LQR
theory as in [25]. The safety probabilities in the figure were calculated by a
standard Monte Carlo simulation (the estimation accuracy by the function
approximator Q will be discussed later). The red arrows in the figure show
the vector field of the deterministic part of the dynamics. When the learned

2https://github.com/hoshino06/PIRL_ACC2024
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Figure 4.3: Comparison with reward shaping.

policy is used, the system achieves higher safety probability. Thus, when the
learned probability is used in probabilistic safety certificates such as [2], it
allows the system to explore wider regions.

Efficient learning despite sparse reward. Figure 4.2 shows the training
progress. Besides the plot for the proposed PIRL shown by green, the black
line shows the result with the original DQN, and the blue line the PIRL
with λ = 0, which means only boundary conditions were imposed. The
solid curves correspond to the mean of eight repeated experiments, and the
shaded region shows their standard deviation. With the original DQN, the
agent has to learn only from sparse zero/one rewards, and often fails to find
a safe policy. In contrast, with the proposed PIRL, a safe policy can be
found despite the sparse rewards, and the averaged return (corresponds to
the safety probability) rises with fewer samples especially at the initial phase.

One of the most common solutions to the issue of sparse reward is re-
ward shaping [27]. For example, one could design a reward rrs to include
information about the distance from the boundary of the safe set:

rrs(s) := r(s) + c(1− x2
2). (4.3)

Figure 4.3 shows the comparison of the averaged safety probability achieved
at the initial phase of the training, where c = 0.05. It can be seen that
the proposed PIRL can learn with fewer experiences as well as the reward
shaping. This is because imposing physics loss allows propagation of reward
information from neighbors and boundaries, and can serve as an alternative
to reward shaping.

Generalization of PIRL. Figure 4.4a shows the accuracy of the safety
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probability for τ = 2.0 estimated by the function approximater Q learned
with τD ≤ τ , with and without PDE condition3. The bar plot shows the
mean squared error between the output of the learned neural network and
the Monte Carlo calculation over 10 × 10 equally distributed points in the
state space, and error bar represents its standard deviation over eight re-
peated experiments. On the other hand, Fig. 4.4b shows the number of un-
safe events during the training process with and without the PDE constraint.
By reducing τD, the number of unsafe events can be reduced, but there is
a stringent trade-offs between the estimation accuracy and the length of τD
when the PDE constraint is not imposed (λ = 0). In contrast, with the
proposed PIRL, the safety probability is accurately estimated without ac-
quiring data no longer than τD while reducing the number of unsafe events.
This is beneficial especially in situations when safety must be ensured for
a longer period than sampled trajectories and when safe actions must be
learned without sufficiently many rare events and unsafe samples.

3Without PDE condition means λ = 0 but imposing the boundary conditions. With
PDE condition, too large λ led to an unstable behavior in the training process due to an
excessive exploitation of the greedy policy. Here it was chosen as 5 × 10−3 for τD = 1.5
and 3× 10−3 for τD = 1.0 to avoid an unstable behavior in the training process.
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Chapter 5

Conclusions

In this paper, we proposed a Physics-informed Reinforcement Learning (PIRL)
for efficiently estimating the safety probability under maximally safe actions.
This was based on the exact characterization of the safety probability as
the value function of an RL problem and the derivation of a PDE condition
satisfied by the action-value function. The effectiveness of PIRL has been
demonstrated through an example based on the Deep Q-Network algorithm
integrated with the technique of Physics-informed Neural Network (PINN).
Future work includes application of this framework to estimate safety prob-
ability in real-world tasks such as autonomous driving, and its use in e.g.,
safe RL.
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Chapter 6

Proofs

6.1 Proof of Proposition 1

Proof. From the fact that H̃k = Hk and X̃k = Xk hold for Sk /∈ Sabs, the
safety probability Ψu(τ, x) can be rewritten as follows:

Ψu(τ, x) =E
[
PN(τ)

∣∣S0 = s, u
]

(6.1)

with the symbol Pk is defined as

Pk :=
k∏

j=0

1[X̃j ∈ C]. (6.2)

Then, this can be further transformed into a form of sum of multiplicative
cost as follows:

Ψu(τ, x) =E
[(
PN(τ)

)
1[H̃N ∈ G]

∣∣S0 = s, u
]

=E

N(τ)∑
k=0

(Pk)1[H̃k ∈ G]

∣∣∣∣∣∣S0 = s, u

 . (6.3)

Here, the transformations from (6.1) to (6.3) is based on the fact that I[H̃k ∈
G] is 1 if k = N(τ) and 0 otherwise. Given this form of representation,
the proof will be completed by showing that the expectation of the return
G =

∑∞
k=0 r(Sk) is equal to (6.3). First, consider the case where X̃k stays
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inside the safe set C for all k = 0, . . . , N(τ), i.e., the trajectory is safe. In
this case, we have

Pk = 1, I[Sk /∈ Sabs] = 1, ∀k ∈ {0, . . . , N(τ)}. (6.4)

Since I[H̃k ∈ G] = 0 for all k ≥ N(τ) + 1, we have

G =
∞∑
k=0

I[H̃k ∈ G] I[Sk /∈ Sabs]

=

N(τ)∑
k=0

1[H̃k ∈ G] I[Sk /∈ Sabs]

=

N(τ)∑
k=0

(Pk)1[H̃k ∈ G]. (6.5)

Next, consider the case where X̃k̄ /∈ C for some k̄ ∈ {0, . . . , N(τ)}, i.e., the
trajectory is unsafe. Then, we have

Pk = I[Sk /∈ Sabs] = 1, ∀k ∈ {0, . . . , k̄ − 1}, (6.6)

Pk = I[Sk /∈ Sabs] = 0, ∀k ∈ {k̄, . . . , N(τ)}. (6.7)

Thus, the return becomes

G =

N(τ)∑
k=0

1[H̃k ∈ G] I[Sk /∈ Sabs]

=
k̄−1∑
k=0

1[τ̃k ∈ G] +
N(τ)∑
k=k̄

0 · 1[H̃k ∈ G]

=

N(τ)∑
k=0

(Pk)1[H̃k ∈ G]. (6.8)

Thus, the expectation of the return G over all possible trajectories, which is
represented either by (6.5) or (6.8), is equivalent to the safety probability Ψu

given in (6.3). Also, the function vu takes a value in [0, 1], since the return
G takes 0 or 1. ■
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6.2 Proof of Theorem 1

Proof. First, consider the following function for the SDE (2.1) with the exit-
time Te = min(TCc , tf):

V ū
ϵ (ts, x) := E[lϵ(X

ts,x;ū
Te

)]. (6.9)

Then, it follows from [24, Theorem 4.7] that under Assumption 1(a)-(d), the
function V ∗

ϵ (ts, x) := supū∈Uts
V ū
ϵ (ts, x) is a viscosity solution of the following

PDE:

sup
a∈U
LaV ∗

ϵ (ts, x) = 0, ∀(ts, x) ∈ [0, tf)× C, (6.10)

where La is the Dynkin operator defined as

LaΦ(t, x) :=∂tΦ(t, x) + f(x, a)⊤∂xΦ(t, x)

+
1

2
tr[σ(x, a)σ(x, a)⊤∂2

xΦ(t, x)], (6.11)

and the boundary condition given by

V ∗
ϵ (ts, x) = lϵ(x), ∀(t, x) ∈ [0, tf ]× Cc ∪ {tf} × Rn. (6.12)

The continuity of the function V ∗
ϵ follows from Lipschitz continutity of the

payoff function lϵ and uniform continuity of the stopped solution process [24,
Proposition 4.8].

Here, the function V ū
ϵ (ts, x) can be rewritten as

V ū
ϵ (ts, x) = E[I[X ts,x;ū

Te
∈ C] lϵ(X t,x;ū

Te
)]

= E[I[X ts,x;ū
t ∈ C, ∀t ∈ [ts, tf ]] lϵ(X

t,x;ū
Te

)],

where the above transformations follows from the fact that lϵ(X
ts,x;ū
Te

) ̸= 0

only if X ts,x;ū
Te

∈ C. Then, with the function Ψu
ϵ (τ, x) given by

Ψu
ϵ (τ, x) := E

N(τ)∏
k=0

I[Xk ∈ C] lϵ(XN(τ))

∣∣∣∣∣∣ X0 = x, u

 ,
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from the continuity of the function lϵ and Assumption 1(e), we have V u
ϵ (tf −

τ, x) = lim∆t→0Ψ
u
ϵ (τ, x). Furthermore, with the same arguments as in the

proof of Proposition 1, we have Ψu
ϵ (τ, x) = vuϵ (s) with

vuϵ (s) := E

N(τ)∑
k=0

rϵ(Sk)

∣∣∣∣∣∣ S0 = s, u

 . (6.13)

Since we have

vuϵ (s) = max
a∈U

q∗ϵ (s, a) −−−→
∆t→0

V ∗
ϵ (tf − τ, x), (6.14)

and V ∗
ϵ (ts, x) satisfies the PDE (6.10), the function q∗ϵ (s, a) satisfies the fol-

lowing PDE as ∆t→ 0:

sup
a∈U

∂sq
∗
ϵ (s, a

∗)f̃(s, a)

+
1

2
tr
[
σ̃(s, a)σ̃(s, a)⊤∂2

sq
∗
ϵ (s, a

∗)
]
= 0. (6.15)

Here, from q∗ϵ (s, a) = rϵ(s) + E[v∗ϵ (s
′)|s, a], where s′ is the next state given

the current state s and the input a, we have

a∗ = arg sup
a∈U

r(s) + E[v∗ϵ (s
′)|s, a]

= arg sup
a∈U

E[v∗ϵ (s
′)|s, a]

= arg sup
a∈U

E[v∗ϵ (s
′)|s, a]− v∗ϵ (s)

∆t
(6.16)

where the above transformation is based on the fact that rϵ(s) and v∗ϵ are
independent of a. Thus, from the Ito’s Lemma, a∗ maximizes the right-hand
side of (6.15) as ∆t→ 0, and substituting a∗ gives (3.23):

∂sq
∗
ϵ (s, a

∗)f̃(s, a∗)

+
1

2
tr
[
σ̃(s, a∗)σ̃(s, a∗)⊤∂2

sq
∗
ϵ (s, a

∗)
]
= 0.

■
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