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5.1 Overview of the proposed system. An audio-visual cue is emitted each time an 
individual breach of social distancing is detected. We also make a novel contribution 
by defning a critical social density value ρc for measuring overcrowding. Entrance 
into the region-of-interest can be modulated online with this value. The aggregated 
non-personal data can also be analyzed ofine to provide more insights into the social 
distancing practice in diferent public areas. Based on both online and ofine data, 
wider prevention measures can be taken as quickly as possible when necessary. Our 
system is real-time and does not record data. . . . . . . . . . . . . . . . . . . . . . . 63 

5.2 Obtaining the critical social density ρc. Keeping ρ under ρc will drive the number 
of social distancing violations v towards zero with the linear regression assumption. . 68 
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5.3 Illustration of pedestrian detection using Faster R-CNN and the corresponding social 
distancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

5.4 The change of pedestrian density ρ and the number of violations v over time. It shows 
an obvious positive correlation between ρ and v. The positive correlation is further 
illustrated in Figures 5.5 and 5.6, which show a linear relationship between ρ and 
v. The darker green horizontal line indicates the critical pedestrian density ρc and 
the lighter green line, the intercept density β0. They are obtained by the proposed 
critical social density estimation methodology in Section 5.4.5. The shaded lighter 
green area shows that there will be more violations if the pedestrian density is above 
β0. The shaded darker green area shows that more violations will be eliminated if 
the pedestrian density is further pushed below ρc, which is our critical social density. 72 

5.5 Two-dimensional histograms of the social density ρ versus the number of social dis-
tancing violations v. From the histograms we can see a linear relationship with 
positive correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

5.6 Linear regression (red line) of the social density ρ versus number of social distancing 
violations v data. Small random noise was added to each data point for better visu-
alization. Green lines indicate the prediction intervals. The critical social densities 
ρc are the x-intercepts of the regression lines. Data points might overlap. . . . . . . 74 

6.1 Learned pointcloud representations do not generalize well with an increase in sparsity. 
This problem does not translate to the 2D RGB image domain in the same fashion, as 
object shape does not change drastically with an increase in depth. However, sparse 
points in the target object’s vicinity can still be used to estimate depth. Our method 
utilizes these sparse points to estimate depth while using 2D RGB information to 
recognize shape and object-class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

6.2 Overview of the 3D/BEV object detection system based on our proposed method 
(Faraway-Frustum). It contains three main stages: frustum generation, centroid 
estimation, and box regression. First, the 2D object information (classifcation and 
2D semantic mask) is extracted from the image by conducting instance segmentation, 
and then the 3D frustum is shaped by extruding the 2D semantic mask to the 3D 
coordinate system. Second, lidar pointcloud (red) points in the frustum are collected 
and clustered, and then the 3D object centroid is estimated. Finally, depending on 
the faraway/nearby decision, the 3D bounding box is predicted by our Faraway 
Frustum Network or a state-of-the-art method. . . . . . . . . . . . . . . . . . . . . . 78 

6.3 An illustration of frustum generation. The main diference between box frustum 
and mask frustum is that box frustum uses the 2D bounding box as the projection 
source, while mask frustum uses the 2D semantic mask. Mask frustum gives a more 
compact search space alongside the outline of the object, and thus excludes some 
noise points caused by potential occlusions. . . . . . . . . . . . . . . . . . . . . . . . 81 
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6.4 An illustration of coordinate transformation for pointcloud and Faraway Frustum 
Network (FF-Net). (a) Illustrates the process of projecting the pointcloud into dif-
ferent coordinate systems in our method. After carrying out frustum generation, 
frustum rotation, clustering, and centroid estimation, the frustum pointcloud is pro-
jected into the centroid coordinate system. Our goal is to further localize the 3D 
object by the 2D projection of the frustum pointcloud and the FF-Net. (b) The FF-
Net is essential to refne the object center, regress the box size, and resolve certain 
issues that may occur while creating the frustum. For example, due to errors in de-
tection or segmentation, the cluster centroid may not be aligned well with the object. 
The FF-Net is trained to deal with such issues and refne the object localization. . . 82 

6.5 The number of points belonging to an object (pedestrians and cars) versus distance 
from the sensor in the KITTI dataset. As the distance (x-axis) increases, the number 
of lidar points in an object (y-axis) decreases drastically and the pointcloud of each 
faraway object is very sparse. When the number of lidar points is less than 10, the 
shape of objects cannot be recognized. Thus, objects with fewer than 10 points are 
considered faraway objects. We use this distribution to decide the faraway decision 
threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

6.6 Example 3D detection results of faraway objects from the KITTI test set. (a) Pedes-
trian detection. Top row : Frustum PointNets, which is based on fusing multiple 
modalities (RGB and pointcloud). Middle row : PV-RCNN, which uses only the 
pointcloud. Bottom row : Our proposed method. (b) Car detection. Same arrange-
ment as in (a). In these examples, for both the faraway pedestrian and the faraway 
car, our proposed method successfully detects the targets. However, state-of-the-art 
methods (Frustum PointNets and PV-RCNN all fail. . . . . . . . . . . . . . . . . . . 85 

7.1 Predicting pedestrian crossing intention is a multi-modal spatio-temporal problem. 
Our method fuses inherently diferent spatio-temporal phenomena with CNN-based 
visual encoders, RNN stacks, and attention mechanisms to achieve state-of-the-art 
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

7.2 Overview of the proposed pedestrian crossing intention prediction model. The yellow 
part denotes the fusion of visual features. 2D convolutional features of local context 
and global context are encoded by GRUs and fed to the attention blocks respectively. 
The two outputs are concatenated as fnal visual features. The blue part denotes 
the fusion of local features (non-visual). These non-visual features are encoded by 
another GRU and fused hierarchically, and then fed to an attention block to obtain 
the fnal non-visual features. The red part denotes the fnal fusion. Final visual 
features and fnal non-visual features are concatenated and fed to an attention block. 
A fully-connected (FC) layer is then applied to make the fnal prediction. . . . . . . 91 

7.3 Illustration of Later Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
7.4 Illustration of Early Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
7.5 Illustration of Hierarchical Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 
7.6 Qualitative results on the JAAD dataset produced by and our proposed model 

(Ours). The target pedestrians in images are enclosed by orange bounding boxes. 
The prediction results as well as ground truth labels are represented as red crossing 
or green not crossing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

7.7 More qualitative results. (a) and (b) show cases of correct prediction by the proposed 
model for which the PCPA failed. (c) and (d) show results when both the proposed 
and the PCPA model failed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 
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8.1 The proposed framework generates photorealistic imagery for driving simulators. 
First, we obtain the semantic layout of the scene through a conventional simulation 
pipeline with textureless simple 3D models. Then, this semantic layout is converted 
into a photorealistic RGB image using GANs with the proposed image formation 
and blending strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

8.2 We frst create the semantic layout, and then use a GAN-based image synthesizer 
with diferent style encodings to generate random but photorealistic RGB back-
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The proposed approach alleviates these shortcomings. . . . . . . . . . . . . . . . . . 104 

8.3 Overview of the proposed method. We introduce a novel neural graphics pipeline 
to form 2D image representations from virtual 3D scenes. Most of the scene is 
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rendered objects of interest. We then blend the cGAN synthesized image with a 
physics-based partial render for increasing visual fdelity and to maintain full control 
over the appearance of objects of interest. . . . . . . . . . . . . . . . . . . . . . . . . 107 
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realistic image by blending partially rendered foreground objects with a GAN gener-
ated background. The conventional rendering engine (CARLA) (c) requires detailed 
models and texture information while outputting unrealistic background trees and 
vegetation (shown with a yellow circle). On the other hand, using only the SPADE 
cGAN (b) approach leads to poor car shapes and omitting road markings (shown 
with a red circle), while removing the need for texturing and rendering calculations. 
The proposed method (a) has the best of both worlds. . . . . . . . . . . . . . . . . . 109 

8.5 An illustration of semantic retention analysis. The semantic segmentation result 
should stay true to the initial semantic layout. (a) Full-render yields unrealistic 
shadows. On the bottom right-hand side of the left-most image (shown with a yel-
low circle), shadows of trees cast on the sidewalk were misclassifed as a road by 
DeepLabV3. (b) cGAN generated vehicles do not retain their shapes perfectly (mid-
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to distinguish the semantic layout formation and semantic segmentation processes 
for illustration purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 
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Chapter 1 

Introduction 

Increasing the mobility of people and goods via automated transportation requires robust and 
safe intelligent vehicle systems. Computer vision is one feld that can create new frontiers towards 
this end. This project explored several potential applications of image processing, including both 
traditional and neural network and deep learning image processing technologies, to automated 
vehicle sensing and control, trafc scene analysis, pedestrian detection and intention estimation, 
and improved image synthesis for automated vehicle simulation and testing. 

Initially, we proposed three specifc potential applications: 

1. Investigating the safety and robustness of end-to-end vision-based automated driving systems, 

2. Exploring optical fow techniques for automated vehicle control, and 

3. Methodologies for extracting information from transit vehicle video for trafc count and fow 
estimation. 

As the project progressed, we pursued additional applications including 

4. Applying vision-based sensing to improve safety during COVID-19 by monitoring spacing and 
crowd densities, 

5. Fusing image and lidar processing to improve the detection of pedestrians at longer distances, 

6. Improving the prediction of pedestrian crossing intention estimation, and 

7. Synthesizing and rendering more realistic imagery in driving simulators using a generative 
approach. 

This report details each of these activities, describing the specifc problem addressed, providing 
a survey of relevant literature and current best practices, exploring the proposed solution and its 
implementation, and presenting the results and outcomes of each study. This chapter will provide 
an introduction and overview of each of the seven problems explored in this project, and future 
chapters will individually describe each activity in detail. Information regarding available source 
code or datasets is given in the concluding chapter. 

1.1 Integrating Deep Reinforcement Learning with Model-based 
Path Planners for Automated Driving 

Automated driving in urban settings is challenging. Human participant behavior is difcult to 
model, and conventional, rule-based Automated Driving Systems (ADSs) tend to fail when they 
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face unmodeled dynamics. On the other hand, the more recent, end-to-end Deep Reinforcement 
Learning (DRL) based model-free ADSs have shown promising results. However, pure learning-
based approaches lack the hard-coded safety measures of model-based controllers. Here we proposed 
a hybrid approach for integrating a path planning pipe into a vision based DRL framework to 
alleviate the shortcomings of both worlds. Our overall research objectives were to develop novel 
algorithms to integrate planning into deep reinforcement learning frameworks. 

In summary, the DRL agent is trained to follow the path planner’s waypoints as close as pos-
sible. The agent learns this policy by interacting with the environment. The reward function 
contains two major terms: the penalty of straying away from the path planner and the penalty of 
having a collision. The latter has precedence in the form of having a signifcantly greater numer-
ical value. Experimental results show that the proposed method can plan its path and navigate 
between randomly chosen origin-destination points in CARLA, a dynamic urban simulation envi-
ronment. Our code is open-source and available online at: https://github.com/Ekim-Yurtsever/ 
Hybrid-DeepRL-Automated-Driving. 

This activity was originally published in [1]. 

1.2 Optical Flow Based Visual Potential Fields for Automated 
Driving 

Monocular vision based navigation for automated driving is a challenging task due to the lack 
of sufcient information to compute temporal relationships among objects on the road. Optical 
fow is an option to obtain temporal information from monocular camera images, and has been 
used widely with the purpose of identifying objects and their relative motion. This work proposed 
to generate an artifcial potential feld, i.e. visual potential feld, from a sequence of images using 
sparse optical fow, which was used together with a gradient tracking sliding mode controller to 
navigate the vehicle to its destination without collision with obstacles. The angular reference for 
the vehicle is computed online. 

Topics of interest included optical fow and focus of expansion, road and road boundary potential 
feld design, and gradient tracking sliding mode controller for lateral and longitudinal control. This 
work assumed that the vehicle does did not have a priori information from the map or obstacles 
to navigate successfully. The proposed technique is tested both in synthetic and real images. 

This activity was originally published in [2]. 

1.3 Automated Trafc Surveillance using Existing Cameras on 
Transit Buses 

Millions of commuters face congestion as a part of their daily routines. Mitigating trafc 
congestion requires efective transportation planning, design, and management. Accurate trafc 
data are needed for informed decision making. As such, operating agencies deploy fxed-location and 
often temporary detectors on public roads to count passing vehicles. This trafc fow measurement 
is key to estimating demand throughout the network. However, fxed-location detectors are spatially 
sparse and do not cover the entirety of the road network, and temporary detectors are temporally 
sparse, providing often only a few days of measurements every few years. 

Transit vehicles cover a nontrivial fraction of the road network as they follow their assigned 
routes and have the potential to act as trafc probes providing observations distributed over sig-
nifcant periods of time and space. Many transit systems have installed cameras and video capture 
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systems that, as a byproduct of their primary monitoring and safety functions, also capture trafc 
scenes and the presence and motion of vehicles, bicycles, and pedestrians surrounding the transit 
vehicle. 

Against this backdrop, previous studies proposed that public transit bus feets could be used 
as surveillance agents if additional sensors were installed, and the viability and accuracy of this 
methodology was established by manually processing video imagery recorded by cameras mounted 
on transit buses. In this work, we proposed to operationalize this trafc surveillance methodology 
for practical applications, leveraging the perception and localization sensors already deployed on 
these vehicles. We present an automatic, vision-based vehicle counting method applied to the video 
imagery recorded by cameras mounted on transit buses. Video data from in-service transit vehicles 
was provided by the Ohio State University (OSU) Campus Area Bus Service (CABS) operated by 
the OSU Trafc and Transportation Management (TTM) department. We expect the developments 
and applications of this activity to allow us to deliver useful information to our stakeholder (OSU 
TTM) and to demonstrate the potential for large scale implementation. 

First, a state-of-the-art 2D deep learning model detects objects frame by frame. Then, detected 
objects are tracked with the commonly used SORT method. The proposed counting logic converts 
tracking results to vehicle counts and real-world birds-eye-view trajectories. Using multiple hours of 
real-world video imagery obtained from in-service transit buses, we demonstrate that the proposed 
system can detect and track vehicles, distinguish parked vehicles from trafc participants, and 
count vehicles bidirectionally. Through an exhaustive ablation study and analysis under various 
weather conditions, it is shown that the proposed method can achieve high-accuracy vehicle counts. 

This activity was originally published in [3]. 

1.4 A Vision based Social Distancing and Critical Density Detec-
tion System for COVID-19 

Social distancing (SD) is an efective measure to prevent the spread of the infectious Coronavirus 
Disease 2019 (COVID-19). However, a lack of spatial awareness may cause unintentional violations 
of this new measure. Against this backdrop, we proposed an active surveillance system to slow the 
spread of COVID-19 by warning individuals in a region-of-interest. 

Our contribution is twofold. First, we introduce a vision-based real-time system that can detect 
SD violations and send non-intrusive audio-visual cues using state-of-the-art deep-learning models. 
Second, we defne a novel critical social density value and show that the chance of SD violation 
occurrence can be held near zero if the pedestrian density is kept under this value. The proposed 
system is also ethically fair: it does not record data nor target individuals, and no human supervisor 
is present during the operation. The proposed system was evaluated across real-world datasets. 

This activity was originally published in [4]. 

1.5 Faraway-Frustum: Dealing with Lidar Sparsity for 3D Object 
Detection using Fusion with Vision 

Learned pointcloud representations do not generalize well with an increase in distance to the 
sensor. For example, at a range greater than 60 meters, the sparsity of lidar pointclouds reaches 
a point where even humans cannot discern object shapes from each other. However, this distance 
should not be considered very far for fast-moving vehicles: a vehicle can traverse 60 meters in under 
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two seconds while moving at 70 mph. For safe and robust driving automation, acute 3D object 
detection at these ranges is indispensable. 

Against this backdrop, we introduced faraway-frustum: a novel fusion strategy for detecting 
faraway objects. The main strategy is to depend solely on the 2D vision sensor for recognizing and 
classifying an object, as object shape does not change drastically with an increase in depth, and use 
pointcloud data for object localization in the 3D space for faraway objects. For closer objects, we 
use learned pointcloud representations instead, following state-of-the-art practices. This strategy 
alleviates the main shortcoming of object detection with learned pointcloud representations. Exper-
iments on the KITTI dataset demonstrate that our method outperforms state-of-the-art methods 
by a considerable margin for faraway object detection in bird’s-eye view and 3D. Our code is open-
source and publicly available: https://github.com/dongfang-steven-yang/faraway-frustum. 

This activity was originally published in [5]. 

1.6 Predicting Pedestrian Crossing Intention With Feature Fusion 
and Spatio-Temporal Attention 

Predicting vulnerable road user behavior is an essential prerequisite for deploying Automated 
Driving Systems (ADS) in the real-world. Pedestrian crossing intention should be recognized in 
real-time, especially for urban driving. Recent works have shown the potential of using vision-based 
deep neural network models for this task. However, these models are not robust and certain issues 
still need to be resolved. First, the global spatio-temporal context that accounts for the interaction 
between the target pedestrian and the scene has not been properly utilized. Second, the optimal 
strategy for fusing diferent sensor data has not been thoroughly investigated. 

This work addressed the above limitations by introducing a novel neural network architec-
ture to fuse inherently diferent spatio-temporal features for pedestrian crossing intention predic-
tion. We fuse diferent phenomena such as sequences of RGB imagery, semantic segmentation 
masks, and ego-vehicle speed in an optimal way using attention mechanisms and a stack of re-
current neural networks. The optimal architecture was obtained through exhaustive ablation and 
comparison studies. Extensive comparative experiments on the JAAD and PIE pedestrian ac-
tion prediction benchmarks demonstrate the efectiveness of the proposed method, where state-
of-the-art performance was achieved. Our code is open-source and publicly available: https: 
//github.com/OSU-Haolin/Pedestrian_Crossing_Intention_Prediction. 

This activity was originally published in [6]. 

1.7 Photorealism in Driving Simulations: Blending Generative 
Adversarial Image Synthesis With Rendering 

Driving simulators play a large role in developing and testing new intelligent vehicle systems. 
The visual fdelity of the simulation is critical for building vision-based algorithms and conducting 
human driver experiments. Low visual fdelity breaks immersion for human-in-the-loop driving 
experiments. Conventional computer graphics pipelines use detailed 3D models, meshes, textures, 
and rendering engines to generate 2D images from 3D scenes. These processes are labor-intensive, 
and they do not generate photorealistic imagery. 

In this work we developed a hybrid generative neural graphics pipeline for improving the visual 
fdelity of driving simulations. Given a 3D scene, we partially-render only important objects of 
interest, such as vehicles, and use generative adversarial processes to synthesize the background 
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and the rest of the image. To this end, we proposed a novel image formation strategy to form 
2D semantic images from 3D scenery consisting of simple object models without textures. These 
semantic images are then converted into photorealistic RGB images with a state-of-the-art Genera-
tive Adversarial Network (GAN) trained on real-world driving scenes. This replaces repetitiveness 
with randomly generated but photorealistic surfaces. Finally, the partially-rendered and GAN 
synthesized images are blended with a blending GAN. 

We show that the photorealism of images generated with the proposed method is more sim-
ilar to real-world driving datasets such as Cityscapes and KITTI than conventional approaches. 
This comparison is made using semantic retention analysis and Frechet Inception Distance (FID) 
measurements. 

This activity was originally published in [7]. 
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Chapter 2 

Integrated Deep Reinforcement 
Learning with Model-Based Path 
Planners for Automated Driving 

2.1 Introduction 

Automated Driving Systems (ADSs) promise a decisive answer to the ever-increasing trans-
portation demands. However, widespread deployment is not on the horizon as state-of-the-art is 
not robust enough for urban driving. The recent Uber accident [8] is an unfortunate precursor: the 
technology is not ready yet. 

There are two common ADS design choices [9]. The frst one is the more conventional, model-
based, modular pipeline approach [10, 11, 12, 13, 14, 15, 16, 17]. A typical pipe starts with 
a perception module. Robustness of perception modules has been increased greatly due to the 
recent advent of deep Convolutional Neural Networks (CNN) [18]. The pipe usually continues 
with scene understanding [19], assessment [20], planning [21] and fnally ends with motor control. 
The major shortcomings of modular model-based planners can be summarized as complexity, error 
propagation, and lack of generalization outside pre-postulated model dynamics. 

The alternative end-to-end approaches [22, 23, 24, 25, 26, 27, 28, 29, 30, 31] eliminated the 
complexity of conventional modular systems. With the recent developments in the machine learning 
feld, sensory inputs now can directly be mapped to an action space. Deep Reinforcement Learning 
(DRL) based frameworks can learn to drive from front-facing monocular camera images directly 
[28]. However, the lack of hard-coded safety measures, interpretability, and direct control over path 
constraints limit the usefulness of these methods. 

We propose a hybrid methodology to mitigate the drawbacks of both approaches. In summary, 
the proposed method integrates a short pipeline of localization and path planning modules into a 
DRL driving agent. The training goal is to teach the DRL agent to oversee the planner and follow 
it if it is safe to follow. The proposed method was implemented with a Deep Q Network (DQN) [32] 
based RL agent and the A* [33] path planner. First, the localization module outputs the ego-vehicle 
position. With a given destination point, the path planner uses the A* algorithm [33] to generate 
a set of waypoints. The distance to the closest waypoint, along with monocular camera images and 
ego-vehicle dynamics, are then fed into the DQN based RL agent to select discretized steering and 
acceleration actions. During training, the driving agent is penalized for making collisions and being 
far from the closest waypoint asymmetrically, with the former term having precedence. We believe 
this can make the agent prone to follow waypoints during free driving but have enough fexibility to 
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Figure 2.1: An overview of our framework. FC stands for Fully Connected layers. The proposed 
system is a hybrid of a model-based planner and a model-free DRL agent. *Other sensor inputs can 
be anything the conventional pipe needs. ** We integrate planning into the DRL agent by adding 
‘distance to the closest waypoint’ into our state-space, where the path planner gives the closest 
waypoint. Any kind of path planner can be integrated into the DRL agent with the proposed 
method. 

stray from the path for collision avoidance using visual cues. An overview of the proposed approach 
is shown in Figure 2.1. 

The major contributions of this work can be summarized as follows: 

• A general framework for integrating path planners into model-free DRL based driving agents 

• Implementation of the proposed method with an A* planner and a DQN RL agent. Our code 
is open-source and available online at https://github.com/Ekim-Yurtsever/Hybrid-DeepRL-
Automated-Driving. 

The remainder of this chapter is organized in fve sections. A brief literature survey is given in 
Section 2.2. Section 2.3 explains the proposed methodology and is followed by experimental details 
in Section 2.4. Results are discussed in Section 2.5 and a short conclusion is given in Section 2.6. 

2.2 Related Works 

End-to-end driving systems use a single algorithm/module to map sensory inputs to an action 
space. ALVINN [23] was the frst end-to-end driving system and utilized a shallow, fully connected 
neural network to map image and laser range inputs to a discretized direction space. The network 
was trained in a supervised fashion with labeled simulation data. More recent studies employed 
real-world driving data and used convolutional layers to increase performance [25]. However, real-
world urban driving has not been realized with an end-to-end system yet. 

A CNN based partial end-to-end system was introduced to map the image space to a fnite set 
of intermediary “afordance indicators” [22]. A simple controller logic was then used to generate 
driving actions from these afordance indicators. Chaufer Net [34] is another example of a mid-to-
mid system. These systems beneft from robust perception modules on the one end, and rule-based 
controllers with hard-coded safety measures on the other end. 
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All the methods mentioned above sufer from shortcomings of supervised learning—namely, a 
signifcant dependency on labeled data, overftting, and lack of interpretability. Deep Reinforcement 
Learning (DRL) based automated driving agents [27, 28] replaced the need for huge amounts of 
labeled data with online interaction. DRL agents try to learn the optimum way of driving instead of 
imitating a target human driver. However, the need for interaction raises a signifcant issue. Since 
failures cannot be tolerated for safety-critical applications, in almost all cases, the agent must be 
trained in a virtual environment. This adds the additional virtual-to-real transfer learning problem 
to the task. In addition, DRL still sufers from a lack of interpretability and hard-coded safety 
measures. 

A very recent study [35] focused on general tactical decision making for automated driving 
using the AlphaGo Zero algorithm [36]. AlphaGo Zero combines tree-search with neural networks 
in a reinforcement learning framework, and its implementation to the automated driving domain 
is promising. However, this study [35] was limited to only high-level tactical driving actions such 
as staying on a lane or making a lane change. 

Against this backdrop, here we propose a hybrid DRL-based driving automation framework. 
The primary motivation is to integrate path-planning into DRL frameworks for achieving a more 
robust driving experience and a faster learning process. 

2.3 Proposed Method 

2.3.1 Problem formulation 

In this study, automated driving is defned as a Markov Decision Process (MDP) with the tuple 
of (S, A, P, r). We integrate path-planning into the MDP by adding d, distance to the closest 
waypoint, to the state-space. 

S: A set of states. We associate observations made at time t with the state st as st ≃ (zt, et, dt) 
where; 1) zt = fcnn(It) is a visual feature vector which is extracted using a deep CNN from a 
single image It captured by a front-facing monocular camera. 2) et is a vector of ego-vehicle 
states including speed and location 3) dt is the distance to the closest waypoint obtained 
from the model-based path planner. dt is the key observation which links model-based path 
planners to the MDP. 

A: A set of discrete driving actions illustrated in Figure 2.3. Actions consist of discretized 
steering angle and acceleration values. The agent executes actions to change states. 

P : The transition probability Pt = Pr(st+1|st, at). Which is the probability of reaching state 
st+1 after executing action at in state st. 

r: A reward function r(st+1, st, at). Which gives the instant reward of going from state st to 
st+1 with at. 

The goal is to fnd a policy function π(st) = at that will select an action given a state such that 
it will maximize the following expectation of cumulative future rewards where st+1 is taken from 
Pt. ! ∞X 

E γt r(st, st+1, at) (2.1) 
t=0 
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Figure 2.2: Illustration of state st ≃ (zt, et, dt) and distance to the fnal destination lt at time t. 
Waypoints w ∈ W are to be obtained from the path planner. 

Where γ is the discount factor, which is a scalar between 0 ≤ γ ≤ 1 that determines the relative 
importance of later rewards with respect to previous rewards. We fx the horizon for this expectation 
with a fnite value in practice. 

Our problem formulation is similar to a previous study [28], the critical diference being the 
addition of dt to the state space and the reward function. An illustration of our formulation is 
shown in Figure 2.2. 

2.3.2 Reinforcement Learning 

Reinforcement learning is an umbrella term for a large number of algorithms derived for solving 
the Markov Decision Problems (MDP) [28]. 

In our framework, the objective of reinforcement learning is to train a driving agent who can 
execute ‘good’ actions so that the new state and possible state transitions until a fnite expectation 
horizon will yield a high cumulative reward. The overall goal is quite straightforward for driving: 
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Figure 2.3: The DQN based DRL agent. FC stands for fully connected. After training, the agent 
selects the best action by taking the argmax of predicted Q values. 

not making collisions and reaching the destination should yield a good reward and vice versa. It 
must be noted that RL frameworks are not greedy unless γ = 0. In other words, when an action is 
chosen, not only the immediate reward but the cumulative rewards of all the expected future state 
transitions are considered. 

Here we employ DQN [32] to solve the MDP problem described above. The main idea of DQN 
is to use neural networks to approximate the optimal action-value function Q(s, a). This Q function 
maps the state-action space to R. Q : S × A → R while maximizing equation 2.1. The problem 
comes down to approximiate or to learn this Q function. The following loss function is used for 
Q-learning at iteration i. "� #�2 

Qθ− 
Li(θ) = E(s,a,r) r + γmax i (st+1, at+1) − Qθi (st, at) (2.2) 

at+1 

Where Q-Learning updates are applied on samples (s, a, r) ∼ U(D). U(D) draws random 
samples from the data batch D. θi is the Q-network parameters and θ− is the target network i 
parameters at iteration i. Details of DQN can be found in [32]. 

2.3.3 Integrating path planning into model-free DRL frameworks 

The main contribution of this work is the integration of path planning into DRL frameworks. 
We achieve this by modifying the state-space with the addition of d. Also, the reward function 
is changed to include a new reward term rw, which rewards being close to the nearest waypoint 
obtained from the model-based path planner, i.e. a small d. Utilizing waypoints to evaluate a 
DRL framework were suggested in a very recent work [37], but their approach does not consider 
integrating the waypoint generator into the model. 

The proposed reward function is as follows. 

r = βcrc + βvrv + βlrl + βwrw (2.3) 

Where rc is the no-collision reward, rv is the not driving very slow reward, rl is being-close 
to the destination reward, and rw is the proposed being-close to the nearest waypoint reward. 
The distance to the nearest waypoint d is shown in Figure 2.2. The weights of these rewards, 
βc, βvβl, βw, are parameters defning the relative importance of rewards. These parameters are 
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determined heuristically. In the special case of βc = βv = βl = 0, the integrated model should 
mimic the model-based planner. 

Please note that any planner, from the naive A* to more complicated algorithms with complete 
obstacle avoidance capabilities, can be integrated into this framework as long as they provide a 
waypoint. 

2.4 Experiments 

As in all RL frameworks, the agent needs to interact with the environment and fail a lot to learn 
the desired policies. This makes training RL driving agents in real-world extremely challenging as 
failed attempts cannot be tolerated. As such, we focused only on simulations in this study. Real-
world adaptation is outside of the scope of this work. 

The proposed method was implemented in Python based on an open-source RL framework [38] 
and CARLA [39] was used as the simulation environment. The commonly used A* algorithm [33] 
was employed as the model-based path planner, and the recently proposed DQN [32] was chosen 
as the model-free DRL. 

2.4.1 Details of the reward function 

The general form of r was given in the previous Section in equation 2.3. Here, the special case 
and numerical values used throughout the experiments are explained. 

r = 

  
rv + rl + rw , rc = 0 & l ≥ ϵ 

100 , rc = 0 & l < ϵ (2.4) 

rc , rc ̸= 0 ( 
0 , no collision 

rc = (2.5)
−1 , there is a collsion 

1 
rv = v − 1 (2.6) 

v0 

l 
rl = 1 − (2.7)

lprevious 

d 
rw = 1 − (2.8)

d0 

Where ϵ = 5m, the desired speed v0 = 50km/h, and d0 = 8m. In summary, rw rewards keeping 
a distance less than d0 to the closest waypoint at every time step, and rl rewards decreasing l over 
lprevious, distance to the destination in the the previous time step. The last term of rl allows to 
continuously penalize/reward the agent for getting further/closer to the fnal destination. 

If there is a collision, the episode is over and the reward gets a penalty equal to −1. If the 
vehicle reaches its destination ∃ϵ > 0 : l < ϵ, a reward of 100 is sent back. Otherwise, the reward 
consists of the sum of the other terms. d0 was selected as 8m because the average distance between 
waypoints of the A* equals to this value. 
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Figure 2.4: The experimental process: I. A random origin-destination pair was selected. II. The 
A* algorithm was used to generate a path. III. The hybrid DRL agent starts to take action with 
the incoming state stream. IV. The end of the episode. 

2.4.2 DQN architecture and hyperparameters 

The deep neural network architecture employed in the DQN is shown in Figure 2.3. The 
CNN consisted of three identical convolutional layers with 64 flters and a 3 × 3 window. Each 
convolutional layer was followed by average pooling. After fattening, the output of the fnal 
convolutional layer, ego-vehicle speed and distance to the closest waypoint were concatenated and 
fed into a stack of two fully connected layers with 256 hidden units. All but the last layer had 
rectifer activation functions. The fnal layer had a linear activation function and outputed the 
predicted Q values, which were used to choose the optimum action by taking argmax. 

Q 
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2.4.3 Experimental process & training 

The experimental process is shown in Figure 2.4. The following steps were carried repeatedly 
until the agent learned to drive. 

1. Select two random points on the map as an origin-destination pair for each episode 

2. Use A* path planner to generate a path between origin-destination using the road topology 
graph of CARLA. 

3. Start feeding the stream of states, including distance to the closest waypoint, into the DRL 
agent. DRL agent starts to take actions at this point. If this is the frst episode, initialize the 
DQN with random weights. 

4. End the episode if a collision is detected, or the goal is reached. 

5. Update the weights of the DQN after each episode with the loss function given in equation 
2.2. 

6. Repeat the above steps sixty thousand times 

2.4.4 Comparision and evaluation 

The proposed hybrid approach was compared against a complete end-to-end DQN agent. The 
complete end-to-end agent took only monocular camera images and ego-vehicle speed as input. 
The same network architecture was employed for both methods. 

A human driving experiment was also conducted to serve as a baseline. The same reward 
function that was used to train the DRL agent was used as the evaluation metric. Four adults 
aging between 25 to 30 years old participated in the experiments. The participants drove a virtual 
car in CARLA using a keyboard and were told to follow the on-screen path (marked by a green 
line). The participants did not see their scores. Every participant drove each of the seven predefned 
routes fve times. The average cumulative reward of each route was accepted as the “average human 
score.” 

2.5 Results 

Figure 2.5 illustrates the training process. The result is clear and evident: The proposed hybrid 
approach learned to drive much faster than its complete end-to-end counterpart. It should be noted 
that the proposed approach made a quick jump at the beginning of the training. We believe the 
waypoints acted as a ‘guide’ and made the algorithm learn faster that way. Our method can be 
used for spooling up the training process of a complete end-to-end variant with transfer learning. 
Qualitative analysis of the driving performance can be done by watching the simulation videos on 
our repository2.1 . 

The proposed method outperformed the end-to-end DQN, however, it is still not good as the 
average human driver as can be seen in Table 2.1. 

Even though promising results were obtained, the experiments at this stage can only be con-
sidered as proof of concepts, rather than an exhaustive evaluation. The proposed method needs to 
consider other integration options, be compared against other state-of-the-art agents, and eventu-
ally should be deployed to the real-world and tested there. 
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Figure 2.5: Normalized reward versus episode number. The proposed hybrid approach learned to 
drive faster than its complete end-to-end counterpart. 

The model-based path planner tested here is also very naive. In addition, the obstacle avoidance 
capabilities of the proposed method was not evaluated. Future experiments should focus on this 
aspect. The integration of more complete path planners with full obstacle avoidance capabilities 
can yield better results. 

Table 2.1: Average reward scores for fve runs in each route type. 

Route type Hybrid-DQN Human average 
Straight (highway) 
Straight (urban) 
Straight (under bridge) 
Slight curve 
Sharp curve 
Right turn in intersection 
Left turn in intersection 

21.1 
27.6 
31.6 
30.4 
-74.4 
-136.9 
-385.9 

43.4 
38.1 
45.2 
49.5 
-8.9 
-12.1 
-25.5 

2.6 Conclusions 

In this study, a novel hybrid approach for integrating path planning into model-free DRL frame-
works was proposed. A proof-of-concept implementation and experiments in a virtual environment 
showed that the proposed method is capable of learning to drive. 
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The proposed integration strategy is not limited to path planning. Potentially, the same state-
space modifcation and reward strategy can be applied for integrating vehicle control and trajectory 
planning modules into model-free DRL agents. 

Finally, the current implementation was limited to output only discretized actions. Future work 
will focus on enabling continuous control and real-world testing. 
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Chapter 3 

Optical Flow Based Potential Field 
for Autonomous Driving 

3.1 Introduction 

Vision based vehicular navigation with a single camera has been shown to be a challenging 
problem within the feld of computer vision, mainly because it is hard to obtain a force to control 
the vehicle just from monocular images [40, 41]. To obtain this force, we can compute a so called 
visual potential feld, which is an approximation of the projection of the potential feld in the 3D 
world to the image plane. This technique has been used with success for Unmanned Aerial Vehicles 
(UAVs) [42] and it has also been applied to robots, in environments which are basically restriction 
free, i.e. the robot can move to whichever direction it fnds suitable [43]. 

Navigation for cars is diferent from UAVs and mobile robots in the sense that a car has 
additional constraints from the road, like lane boundaries. Then, it is necessary to create those 
restrictions from the available visual information. One way to get the visual potential feld is to 
adequately estimate the optical fow from the scene. 

Optical fow is a vector feld that consists of the direction and magnitude of color intensity 
changes from the movement of objects with the same brightness value or feature pattern between 
two consequent images, obtained from the projection of an object in a 3D space onto an image plane. 
So, when an object moves, its projection will change position in the image plane and generate several 
vectors (direction, magnitude) [44]. This allows to infer temporal information about the current 
scene, while being less computationally expensive than processing full raw images, which makes it 
an attractive method for online navigation controllers. 

Optical fow has been widely used for obstacle avoidance and vehicular/mobile robot navigation. 
For instance, optical fow was used to recognize the lane boundaries of the road under adverse 
weather conditions as reported by [45]. In [46] this technique was used within a road following 
algorithm that allowed to identify the road without making assumptions about its structure or 
appearance. It was used to get a steering angle through getting the optical fow between subsequent 
images in [47]. More recently, optical fow has been used as a mean to model human behavior, as 
in [48], where an optical fow automatic steering system for the vehicle is presented. 

Referring specifcally to direct control of the vehicle, the most common idea is to estimate the 
time to collision (TTC) from the optical fow vector feld and use it to steer away from static or 
dynamic obstacles as seen in [44]. There is also the balance strategy approach, which consists of 
a set of behavior rules to be applied when the average of the vector feld is above/below certain 
predefned thresholds [49, 50]. In [41], the authors get an visual potential feld from the optical 
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fow vector feld by identifying the dominant plane on the image. Then apply a balance strategy 
for the robot navigation. 

We propose to compute an Artifcial Potential Field APF (Visual Potential Field) from the 
optical fow vector feld information, that contains both the information from the obstacles as 
the restrictions of the road. In general, an APF generates a surface where the target is a global 
minimum and the obstacles are local maxima. The target generates an attractive force on the 
vehicle while obstacles create a repulsive force. The gradient lines from the optical fow are used 
to generate this feld and get the navigation reference [51, 52]. 

To include the constraints from the road, a road potential feld can be used, such as in [53], 
where the feld provides a steep slope when it is closer to the boundaries of the road and has 
local minima along the center of the lane. Other approaches are introduced in [54, 55], where the 
distance to the lane boundaries and obstacles are used to compute a total risk feld Urisk. These 
contributions consider certain knowledge about the geometry of the road. 

Unlike [41, 42], the presented approach works for automated vehicles that have to navigate in a 
restricted environment (i.e. follow the road), hence the contribution of this work lies in combining 
previous techniques proven in mobile/aerial robots and extending them to work with cars, and is 
based on [56]. 

This chapter is organized as follows: Section II presents the problem formulation, then Section 
III introduces Optical Flow and focus of expansion (FOE) defnitions. Section IV presents the com-
putation of the vision potential feld based on optical fow and Section V introduces the controller 
design. Section VI presents evaluation of the proposed method under diferent weather conditions 
in two sets of images. Finally, conclusions are presented in Section VII. 

3.2 Problem formulation 

The problem that we solve is the visual based navigation of an autonomous vehicle using a 
monocular camera. Fig.3.1 presents the modules considered for the implementation of the solution. 

Figure 3.1: Proposed control framework 

It is considered that we have access to all the ground truth data from the vehicle, position 
(x, y, z) and orientation (roll ϕ, pitch θ, yaw ψ). The vehicle has a monocular RGB camera 
mounted on the windshield, at a fxed position (xc, yc, zc) with respect to the center of mass of the 
vehicle. The camera provides images (It) at each timestep. The Online Path Planning block takes 
pairs of images (It, It+1) and computes the optical fow vector feld, the Focus of Expansion (FOE) 
and the visual potential feld, which allows to generate the speed and heading reference, which are 
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sent to the Controller block. This last block computes the acceleration (a) and steering (δ) control 
actions using a gradient tracking sliding mode controller [51]. The control actions are then sent to 
the vehicle. 

3.3 Optical Flow 

Given a set of pixels on an image It, the optical fow vector feld can fnd those same pixels in 
the subsequent image It+1. 

Given two subsequent images, they are frst transformed to grayscale, then the corners are 
detected using the Shi-Tomasi algorithm [57], and fnally, the algorithm Lucas-Kanade (LK) with 
Pyramidal implementation [58] is employed to obtain the optical fow vector feld. 

3.3.1 Focus of Expansion (FOE) 

The Focus of Expansion (FOE) point shows the direction of the vehicle motion, and is computed 
as the intersection of all the optical fow vectors [48]. 

The FOE is obtained through a Least-Squares formulation [48], where we minimize the error 
with respect to the gradient of the optical fow. Consider image I has pixels pi(x, y), i = 1, ..., n, 
where (x, y) is the position of the pixel pi in the image plane. We can build the matrices A and b 
using the spatial gradient ∇I(pi) and the temporal gradient It(pi) respectively: 

  
  

  
  

∇I(p1) 
∇I(p2) 

. . 

a00 a01 

a10 a11 
. . . . A (3.1)= = 

. . . 
∇I(pn   

) 

−It(p1) 
  

an0 

b0 

an1  
  −It(p2) b1 

b (3.2)= = . . . . . . 
−It(pn) bn 

For each pixel pi(x, y) the obtained fow vector (vx, vy) provides ai0 = vy, ai1 = −vx and 
bi = xvy − yvx. Then the location of the FOE (xF OE , yF OE) on the image plane is given by: 

P F OE = (AT A)−1AT b � P �PP
2 − 1PPPPai0bi a ai1bi aj0aj1 

− ai0bi aj0aj1 + ai1bi 
j1 − P P= 2 2 2 

j0a ai0ai1)2− (a aj0 j1 

3.3.2 Depth from Optical Flow 

To recover depth from the most important pixels on the image is possible [56] but very inaccu-
rate, as the optical fow values are noisy near the FOE. Hence, we use instead the time to contact 
(TTC), which is depth in terms of time and provides enough information about the vehicle motion. 
The TTC for each pixel pi(x, y) with optical fow vector feld (vx, vy) is computed as follows: p 

TTCi = q(x − xF OE )2 + (y − yF OE )2 

2 2v + vx y 

(3.3) 
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3.3.3 Obstacle detection 

The optical fow vector feld presents a disturbance when an obstacle is present in the image. 
While the disturbance may be heuristically computed, a feasible method to distinguish the back-
ground from the obstacles using the optical fow feld is to use the Otsu threshold segmentation 
method [59]. 

Let I(x, y, t) := It(x, y) be the image at time t. Let O(x, y, t) := Ot(x, y) be the plane that 
shows only the obstacles in the image obtained by the LK algorithm, i.e. a binary image [41]. Then 
to get the gradient, we use a smoothing Gaussian function G(x, y): 

2 21 − x +y 

G(x, y) = e 2σ2 (3.4)
2πσ 

The parameter σ can be chosen as half the image width/length. Then, we get the convolution 
between O(x, y, t) and (3.4): Z ∞ Z ∞ 

G ∗ O(x, y, t) = G(u − x, v − y)O(x, y, t)dudv (3.5) 
−∞ −∞ 

Which allows to obtain a function g(x, y, t): � ∂ � 
(G ∗ O(x, y, t))∂x g(x, y, t) = ∇(G ∗ O(x, y, t)) = (3.6)∂ (G ∗ O(x, y, t))∂y 

Where Eq. (3.6) represents the gradient vector of Ot(x, y). 

3.4 Visual Potential Field 

We compute separately the potential felds for the target, the obstacles, and for the road, and 
then sum them up to get the total potential feld at a certain time t. 

3.4.1 Target Potential Field 

This potential feld is directly proportional to the Euclidean distance away from the vehicle, so 
can be obtained by: q

1 
Uatt =

2 
α (x − xgoal)2 + (y − ygoal)2 (3.7) 

The goal term pulls the vehicle towards the goal. Its strength increases proportionally with the 
distance to the goal and its adjusted through the constant α. The module of the attraction force 
is the gradient of the potential feld: q 

Fatt = ∇Uatt = α (x − xgoal)2 + (y − ygoal)2 (3.8) 

The angle that this force makes with the image plane is equal to the goal angle, i.e. θgoal = 
y−ygoal atan . x−xgoal 
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3.4.2 Obstacle Potential Field 

The obstacle potential feld is an approximation of the projection of the 3D potential feld onto 
the image plane, hence the gradient vector g(x, y, t) of Ot(x, y) found in Section 3.3.3. The TTC 
for each pixel in the image is also used for the defnition of the repulsive force [41, 42]: � � R ! 

Fx 1 g(x, y, t)dx(x,y)∈AFrep = = γ P (3.9)
Fy |R| TTCi(xi,yi)∈A 

With A defned as in (3.1), |R| is the region of interest in the image and γ is a gain that modules 
the strength of the repulsive force. 

3.4.3 Road Potential Field 

Around the vehicle, the road boundaries should act like a barrier that prevents the car from 
departing from the lane. Then, the road potential feld is designed in a way that it presents local 
maxima at the road boundaries and local minima in the center of the road, as that is the preferred 
position of the vehicle. 

The road edges are computed using the sparse optical fow. Then, a modifed version of the 
Morse Potential Field is used for the design ([53, 55]). Now, we will consider the local coordinates 
of the vehicle instead of the image plane, as seen in 3.2. The local coordinates form the plane XY , 
which difer from the image plane coordinates xy. 

Figure 3.2: Motion plane coordinates are (X, Y ), image plane coordinates lie in the vertical plane 
(x, y) 

Eq. (3.10) shows the expression for the total potential feld (Us) used for the straight segments 
of the road as the sum of the right (Usr ) and left (Usl ) lane potential felds. 

Us = Usr + Usl (3.10) 

Where: � �2 � �2 −b(y−yr) b(y−yl)Usr = A 1 − e , Usl = A 1 − e (3.11) 
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In the above expressions, A and b are the depth and a parameter based on the variance of 
the repulsive potential feld respectively. y is the current position of the vehicle (considering the 
vehicle moves parallel to the X-axis), yr and yl are the relative distances to the right and left lane 
boundaries respectively. We consider that the vehicle moves in a four lane road, then yr = 5.25(m) 
and yl = −8.75(m) for a total road width of 14(m) and a preferred position of the vehicle in the 
second lane from the right. 

The computation of the right and left potential felds is designed as follows [53]: 

r� !2�2y−by−bsign(y−yr ) −(x+δx) +(yr −y)2 

Usr = A 1 − e m (3.12) 

r� !2�2y−bybsign(y−yl) −(x+δx) +(yl−y)2 

Usl = A 1 − e m (3.13) 

Where x is the current x position, by is the y-intercept, δx > 0 is a small number, m is the slope 
of the line perpendicular to the lane center, and the rest of the variables are the same as before. In 
this case, both yr and yl are computed as follows: 

yr = c2(x + δx)n + c1(x + δx) + c0r (3.14) 

yl = c2(x + δx)n + c1(x + δx) + c0l (3.15) 

In the previous equations,c0r and c0l represent the distance to the right lane marking from the 
center of the lane to the right and left respectively. The parameter c1 is chosen as zero, and c2 and 
n will be chosen accordingly if the road is straight or curved. 

To decide the curvature of the road, the position of the FOE is taken into account. If it is 
located in the center of the captured frame, then it is considered that the road is still straight for 
the next few seconds. In that case, c2 = 0.005 and n = 1. If the FOE is located to the right or to 
the left, it is considered that the road is curved for the next few seconds. In that case, the choice of 
parameters c2 = ±5e − 6 (for left and right curve respectively) and n = 2 have given good results. 

Then, to compute the slope: 
1 

m = − (3.16)
2c2(x + δx) + c1 

As seen in Eq. (3.16), δx is needed to avoid m to go to infnity when x = 0. Then, to compute 
the y-intercept of the line perpendicular to the lane center by: 

by = yr − m(x + δx) (3.17) 

Table 3.1 shows the chosen values for the parameters. 
The designed potential feld is shown in Fig. 3.3 for a one lane only left-curved road. 
Finally, defne the repulsive road force: Freprd = (FreprdX 

, FreprdY 
): 

Freprd = ∇(Usr + Usl ) (3.18) 
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Table 3.1: Parameters used for APF implementation 

Description Symbol Value Unit 

APF depth A 0.5 -
Parameter based on the variance b 1 -
Parameter (± curved road left/right) c2 5e-6 -
Parameter (straight road) c2 0.005 -
Parameter c1 0 -
Parameter (left,right side APF) (c0l , c0r ) (−8.75, 5.25) (m) 
Small longitudinal ofset δx 1.0e-10 (m) 

Figure 3.3: Designed potential feld for a one lane curved road (angled view) 
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3.5 Total Potential Field 

We consider the forces in the image plane and in the motion plane, seen in Fig. 3.2 and 
developed in Sections 3.4.1, 3.4.2 and 3.4.3. 

FXT = Fattx − Frepx − λX FX (3.19) 

FYT = Fatty − Frepy − λY FY (3.20) 

Where λX , λY > 0 are chosen appropriately to weigh the potential feld from the motion plane 
with respect to the image plane. Ultimately, to fnd the force in the global coordinates: ! ! ! 

FX ′ cos ψ sin ψ FXT= (3.21)
FY ′ − sin ψ cos ψ FYT 

Where ψ is the orientation of the vehicle (or yaw angle) with respect to the global coordinates. 

3.6 Gradient Tracking Sliding Mode Controller (GTSMC) 

3.6.1 Model of the vehicle 

The simplifed bicycle kinematic model [60] of the vehicle is used for the design of the controller. 
Considering that only the front wheels can be steered, the model is: 

ẋ = v cos(ψ + β) (3.22) 

ẏ = v sin(ψ + β) (3.23) 
1

ψ̇ = v cos β tan δf (3.24)
lf + lr � � 

lr tan δf
β = arctan (3.25)

lf + lr 

v̇ = a (3.26) 

Where x, y are the global X, Y -axis coordinates respectively, the yaw angle is represented by ψ 
is the yaw angle (orientation of the vehicle with respect to the global X-axis and β is the vehicle 
slip angle. The speed is v : |v| and acceleration is a, in the same direction of the velocity v. The 
control inputs are the front steering angle δf and the acceleration a. This model is shown in Fig. 
3.4. 

3.6.2 Controller design 

A gradient tracking sliding mode controller is chosen for the lateral controller [51, 52]. The 
˙objective of the controller is to force the motion of the system X = f(X, u) to stay within a 

”sliding manifold” [61]. Since there is no preset trajectory, the gradient of the visual potential feld 
is used to obtain an orientation reference [52]. 

Let p = (x, y) be the position of the CG of the vehicle. The motion direction against the 
gradient of the artifcial potential feld were already obtained in Section 3.4.1. Then, for each point 
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Figure 3.4: Kinematic bicycle model of a vehicle 

p a continuous trajectory, called gradient line is obtained. Thus, the desired orientation of the 
vehicle corresponds to: 

FY ′ (p)
ψd(p) = atan (3.27)

FX ′ (p) 

Where ψd(p) ∈ [−π, π[. Then, we can fnd the rotational manifold sr: 

sr(p, t) = crψe(p, t) + ψ̇ 
e(p, t) (3.28) 

Where cr > 0 is a constant, ψe(p, t) = ψ(t) − ψd(p), with ψd(p) from (3.27). 
Using the rotational manifold, we model the front wheel steering actuator as an integrator with 

constraints |δ| ≤ δ0, |u| ≤ u0, and: [51]: 
δ̇  
f = u (3.29) 

u = −u0sign(sr) (3.30) 

When the amplitudes chosen are large enough it has been proven that the controller reaches 
the sliding manifold in fnite time. Details are in [61]. 

A longitudinal manifold st is used for the longitudinal controller with a constant cl > 0: 

sl(p, t) = clv(p, t) − vd(p, t) (3.31) 

For the longitudinal control, the following simple sliding mode controller is chosen: 

a = −a0sign(sl) (3.32) 

3.7 Experiment Setup 

The experiment consists of two parts: frst we use a driving simulator to extract images and 
obtain the proposed control and compare its performance against a PID. Then, we use a set of real 
images collected along with their control, and use our approach to predict the steering and throttle. 
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Table 3.2: Simulator setup 

Parameter Value 

Steering angle limits [−40◦ ,40◦] 
Reference speed ˜5.55m/s (20km/h) 

Weather Clear Noon, Hard Rain 
Scenario Highway Town04 
FPS ˜60 

Window simulation size 640 × 480 pixels 

3.7.1 Synthetic images 

Synthetic images were extracted from Carla driving simulator [39] because of its realistic 3D 
environments. 

The optical fow pyramidal implementation uses a size of the search window equal to (25, 25) 
pixels and the accuracy threshold is ϵ = 0.03. The input image I has the size 640 × 480 pixels, and 
three levels of the pyramid are used. 

Table 3.2 shows the selected simulation parameters. The controlled variables are the throttle 
a and steering angle δ. These parameters accept normalized values: a ∈ [0, 1] for acceleration, 
a ∈ [−1, 0] for deceleration and δ ∈ [−1, 1]. The vehicle stops when it reaches certain predefned 
location in the map. 

Two diferent weathers were tested in the same route, with and without obstacles on the road. 
This comparison is interesting because the rain makes the road look wet, almost like a mirror that 
refects the objects in the scene, as seen in Fig. 3.5. We evaluate how the vehicle behaves in both 
environments and present the path in terms of the global coordinates. 

Figure 3.5: Sparse optical fow in clear (left) and rainy (right) weather 

The ”ideal” route is defned via waypoints available in the simulator and it is expected that the 
vehicle be able to recreate a similar path. Fig. 3.6 shows the path comparison when there are no 
obstacles and the weather is good. In the zoomed out plot it looks that the vehicle has followed 
perfectly the path, but once we zoom in, it is noticeable that there are deviations from the ideal 
path. Since the restrictions of the road considered that the whole 4 lanes of the road are allowable 
path, this behavior is expected. 
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Figure 3.6: Vehicle path with no obstacles in clear weather 

By inserting obstacles in the previous weather, we get a disturbed path from the controlled 
vehicle, as seen in Fig. 3.7. The visual potential feld makes the vehicle change its direction to 
avoid both the obstacle and the lane boundaries. 

When there is rain in the scene, the refection on the road causes disturbances in obtaining 
the obstacle map (Ot(x, y)), hence the path described by the vehicle is more jerky than when the 
weather is clear. Fig. 3.8 shows this motion. 

Inserting obstacles in the last situation makes it more challenging for the vehicle. We observe 
a very jerky motion in Fig. 3.9. This behavior is expected, but nonetheless, the vehicle reaches its 
destination. 

It is worth noting that the vehicle was tested in a curved and a straight road, for which we 
designed precisely the road potential feld. In case of having more complicated types of roads, it 
is necessary to generalize our method. So far, as long as we are taking a horizon of t = 5 seconds 
(≈ 27.5m at 20km/h) we are able to generate an estimated road potential feld using the position 
of the FOE, as explained in Section 3.4.3. 

It is expected that the vehicle motion with obstacles would be jerkier. The disturbance in the 
obtained fow and potential feld is refected in the motion of the vehicle, seen in Fig. 3.9. Here 
it is more noticeable that the vehicle cannot stay on its own lane, due in part to the fact that it 
is avoiding only the edges of the whole road, not only of its lane. This change was necessary to 
provide enough room to perform lane change (obstacle evasion). 
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Figure 3.7: Vehicle path with obstacles in clear weather, obstacles at (-188.3, 406.4) and (-95.6, 
409.4.4) 

Figure 3.8: Vehicle path with no obstacles in rainy weather 
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Figure 3.9: Vehicle path with obstacles in rainy weather, obstacles at (-188.3, 406.4) and (-95.6, 
409.4) 
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Table 3.3: Simulator results comparison table, prediction accuracy (%) for throttle a and steering 
δ with respect to PID, mean square error for desired trajectory. 

Weather No obstacles With obstacles 

a% δ% MSEXY (m) a% δ% MSEXY (m) 
Cloudy 82.34 72.14 0.42 78.51 71.67 0.74 
Rain 78.45 67.12 0.97 70.76 65.45 1.34 

Next, we compute a feasible path from the starting point to the end point using waypoints over 
the road, and use a longitudinal and lateral PID controller for the path tracking. We use the output 
of these controllers to compare the throttle and steering values obtained by our method. We divide 
the route into obstacle and no obstacle section, and summarize the results from this experiment in 
Table 3.3. 

Whereas the prediction results for throttle and steering are not perfect, they are a good ap-
1 P nproximation that allow the average mean square error (MSE = (yi − ŷi)2 +(xi − x̂i)2) with n i=1 

respect to the original planned trajectory to be less than 1(m) in average, which is one-third of the 
average US highway lane width (∼ 3.7(m)). 

3.7.2 Real Images Dataset 

Our approach is also tested on a set of real images that were collected alongside with their 
GPS, control and state information. The images show the front camera view of a vehicle in three 
weathers: cloudy, light rainy and rainy. 

Analyzing the images, we notice that whenever it starts raining, our optical fow algorithm 
starts tracking the water droplets in the windshield. Furthermore, feature tracking is interrupted 
when the wipers are activated, see Fig. 3.10. Identifying and removing these objects is important 
for this method to work, and is posed as a possible future contribution. However, we used the exact 
same pipeline as for the simulator synthetic images to evaluate its performance as is . 

Figure 3.10: Sparse optical fow when using wipers (left) and when droplets fall on the windshield 
(right) 

We have analyzed each given route and divided them into obstacle free routes and routes with 
obstacles, to do a similar comparison as in Section 3.7.1. Then for each route, and by using the GPS 
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Table 3.4: Results comparison table for real dataset, prediction accuracy (%) for throttle a and 
steering δ. 

Weather No obstacles With obstacles 
a% δ% a% δ% 

Cloudy 69.43 64.92 67.12 62.34 
Light rain 58.27 55.87 55.31 54.23 

Rain 56.12 48.51 50.97 46.12 

coordinates information, we have selected an end point for our algorithm to represent the global 
minimum. The initial speed for the vehicle model is set according to the information provided by 
the dataset for each route segment. 

We ran the images through the proposed pipeline and predicted the throttle a and the steering 
angle δ. We compare these results against the real throttle and steering angle from the dataset, 
and summarize in Table 3.4. 

As would be expected, the prediction accuracy for real images drops (∼ 50 − 60%), but still 
remains a promising result considering that the optical fow output was not modifed. These results 
would increase with a tailored tuned optical fow with some removal methods to avoid the efect of 
droplets or wiper blades. 

3.8 Conclusions 

This work showed that it is possible to obtain a visual potential feld from the optical fow 
information from a monocular camera. The novelty of this work consists on the formulation of the 
potential feld for both the obstacles and the road boundaries and applying it to control a vehicle. 

This visual based navigation method is less computationally expensive than learning based 
techniques, but at the same time, it allows to capture the features of dynamically changing envi-
ronment. For this reason, it can serve as a baseline for comparison with both classical and learning 
based approaches. 

Optical fow has its own limitations, such as being inaccurate for large motions, when there 
is occlusion and for strong illumination changes. Even when optical fow methods can be highly 
accurate in synthetic scenes, it is well known that its estimation on natural scenes can be a problem 
and require computationally expensive techniques to be solved, which contrasts with the benefts of 
low computation expense for the optical fow itself. This was shown in the set of real data presented 
in the experimental section. 

Future work includes the comparison of this technique with learning based and classical ones, 
not only in performance, but in formulation complexity and execution time. Additionally, the 
method should be tested in more extensive sets of real data and ideally in a drive-by-wire vehicle 
to test not only the prediction, but actual performance. 
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Chapter 4 

Automated Trafc Surveillance Using 
Existing Cameras on Transit Buses 

4.1 Introduction 

Ever-increasing demand and congestion on existing road networks necessitates efective trans-
portation planning, design, and management. This informed decision making requires accurate 
trafc data. Most medium- to long-term trafc planning and modeling is focused on trafc de-
mand, as quantifed by trafc counts or fow. Trafc fow is generally measured by fxed-location 
counting, which can be accomplished using permanent detectors or, in many cases, temporary 
detectors or human observers. Many traditional trafc studies use temporary pneumatic tube or 
inductive loop technologies that are deployed for only a few days at each location, and each location 
is revisited only every three to fve years. So, while trafc fow measurement is key to estimating 
demand throughout the network, the available data are spatially and temporally sparse and often 
out of date. 

A large body of work has focused on automatic vision-based trafc surveillance with stationary 
cameras [62, 63, 64, 65, 66, 67, 68]. More recently, state-of-the-art vehicle detection performance has 
appreciably improved with Convolutional Neural Network (CNN)-based mature 2D object detectors 
such as Mask-RCNN [69], Yolo v3 [70], and Yolo v4 [71]. These models are feasible to deploy in 
real time. For most surveillance tasks, a processing rate of 4–5 frames per second is sufcient [72], 
which is achievable with these detectors. However, stationary, fxed-location cameras cannot cover 
the entirety of the road network. 

Unmanned Aerial Vehicle (UAV) based automatic trafc surveillance [73, 74, 75, 76] is a good 
alternative to stationary cameras. Drones can monitor a larger part of the network and track 
vehicles across multiple segments. However, UAV operation carries its own technical and regulatory 
limitations. Adverse climate afects fight dynamics substantially [76], and vehicle detection sufers 
from the lower resolution of camera views at higher fight elevations. 

Recent studies proposed and developed the concept that public transit bus feets could be used 
as surveillance agents [77, 78, 79]. Transit buses tend to operate on roadways with a greater 
concentration of businesses, residences, and people, and so they often cover many of the more 
heavily used streets that would be selected for a traditional trafc study. As discussed in the above 
noted studies, this method could also be deployed on other municipal service vehicles that might 
already be equipped with cameras; however, one advantage of using transit buses is that their 
large size allows cameras to be mounted higher above the ground, thus reducing the occurrence of 
occlusions. 
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Prior work on measuring trafc fow from moving vehicles has relied on manual counts or used 
dedicated probe vehicles equipped with lidar sensors [77, 78]. Lidar sensors were used because 
the automatic processing of lidar data is readily achievable. However, unlike lidar, video sensors 
are already deployed on transit buses for liability, safety, and security purposes. The viability, 
validity, and accuracy of the use of video imagery recorded by cameras mounted on transit buses 
was established by manually counting vehicles captured in this imagery with the aid of a graphical 
user interface (GUI) [79]. However, for practical large-scale applications, the processing of video 
imagery and the counting of vehicles must be fully automated. 

In this work, we propose to operationalize this trafc surveillance methodology for practical 
applications, leveraging the perception and localization sensors already deployed on these vehicles. 
We develop a new, automatic, vision-based vehicle counting method applied to the video imagery 
recorded by cameras mounted on transit buses. To the best of our knowledge, this work is the 
frst efort to apply automated vision-based vehicle detection and counting techniques to video 
imagery recorded from cameras mounted on bus-transit vehicles. Figure 4.1 shows an example 
deployment of cameras on a transit bus, including example video imagery. This confguration is 
used in the experiments presented in this chapter. By fully automating the vehicle counting process, 
this approach ofers a potentially low-cost method to extend surveillance to considerably more of 
the trafc network than fxed-location sensors currently provide, while also providing more timely 
updates than temporary trafc study sensor deployments. 

Figure 4.1: The proposed vehicle counting and trajectory extraction framework utilizes video cam-
eras already mounted on existing transit buses for purposes other than trafc surveillance. Using 
transit buses as intelligent surveillance agents would thus be cost-efective and could increase trafc 
network coverage. 
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The main contributions of this study are the following: 

• An automatic vision-based vehicle counting and trajectory extraction method using video 
imagery recorded by cameras mounted on transit buses. 

• A real-world demonstration of the automated system and its validation using video from in-
service buses. An extensive ablation study was conducted to determine the best components of 
the pipeline, including comparisons of state-of-the-art CNN object detectors, Kalman fltering, 
deep-learning-based trackers, and region-of-interest (ROI) strategies. 

The main challenges in this endeavor are as follows: estimating vehicle trajectories from a 
limited observation window, robust vehicle detection and tracking while moving, localizing the 
sensor platform, and diferentiating parked vehicles from trafc participants. Figure 4.2 shows 
an overview of the processing pipeline. First, images obtained from a monocular camera stream 
are processed with the automatic vehicle counter developed in this study. A Yolo v4 [71] deep 
CNN trained on the MS COCO dataset [80] detects vehicles, while SORT [81], a Kalman flter 
and Hungarian algorithm based tracker which solves an optimal assignment problem, generates 
unique tracking IDs for each detected vehicle. Next, using subsequent frames, the trajectory of each 
detected vehicle is projected onto the ground plane with a homographic perspective transformation. 
Then, each trajectory inside a predefned, geo-referenced region-of-interest (ROI) is counted with a 
direction indicator. The automatic vehicle counts are compared against human-annotated ground-
truth counts for validation. In addition, an exhaustive ablation study is conducted to determine 
the best selection of 2D detectors, trackers, and ROI strategies. 

Figure 4.2: Overview of the proposed automated vehicle counting system. The objective is twofold: 
obtaining total bidirectional vehicle counts and extracting trajectories in bird’s-eye-view (BEV) 
coordinates. Our method uses streams of images, GNSS measurements, and predefned ROI infor-
mation on a 2D map as inputs. The detection and tracking branch does not require geo-referencing, 
but it is necessary for counting and projecting trajectories in BEV world coordinates. The homog-
raphy calibration needs to be performed only once. Only four point correspondences are required 
for the calibration process. 
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4.2 Related work 

4.2.1 Trafc Surveillance with Stationary Cameras 

Automating vehicle detection and counting is crucial for increasing the efciency of image-
based surveillance technologies. A popular approach has been to decompose the problem into 
subproblems: detecting, tracking, and counting [63]. 

Detection: Conventional methods employ background–foreground diference to detect vehicles. 
Once a background frame, such as an empty road stretch, is recorded, the background can be 
subtracted from the query frames to detect vehicles on the road [64]. 

More recently, state-of-the-art deep-learning-based 2D object detectors such as Mask-RCNN 
[69], Yolo v3 [70], and Yolo v4 [71] have achieved remarkable scores on challenging object detection 
benchmarks [80, 18]. Deep CNNs completely remove the background frame requirement. As such, 
pretrained, of-the-shelf deep CNNs can be deployed directly for vehicle detection and, if needed, 
vehicle classifcation tasks [67, 68]. However, most vehicle detectors work on a single image frame, 
hence the need for tracking. 

Tracking: Tracking is a critical step for associating detected objects across multiple frames and 
assigning a unique tracking ID to each vehicle. This step is essential for counting, as the same 
vehicle across multiple image frames should not be counted more than once. Once the vehicle is 
detected, a common approach is to track the bounding box with a Kalman flter [82]. 

SORT [81] is a more recent Kalman flter and Hungarian algorithm based tracker. Deep SORT 
[83] is an extension of SORT with a deep association metric, using a CNN-based feature extractor 
to associate objects with similar features across frames. Deep-SORT-based vehicle detectors [84] 
can achieve state-of-the-art performance. 

Counting: The fnal component of the processing pipeline is counting. Usually, lane semantics 
with ROI reasoning [65] are used to defne a counting area. This area is then used to decide which 
vehicles to count as trafc participants. 

4.2.2 Trafc Surveillance with UAVs 

Automated vehicle detection has progressed signifcantly over the years. However, stationary 
cameras cannot cover the entirety of the road network. The shortcomings of fxed-location, station-
ary cameras can be circumvented by using a UAV as a sensor platform [73, 74, 75, 76]. Operating 
regulations have somewhat relaxed, and the cost of UAVs has fallen signifcantly over the past 
decade, allowing them to become a more cost-efcient solution for airborne surveillance. 

Similar trends such as using Yolo [85] and Faster RCNN [86] are prevalent for UAV-based trafc 
surveillance. An important design criterion is fight altitude. There are three fight categories: low 
(up to 70 m) [87], mid-range (80–120 m) [88], and high (100–150 m) [89] altitude fight. 

UAV-based surveillance systems sufer from lower resolutions and smaller observed vehicle sizes. 
In addition, since the viewing angle is top-down, vehicles’ distinguishing features cannot be ob-
served. As such, of-the-shelf object detectors cannot be deployed directly. The deep learning 
models must be trained with a top-down object detection dataset [90]. 

UAV-based trafc surveillance is promising. However, adverse weather afects fight dynamics 
negatively [76], and safety concerns are a limiting factor for the usability of airborne drones. 

4.2.3 Trafc Surveillance with Probe Ground Vehicles 

The general concept of using moving vehicles to determine trafc variables is not new. It is 
common practice to use the foating car method to measure travel times and delays for arterial 

45 



Image Processing Approaches to Trafc Understanding, Risk Assessment, and Safety 

trafc studies [91, 92] and to use probe vehicles to measure travel times in real time [93, 94, 95, 
96, 97, 98, 99, 100]. However, these approaches focus only on measuring the probe vehicle’s travel 
time. 

This study focuses on the estimation of trafc fow rather than travel times. Trafc fow esti-
mation requires counting other vehicles. Although the theoretical foundations of such a framework 
were laid decades ago [101], an operational fully automated system has not yet been realized and 
deployed in a practical large-scale setting. While there are recent eforts to extend cellphone track-
ing to estimate trafc volumes [102, 103], these approaches are limited by the fact that there is not 
a one-to-one match between cellphones and vehicles. 

4.2.4 Trafc Flow Using Moving Observers 

The main idea behind the moving observer method is to estimate hourly trafc volume on a fnite 
road section while the observer is traversing it. Recent studies have made progress in this regard. 
Specifcally, one study used an instrumented vehicle equipped with lidar sensors to emulate a transit 
bus [77, 78]. Lidar sensors and data were used because they are readily processed, with limited 
computing power, to automatically detect vehicles. The detected vehicles were then converted to 
counts, which in turn were transformed into estimates of trafc fows. However, modern transit 
buses are already equipped with video cameras for purposes other than trafc fow estimation, 
rather than with lidar sensors. Therefore, in a follow-on study [79], counts from video imagery 
recorded by cameras mounted on transit buses, which had been extracted manually using a GUI, 
were used to show and establish the viability and validity of estimating accurate trafc fows from 
the such imagery. 

Another recent study focused on applying moving observer techniques to estimate trafc fow 
using automated vehicles and a data-driven approach [104]. However, a practical large-scale im-
plementation of such a moving observer surveillance system is not possible without a method that 
can entirely automatically extract vehicle trajectories and count vehicles from a limited observation 
window. 

We aim to fll this gap in the literature with the proposed automatic vehicle trajectory extraction 
and counting methodology. In principle, the methodology developed herein for counting vehicles 
from existing cameras on transit buses could be transferred to existing cameras on public service, 
maintenance, or safety vehicles and even private automobiles equipped with cameras already being 
used for driver assist, adaptive cruise control, or vehicle automation, e.g., [104]. 

4.3 Method 

As mentioned previously, our work focuses solely on automatically obtaining vehicle counts and 
extracting trajectories using computer vision. What follows are detailed descriptions of the problem 
and the various steps of the developed methodology. 

4.3.1 Problem Formulation 
busGiven an observation at time t as Ot = (It, p ), where I ∈ ZH×W ×3 is an image captured by t 

a monocular camera mounted on the bus and p ∈ R2 is the position of the bus on a top-down 2D 
map, the frst objective is to fnd f1 : S → (n1, n2), a function that maps a sequence of observations 
S = (O1, · · · , ON ) to the total number of vehicles counted traveling in each direction (n1, n2). 
The second objective is to fnd f2 : S → {Ti}m, which provides the m tuples of detected vehicles’ 
trajectories. The trajectory of detected vehicle i is given with Ti = {(pi,j , ti,j )|j ∈ (1, 2 · · · , J)}, 
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Algorithm 1: Detect-Track-Project-Count: DTPC(S, H, R) 
Input: 
S = (O1, · · · , ON ), Ot = (It, p

bus): a sequence of observation tuples. Each tuple O consistst 
of an RGB image and a 2D real-word pose vector. 
H: the homography calibration matrix 
R: the ROI info in real-world coordinates 
Output: 
(n1, n2): the bidirectional vehicle count. 
{T }k, Ti = {(pi,j , ti,j )|j ∈ (1, 2 · · · , J)}: the trajectories of detected vehicles. 
Main algorithm: 
initialize tracker states X; 
initialize counted vehicles memory M; 
preallocate trajectories {T }k; 
foreach t do 

busROIimage ← update ROI(It, p , H, R);t 
{D}l = fCNN(It); 
X ← tracker update(X, {D}l); 
{T }k ← traj project and update(X, {T }k, H−1); 
foreach tracking object s in X do 

if is not counted(s, M) & inROI(s) then 
if direction(s) is north2south then 

n1 ← n1 + 1; 
else if direction(s) is south2north then 

n2 ← n2 + 1; 
end 

end 
end 

where J is the total number of frames in which vehicle i was observed by the bus and pi,j is the 
bird’s-eye-view real-world position vector of vehicle i. 

The overview of the solution is shown in Figure 4.2. The proposed algorithm, Detect-Track-
Project-Count (DTPC), is given in Algorithm 1. The implementation details of the system are 
presented in Section 4.4. 

4.3.2 Two-Dimensional Detection 

A vehicle detection D is defned as D = (b, l, c), where b = ((u1, v1), (u2, v2), (u3, v3), (u4, v4)) 
contains the bounding box corners in pixel coordinates, l is the class label (e.g., car, bus, or truck), 
and c is the confdence of the detection. A 2D CNN fCNN : I → {D}q maps each image I captured 
by the bus camera to q tuples of detections D. This processing is performed on individual image 
frames. The object classifcation information is used to avoid counting pedestrians and bicycles but 
could also be used in other studies. 

The networks commonly known as Mask-RCNN [69], Yolo v3 [70], and Yolo v4 [71], pretrained 
on the MS COCO dataset [80], are employed for object detection. Based on the ablation study 
presented subsequently, the best-performing detector was identifed as Yolo v4. 
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4.3.3 Tracking 

The goal of tracking is to associate independent frame-by-frame detection results across time. 
This step is essential for trajectory extraction, which is needed in order to avoid counting the same 
vehicle more than once. 

SORT [81], a fast and reliable algorithm that uses Kalman fltering and the Hungarian algorithm 
to solve the assignment problem, is employed for the tracking task. First, defne the state vector as 

x = (uc, vc, s, r, u,˙ v,˙ ṡ)
⊺ (4.1) 

where uc = u1 + (u3 − u1)/2 and vc = v2 + (v4 − v2)/2 are the bounding box center coordinates 
derived from the resultant 2D detection bounding boxes, s = (u3 − u1) × (v4 − v2) is its area, 
r = (u3 − u1)/(v4 − v2) is its aspect ratio, and u,˙ v,˙ and ṡ are the corresponding frst derivatives 
with respect to time. 

The next step consists of associating each detection to already existing target boxes with unique 
tracking IDs. This subproblem can be formulated as an optimal assignment matching problem 
where the matching cost is the Intersection-over-Union (IoU) value between a detection box and a 
target box i.e., 

Area of Intersection 
IoU = . (4.2)

Area of Union 

This problem can be solved with the Hungarian algorithm [105]. 
After each detection is assigned to a target, the target state is updated with a Kalman flter[106]. 

The Kalman flter assumes the following dynamical model: 

xk = Fkxk−1 + Bkuk + wk. (4.3) 

where, Fk is the state transition matrix, Bk is the control input matrix, uk is the control vector, 
and wk is normally distributed noise. The Kalman flter recursively estimates the current state 
from the previous state and the current actual observation as follows: 

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk (4.4) 

⊺Pk|k−1 = FkPk−1|k−1F + Qk (4.5)k 

where P is the predicted covariance matrix and Q is the covariance of the multivariate normal noise 
distribution. Details of the update step can be found in the original Kalman flter paper [106]. 

Deep SORT [83] was also considered as an alternative to SORT [81]; however, SORT gave better 
results. An example of a detected, tracked, and counted vehicle is shown in Figure 4.3. 
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Figure 4.3: An example of a detected, tracked, and counted vehicle. The proposed system outputs 
bidirectional trafc counts. The segment ID indicates the current road segment occupied by the 
bus. 

4.3.4 Geo-Referencing and Homography 

The proposed method utilizes geo-referencing and homographic calibration to count vehicles 
in the desired ROI and transforms the detected vehicles’ trajectories from pixel coordinates to 
real-world coordinates. 

Global Navigation Satellite System (GNSS) measurement data are used to localize the bus with 
a pose vector pbus at time t. A predefned database contains geo-referenced map information about t 
the road network and divides each road into road segments with a predefned geometry, including 
the lane widths for each segment. Road segments tend to run from one intersection to another but 
can also be divided at points where the road topology changes signifcantly, for example, when a 
lane divides. This information is used to build the ROI in BEV real-world coordinates for each 
road segment. 

The pixel coordinates of each detection can be transformed into real-world coordinates with 
planar homography using 

s 

 u 
v 

 = H 

 x 
y 

 (4.6) 
1 1 

since planar homography is up-to-scale with a scaling factor. H, the homography matrix, has eight 
degrees of freedom. Hence, H can be determined from four real-world image point correspondences 
[107]. Finding four point correspondences is fairly straightforward for urban road scenes. Standard 
road markings and the width of a lane are used to estimate H. The homographic calibration process 
is shown in Figure 4.4. 

Once H is obtained, the inverse projection can be easily achieved with the inverse homography 
matrix H−1 . Inverse homography is used to convert a BEV real-world ROI to a perspective ROI 
for the image plane. After obtaining the perspective ROI, vehicles on the corresponding regions 
can be counted. 

4.3.5 Counting 

The objective of counting is to count each unique tracked vehicle once if it is a trafc participant 
and not a parked vehicle, travels in the corresponding travel direction, and is within the ROI. 
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Figure 4.4: ROI alignment with homography. A predefned ROI in a 2D BEV world-map can be 
utilized for any camera angle with a planar homography transformation. The camera only needs 
to be calibrated once with four point correspondences. 

The 2D object detector’s output is considered only if the inferred class l = {car, bus, truck}
and the bounding box center is within the ROI. Thus, at each counting time t, using uc,i and 
vc,i, the bounding box center coordinates of each tracked vehicle i, the count in the top-to-bottom 
direction (i.e., opposite the direction of travel of the bus) is updated incrementally n1 ← n1 + 1 
if the one-step sequence (uc,i,t−1, vc,i,t−1), (uc,i,t, vc,i,t) of the image domain trajectory of vehicle i 
satisfes sgn(uc,i,t −uc,i,t−1) = 1 and vehicle i was not counted before. In a similar fashion, the count 
in the bottom-to-top direction (i.e., in the direction of travel of the bus) is updated incrementally 
n2 ← n2 + 1 if sgn(uc,i,t − uc,i,t−1) = −1 and vehicle i was not counted before. The ROI alignment 
for counting purposes is shown in steps 3 and 4 of Figure 4.4. 

Distinguishing parked vehicles from trafc fow participants is achieved by the ROI. This dis-
tinction and the diference between detecting and counting vehicles is illustrated in Figure 4.5. 

4.3.6 Trajectory Extraction in BEV Real-World Coordinates 

Finally, for each tracked unique vehicle, a trajectory in BEV real-world coordinates relative 
to the bus is built by transforming the image-domain coordinates using the inverse homography 
projection. The image domain trajectory of vehicle i, T i = {(uc,i,t, vc,i,t)|t ∈ (t1, t2 · · · , tK )}, is 
transformed into Ti, with inverse homography, (xc,i,t, yc,i,t, 1)⊺ = H−1(uc,i,t, vc,i,t, 1)⊺ . An example 
of extracted trajectories is illustrated in Figure 4.6. 

Trajectory extraction in BEV real-world coordinates is not strictly necessary for the purpose 
of counting unique vehicles, which could be achieved without such transformation. However, it 
is quite valuable for understanding the continuous behavior of trafc participants, including their 
speed, and therefore could be used as input to other studies. 

4.4 Experimental Evaluation 

4.4.1 Transit Bus 

The Ohio State University (OSU) owns and operates the Campus Area Bus Service (CABS) 
system consisting of a feet of about 50 40-foot transit buses that operate on and in the vicinity 
of the OSU campus, serving around fve million passengers annually (pre-COVID-19). As is the 
case for many transit systems, the buses are equipped with an Automatic Vehicle Location (AVL) 
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Figure 4.5: Distinguishing parked vehicles from trafc participants. Since the sensor platform is 
moving, excluding parked vehicles from the total count is not trivial. Using an ROI alleviates 
this issue. 

system that includes GNSS sensors for operational and real-time information purposes and several 
interior- and exterior-facing monocular cameras that were installed for liability, safety, and security 
purposes. The proposed method depends on having an external view angle wide enough to capture 
the motion pattern of the surrounding vehicles. Figures 4.3–4.5 show sample image frames recorded 
by these cameras. 

Video imagery collected from CABS buses while in service are used to implement and test the 
developed method. We chose to use the left side-view camera in this study because it is mounted 
higher than the front-view camera, which both reduces the potential for occlusions caused by other 
vehicles and improves the view of multiple trafc lanes to the side of the bus, particularly on wider 
multilane roads or divided roads with a median. Moreover, video from these cameras is captured at 
a lower resolution, which signifcantly reduces the size of the video fles that needed to be ofoaded, 
transferred, and stored. The video footage was recorded at 10 frames per second with a resolution 
of 696 × 478. 

4.4.2 Implementation Details 

The proposed algorithm was implemented in Python using OpenCV, Tensorfow, and Pytorch 
libraries. For 2D detectors, the original implementations of Mask-RCNN [69], Yolo v3 [70], and 
Yolo v4 [71] were used. All models were pretrained on the MS COCO dataset [80]. Experiments 
were conducted with an NVIDIA RTX 2080 GPU. 

High-speed real-time applications are not within the scope of this study. For surface road 
trafc surveillance purposes, low frame rates are sufcient. The video fles used in this study were 
downloaded from the buses after they complete their trips. However, it would be possible to perform 
the required calculations using edge computing installed on the bus or even integrated with the 
camera. This is a topic for future study. 

51 



Image Processing Approaches to Trafc Understanding, Risk Assessment, and Safety 

Figure 4.6: Extracted trajectories in real-world BEV coordinates for an observation window of 
approximately 5 s are shown. Six vehicles were detected, tracked, and have been projected onto a 
BEV plane. The trajectory of each vehicle is shown in a distinct color. 

4.4.3 Data Collection and Annotation 

A total of 3.5 hours of video footage, collected during October 2019, was used for the experi-
mental evaluation of the ablation study. An additional 3 hours of video footage, collected during 
March 2022, was used for the evaluation of the impacts of adverse weather. The West Campus 
CABS route on which the footage was recorded traverses four-lane and two-lane public roads. The 
route is shown in Figure 4.7. Details of the route can be found in [79]. As described above, this 
route was divided into road segments which tend to run from one intersection to another but may 
be divided at other points, such as when the road topology changes signifcantly. This can include 
points at which the number of lanes change or, in the case of this route, areas in which a tree-lined 
median strip obscures the camera view. Using this map database, sections with a tree-lined median 
strip and occlusions were excluded from the study. For each road segment, an ROI was defned with 
respect to road topology and lane semantics to specify the counting area. As a result, a total of 55 
bus pass and roadway segment combinations were used in the ablation study evaluation analysis. 

We note that should the bus not follow its prescribed route or the route changes, the algorithm 
can detect and report this due to the map database, as well as remove or ignore those portions of 
traveled road that are of-route or for which the road geometry information needed to form an ROI 
is not available. 

The video footage was processed by human annotators in order to extract ground-truth vehicle 
counts. Annotators used a GUI to incrementally increase the total vehicle count for each oncoming 
unique vehicle and to capture the corresponding video frame number. Annotators counted vehicles 
once and only if the vehicle passed a virtual horizontal line drawn on the screen of the GUI while 
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Figure 4.7: Data were collected in the main campus area of the Ohio State University in Columbus, 
OH. The route contains 4-lane and 2-lane public roads and on-campus streets. Some streets were 
divided by a median strip. The direction of travel arrows indicates the travel direction of the bus. 

traveling in the direction opposite to that of the bus. 
After annotation, the video frames, counts, and GNSS coordinates were synchronized for com-

parison with the results of the developed image-processing-based fully automated method. 

4.4.4 Evaluation Metrics 

First, for each of the 55 bus pass and segment combination, ground-truth counts and inferred 
counts using the developed automatic counting method were compared with one another. In addi-
tion to examining a scatter plot that depicts this comparison, four metrics were considered, namely 
diference cgt −ci, absolute diference |cgt − ci|, absolute relative diference |cgt − ci|/cgt, and relative 
diference (cgt − ci)/cgt, where cgt is the ground-truth count, and ci is the inferred count. 

The sample mean, sample median, and empirical Cumulative Distribution Function (eCDF) 
were calculated for the proposed and alternative automated baseline methods. 

4.4.5 Ablation Study 

An extensive ablation study was conducted to identify the best alternative among multiple 
methods that could be applied to each phase of the counting system. All the combinations of 
modules from the following list were compared with one another using the sample mean and sample 
median of the evaluation metrics to fnd the better performing combinations: 

• 2D Detectors: Mask-RCNN [69], Yolo v3 [70], and Yolo v4. [71] 

• Tracking option: SORT [81] and Deep SORT [83]. 

• ROI strategy: No ROI, Generic (single) ROI, and Dynamic Homography ROI. 

The Generic ROI was defned based on a standard US two-lane road in perspective view. Each 
combination option is denoted by the sequence of uppercase frst letters of the name of the modules. 
For example, Y4SGR stands for the Yolo 4 detector, SORT tracker, and Generic ROI combination. 
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The proposed method is denoted with “Proposed” and stands for the Yolo 4 detector, SORT tracker, 
and Dynamic ROI combination. 

4.5 Results and Discussion 

4.5.1 Ablation study 

Considering all combinations of tools, the proposed method, consisting of the Yolo v4 object 
detector, SORT tracker, and Dynamic Homography ROI, was found to be the best based on the 
sample mean, sample median, and eCDF of the four evaluation metrics. Figure 4.8 shows pairs 
of inferred counts plotted against ground-truth counts for each of the 55 road segment passes for 
select combinations of modules (including the best-performing one among all combinations) that 
refect a wide range of performance. For a perfect automatic counting system, the scatter plot of 
inferred counts versus ground truth should be on the identity line (y = x). A regression line was 
estimated for each combination. The estimated lines are shown in Figure 4.8, along with their 
confdence limits. Clearly, the proposed Y4SDR outperforms the other four combinations shown in 
Figure 4.8 by a substantial margin. 

As expected, the proposed homography-derived ROI performs better than the No ROI and the 
Generic ROI modules. The latter two ROI modules lead to over counts because of their limitations 
in distinguishing trafc participants from irrelevant vehicles. In contrast, the dynamic ROI allows 
for counting vehicles only in the pertinent parts of the road network, thus omitting irrelevant 
vehicles, which in this study consisted mostly of vehicles parked on the side of the roads or in 
adjacent parking lots. This result validates the developed birdâ€™s-eye-view inverse projection 
approach to defning dynamic ROIs suitable to each roadway segment. 

Figure 4.9 shows the eCDF plots of the four diferent functions from the four diferent trackers. 
In addition to confrming the overall superiority of the Y4SDR combination, these plots also indicate 
that this combination is highly reliable, as is evident from the thin tails of the distributions. 

Summary results for all combinations of modules are shown in Table 4.1. Specifcally, the 
sample mean and sample median of absolute diferences and absolute relative diferences are given 
for each considered detector, tracker, and ROI combination. Across all combinations of detector 
and ROI options, SORT outperformed Deep SORT consistently. This result indicates that the deep 
association metric used by Deep SORT needs more training to be efcient. In addition, across all 
combinations of tracker and ROI options, the detectors Yolo v3 and Yolo v4 performed similarly 
and better than Mask-RCNN. This result indicates that two-stage detectors, such as Mask-RCNN, 
are prone to overftting to the training data more than single-stage detectors. Moreover, it can be 
seen that for all detector and tracker combinations, the proposed dynamic ROI option outperforms 
the other two ROI options by a large margin, as one might expect. Finally, from the results in 
Table 4.1, the Y4SDR combination is seen to perform the best among all combinations. 
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Figure 4.8: Inferred count versus ground-truth count: Y4SDR (Proposed) indicates Yolo 4 detector, 
SORT tracker, and Dynamic ROI; Y4SGR indicates Yolo 4 detector, SORT tracker, and Generic 
ROI; Y4SNR indicates Yolo 4 detector, SORT tracker, and No ROI; MDNR indicates Mask-RCNN 
detector, Deep SORT tracker, and No ROI. An ideal counter should be on the identity line (y = x). 
The proposed method is close to ideal, while other methods overcount. 
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Figure 4.9: Empirical Cumulative Distribution Functions (eCDFs) of the proposed method and 
three other alternative combinations of modules. The proposed method consistently makes fewer 
errors (diference from the ground-truth count) across multiple road segments. 
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Table 4.1: Comparison of alternative confgurations of modules. The proposed method with a Yolo 
4 detector, SORT tracker, and Dynamic ROI has the lowest diference (error) from the ground-truth 
counts. A good ROI ensures the exclusion of parked and irrelevant vehicles from the count. 

Absolute Error Abs. Relative Error 

ROI 
Option 

Detector 
Option 

Tracker Option 
Deep

SORT [81] 
SORT [83] 

Tracker Option 
Deep

SORT [81] 
SORT [83] 

Dynamic 
ROI 
(Proposed) 

Yolo v3 [70] 
Yolo v4 [71] 

Mask-RCNN [69] 

µ (M) 

1.24 (1) 
1.18 (1) 
2.34 (1) 

µ (M) 

2.02 (1) 
1.67 (1) 
2.32 (1) 

µ (M) 

0.22 (0.14) 
0.21 (0.12) 
0.39 (0.25) 

µ (M) 

0.32 (0.28) 
(0.32, 0.25) 
0.46 (0.26) 

Generic 
ROI 

Yolo v3 [70] 
Yolo v4 [71] 

Mask-RCNN [69] 

4.16 (1) 
4.30 (1) 
5.40 (2) 

4.48 (2) 
4.59 (2) 
6.24 (4) 

0.75 (0.25) 
0.75 (0.25) 
0.94 (0.5) 

0.84 (0.33) 
0.89 (0.33) 
1.26 (0.86) 

No ROI 
Yolo v3 [70] 
Yolo v4 [71] 

Mask-RCNN [69] 

4.44 (1) 
4.69 (1) 
6.02 (3) 

5.04 (1) 
5.14 (2) 
7.89 (4) 

0.85 (0.25) 
0.85 (0.2) 
1.05 (0.5) 

0.98 (0.28) 
1.02 (0.35) 
1.53 (1) 

µ: mean, M: median. 
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4.5.2 Impacts of Adverse Weather and Lighting 

Having determined the best algorithm to implement from the results of the ablation study, one 
may also consider the performance of both the image processing and the overall counting system in 
the presence of inclement weather, including rain or post-rain conditions with puddles and irregular 
lighting efects. Inclement weather exposes several issues with an image-processing-based system, 
including darker and more varied lighting conditions, refective puddles that can be misidentifed as 
vehicles (Figure 4.10a), roadway markings misidentifed as vehicles (Figure 4.10b), water droplets 
and smudges formed from dust or dirt and water partially obscuring some portions of the image 
(Figure 4.10c), and fnally, blowing heavy rain, or possibly snow, with falling drops that can be 
seen in the images (Figure 4.10d). 

(a) puddle in partial sunlight misidentifed as car (b) crosswalk stripes misidentifed as car 

(c) drops, smudges, and fog on camera after rain (d) blowing heavy rain with visible falling drops 

Figure 4.10: Examples of challenges for image processing results during and after heavy rain. 

We compared human-extracted ground truth with the automated extraction and counting re-
sults from videos of several loops of the West Campus route both on dry, cloudless, sunny days 
and days with rainfall varying from a light drizzle to heavy thunderstorms, which also included 
post-rain periods of time with breaking clouds that provided both darker and occasionally sunlit 
conditions. All the videos were acquired from actual in-service transit vehicles during the middle 
of the day. 

Qualitatively, rainfall and wet conditions caused more transient—lasting only for one to two 
frames— inaccurate detection events to occur in the base image processing portion of the algorithm, 

58 



Image Processing Approaches to Trafc Understanding, Risk Assessment, and Safety 

including vehicles not detected, misclassifed vehicles and other objects, and double detections when 
a vehicle is split into two overlapping objects, along with incorrectly identifying a greater number 
of background elements (e.g., puddles and road markings) as vehicles or objects. However, these 
transient events generally make little diference in the fnal vehicle counts, as the overall algorithm 
employs both fltering to eliminate unreasonable image processing results and tracking within the 
region of interest, such that a vehicle is declared present and counted only after a fairly complete 
track is established from the point it enters to the point it departs the camera’s feld of view. This 
approach, in general terms, imposes continuity requirements, causing transient random events to 
be discarded unless they are so severe as to make it impossible to match and track a vehicle as it 
passes through the images, thereby improving the robustness of the approach. 

More problematic, however, are persistent artifacts such as water droplets or smudges formed 
by wet dust and dirt, which often appear on the camera lens or enclosure cover after the rain stops 
and the lens begins to dry. For example, in one fve-minute period of one loop, there was a large 
smudge on the left side at the vertical center of the lens, which obscured the region of the image 
where vehicles several lanes to the left of the transit bus tended to cross through and leave the 
image frame, causing them to not be counted due to incomplete tracking. 

We note that these are general problems that can afect most video and image processing 
systems—if the lens is occluded you cannot see anything in that region of the image. It would be 
possible in future work to implement a method to dynamically detect when the lens is occluded 
and note the temporary exclusion of those regions from counts while the occlusion persists. As a 
fnal note, heavy rain was also observed to clean the lens. 

Quantitatively, we present the results of the automated extraction and counting experiments 
in Table 4.2 for both the dry, clear, sunny loops and the rainy and post-rain loops. The table 
presents the percentage of correctly counted vehicles, the percentage of vehicles missed due to not 
being detected at all or detected too infrequently to build a sufcient track, the percentage of 
vehicles not detected due to being substantially occluded by another vehicle (this is not actually a 
weather-related event but is included for completeness), and the percentage of vehicles not counted 
due to a smudge or water droplet covering part of the camera lens. The fnal columns of Table 
4.2 indicate the percentage of double-counted vehicles and the percentage of false detections or 
identifcations that persisted long enough to be tracked and incorrectly counted. These are two 
impacts of transient image processing failures that are not always detected, at present, by our 
fltering and tracking algorithms. 

As can be seen in Table 4.2, the overall efects of poor weather conditions result in only a minor 
increase in the errors committed by this system. 

Table 4.2: Comparison of vehicle detection and counting results for clear/dry versus rain/post-rain 
weather conditions. 

Weather 

True 
Vehicle 
Counts 

Missed 
Vehicles 

Missed 
Vehicles Due 
to Occlusion 
by other 
Vehicles 

Missed 
Vehicles Due 
to Smudge 
or Drops on 

Lens 

Double-
Counted 
Vehicles 

Falsely 
Counted 

as 
Vehicle 

% % % % % % 

Dry/Clear/Sunny 90.7% 4.6% 4.6% - - 0.9% 
Rain/Post-Rain 88.9% 5.9% 2.8% 2.3% 2.0% 1.7% 
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4.6 Conclusions 

This chapter introduced and evaluated a fully automatic vision-based method for counting 
and tracking vehicles captured in video imagery from cameras mounted on buses for the purpose 
of estimating trafc fows on roadway segments using a previously developed moving observer 
methodology. The proposed method was implemented and tested using imagery from in-service 
transit buses, and its feasibility and accuracy was shown through experimental validation. Ablation 
studies were conducted to identify the best selection of alternative modules for the automated 
method. 

The proposed method can be directly integrated into existing and future ground-vehicle-based 
trafc surveillance approaches. Furthermore, since cameras are ubiquitous, the proposed method 
can be utilized for diferent applications. 

Reimagining public transit buses as data collection platforms has great promise. With widespread 
deployment of the previously developed moving observer methodology facilitated by the full au-
tomation of vehicle counting proposed in this efort, a new dimension can be added to intelligent 
trafc surveillance. Combined with more conventional methods, such as fxed location and the 
emerging possibilities of UAV-based surveillance, spatial and temporal coverage of roadway net-
works can be increased and made more comprehensive. This three-pronged approach has the 
potential of achieving close to full-coverage trafc surveillance in the future. 

Future work could focus on further comprehensive evaluation of the method presented here 
under more varied conditions, subsequent refnements, and the use of edge computing technologies 
to perform the image processing and automatic counting onboard the buses in real time. Another 
potential extension would involve coordinated tracking of vehicles across multiple buses, although 
this raises certain social and political privacy issues that would need to be addressed. Finally, 
there could be signifcant uses and value in vehicle motion and classifcation information, potential 
extensions to include tracking and counting bicycles, motorcycles, and pedestrians, and the eventual 
integration into smart city infrastructure deployments. 

4.7 Data Availability 

The original video data used in this study as well as the manually extracted ground truth 
records are available in the Zenodo repository at DOI 10.5281/zenodo.7955464. 
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Chapter 5 

A Vision-Based Social Distancing and 
Critical Density Detection System for 
COVID-19 

5.1 Introduction 

With the outbreak of the novel Coronavirus Disease 2019 (COVID-19) [108], social distancing 
(SD) emerged as an efective measure against it. Maintaining social distancing in public areas 
such as transit stations, shopping malls, and university campuses is crucial to prevent or slow the 
spread of the virus. The practice of social distancing (SD) may continue in the following years 
until the spread of the virus is completely phased out. However, social distancing is prone to be 
violated unwillingly, as populations are not accustomed to keeping the necessary 2-meter bubble 
around each individual. This work proposes a vision-based automatic warning system that can 
detect social distancing statuses and identify a critical pedestrian density threshold to modulate 
infow to crowded areas. Besides being an automated monitoring and warning system, the proposed 
framework can serve as a tool to detect key variables and statistics for local and global virus control. 

Vision-based automatic detection and control systems [109, 110, 111, 112, 113, 114, 115, 116] 
are economic and efective solutions to mitigate the spread of COVID-19 in public areas. Although 
the conceptualization is straightforward, the design and deployment of such systems require smart 
system design and serious ethical considerations. 

First, the system must be fast and real-time. Only a real-time system can detect social distanc-
ing statuses immediately and send a warning. Privacy concerns [117, 118, 119] can be mitigated 
with a real-time system by not storing sensitive image data while only keeping aggregate statistics, 
such as the number of SD violations. With a real-time active surveillance system, appropriate 
measures can be taken as quickly as possible to reduce further spread of COVID-19. 

The second design objective is that the system must be accurate and efective enough, but not 
discriminative. The safest way to achieve this is to build an AI-based detection system. AI-based 
vision detectors have become the state-of-the-art in people-detection tasks, achieving higher scores 
in most vision benchmarks than detectors with hand-crafted feature extractors. Furthermore, the 
latter may lead to maligned designs, whereas an end-to-end AI-based system, such as a deep neural 
network without any feature-based input space, is much fairer, with one caveat: the training data 
distribution must be fair. 

The third objective aims to provide a more advanced measure than pure social distancing 
monitoring to further reduce the spread of COVID-19. This leads to our proposed approach of 
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critical pedestrian density identifcation. The critical density may serve as an indicator to inform 
the space manager to control the entry port to regulate the incoming pedestrian fow. An online 
warning is also possible, but it should be non-alarming. For example, the system can send a non-
intrusive audio-visual cue to the vicinity of the social distancing violation. Individuals in this region 
can then make their own decisions with this cue. 

We identify the fourth design objective as trust establishment. The whole system and its 
implementation must be open-sourced. Open-sourcing is crucial for establishing trust between the 
active surveillance system and society. In addition, researchers and developers can freely and quickly 
access relevant material and further improve their own designs according to their requirements. This 
can hasten the development and deployment of anti-COVID-19 technologies, leading to stopping 
of the spread of the deadly disease and saving lives. 

Against this backdrop, we propose a non-intrusive, AI-based active surveillance system for so-
cial distancing detection, monitoring, analysis, and control. The overview of the system is shown 
in Figure 5.1. The proposed system frst uses a pre-trained deep convolutional neural network 
(CNN) [120, 71] to detect individuals with bounding boxes in a given monocular camera frame. 
Then, detections in the image domain are transformed into real-world bird’s-eye-view coordinates 
for social distancing detection. Once the social distancing is detected, information is passed to two 
branches for further processing. One branch is online monitoring and control. If a social distancing 
violation happens, the system emits a non-alarming audio-visual cue. Simultaneously, the system 
measures social (pedestrian) density. If the social density is larger than a critical threshold, the 
system sends an advisory infow modulation signal to prevent overcrowding. The other branch is 
ofine analysis, which provides necessary information for overcrowding prevention and policymak-
ing. The main analysis is the identifcation of a critical social density. If the pedestrian density is 
regulated under this critical value, the probability of social distancing violations will be kept near 
zero. Finally, the regulator can receive both the ofine aggregate statistics and the online status 
of social distancing control. If immediate action is required, the regulator can act as quickly as 
possible. 

The overall system never stores personal information. Only the processed average results, such 
as the number of violations and pedestrian density, are stored. This is extremely important for 
privacy concerns. Our system is also open-sourced for further development. 

Our main contributions are: 

• A novel, vision-based, real-time social distancing and critical social density detection system. 

• Defnition of critical social density and a statistical approach to measuring it. 

• Measurements of social distancing and critical density statistics of common crowded places, 
such as the New York Central Station, an indoor mall, and a busy town center in Oxford. 

• Quantitative validation of the proposed approach to detect social distancing and critical 
density. 
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Figure 5.1: Overview of the proposed system. An audio-visual cue is emitted each time an individual 
breach of social distancing is detected. We also make a novel contribution by defning a critical 
social density value ρc for measuring overcrowding. Entrance into the region-of-interest can be 
modulated online with this value. The aggregated non-personal data can also be analyzed ofine 
to provide more insights into the social distancing practice in diferent public areas. Based on 
both online and ofine data, wider prevention measures can be taken as quickly as possible when 
necessary. Our system is real-time and does not record data. 

5.2 Related Work 

Social distancing for COVID-19. COVID-19 has caused severe acute respiratory syndromes 
around the world since December 2019 [121]. Social distancing is an efective measure to slow the 
spread of COVID-19 [108], which is defned as keeping a minimum of 2 meters (6 feet) apart from 
other individuals to avoid possible contact. Further analysis [122] also suggests that social distanc-
ing has substantial economic benefts. COVID-19 may not be completely eliminated in the short 
term, but an automated system that can help in the monitoring and analyzing social distancing 
measures can greatly beneft our society. Statistics from recent works [108] have demonstrated that 
strong social distancing measures can indeed reduce the growth rate of COVID-19. 

The requirement of social distancing has shaped the development of IoT sensors and smart city 
technologies. The spread prevention and outbreak alerting of COVID-19 now must be considered 
in these areas. A recent work [123] reviews potential solutions and recent approaches, such as 
IoT sensors, social media, personal gadgets, and public agents for COVID-19 outbreak alerting. 
Another work [124] summarises IoT and associated sensor technologies for virus tracing, tracking, 
and spread mitigation, and highlights the challenges of deploying such sensor hardware. 

With the help of the above technologies, social distancing can be better practiced, which will 
eventually alleviate the spread of the virus and “fatten the curve”. 

Social distancing monitoring. In public areas, social distancing is mostly monitored by 
vision-based IoT systems with pedestrian detection capabilities. Appropriate measures are subse-
quently taken on this basis. 

Pedestrian detection can be viewed as a sub-task of generic object detection or as a specifc 
task of detecting pedestrians only. A detailed survey of 2D object detectors and the correspond-
ing datasets, metrics, and fundamentals can be found in [125]. Another survey [126] focuses on 
deep-learning-based approaches for both the generic object detectors and the pedestrian detec-
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Table 5.1: Comparison of vision-based social distancing detection. 

Work CC AVS RPDE SDDE OC 

Khandelwal et. al. [116] 
DeepSOCIAL [113] 
Ahmed et. al. [114] 

Cota [115] 
Ours 

Yes 
Yes 

Yes 
Yes 

Yes 

Yes 

Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes Yes 

Acronyms: camera calibration (CC), applicable to various scenes (AVS), real-time pedestrian 
detection evaluation (RPDE), social distancing detection evaluation (SDDE), overcrowding 
control (OC). This table compares the features that are relevant to this work. Some works 
may provide additional features. 

tors. Generally speaking, state-of-the-art detectors are divided into two categories. One category 
is two-stage detectors. Most of them are based on R-CNN [127, 120], which starts with region 
proposals and then performs the classifcation and bounding box regression. The other category 
is one-stage detectors. Prominent models include YOLO [128, 70, 71], SSD [129], and Efcient-
Det [130]. The detectors can also be classifed as anchor-based [127, 120, 70, 71, 129, 130] or 
anchor-free approaches [131, 132]. The major diference between them is whether to use a set of 
predefned bounding boxes as candidate positions for the objects. Evaluating these approaches 
was usually done using the datasets of Pascal VOC [133] and MS COCO [80]. The accuracy and 
real-time performance of these approaches are good enough for deploying pre-trained models for 
social distancing detection. 

There are several emerging technologies that assist in the practice of social distancing. A re-
cent work [109] has identifed how emerging technologies like wireless, networking, and artifcial 
intelligence (AI) can enable or even enforce social distancing. The work discussed possible basic 
concepts, measurements, models, and practical scenarios for social distancing. Another work [110] 
has classifed various emerging techniques as either human-centric or smart-space categories, along 
with the SWOT analysis of the discussed techniques. Social distancing monitoring is also defned as 
a visual social distancing (VSD) problem in [111]. The work introduced a skeleton-detection-based 
approach for inter-personal distance measuring. It also discussed the efect of social context on 
people’s social distancing and raised the concern of privacy. The discussions are inspirational, but 
again, do not generate solid results for social distancing monitoring and leaves the question open. 
A specifc social distancing monitoring approach [112] that utilizes YOLOv3 and Deepsort was 
proposed to detect and track pedestrians followed by calculating a violation index for non-social-
distancing behaviors. The approach is interesting, but the results do not contain any statistical 
analysis. Furthermore, there is no implementation or privacy-related discussion other than the vio-
lation index. Another work [113] developed a DNN model called DeepSOCIAL for people detection, 
tracking, and distance estimation. In addition to social distancing monitoring, it also performed 
dynamic risk assessment. However, this work did not specifcally consider the performance of pure 
violation detection and the solution to prevent overcrowding. More recently, [134] provides a data-
driven deep-learning-based framework for the sustainable development of a smart city. Some other 
works [116, 114, 115] also proposed vision-based solutions. A comparison of the above methods 
with our proposed method can be found in Table 5.1. 

Several prototypes utilizing machine learning and sensing technologies have already been devel-
oped. Landing AI [135] was almost the frst one to introduce a social distancing detector using a 
surveillance camera to highlight people whose physical distance is below the recommended value. 
A similar system [116] was deployed to monitor worker activity and send real-time voice alerts in a 
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manufacturing plant. In addition to surveillance cameras, LiDAR-based [136] and stereo-camera-
based [137] systems were also proposed, which demonstrated that diferent types of sensors besides 
surveillance cameras can also help. 

The above systems are interesting, but recording data and sending intrusive alerts might be 
unacceptable by some people. On the contrary, we propose a non-intrusive warning system with 
softer omnidirectional audio-visual cues. In addition, our system evaluates critical social density 
and modulates infow into a region-of-interest. 

5.3 Preliminaries 

Object detection with deep learning. Object detection in the image domain is a funda-
mental computer vision problem. The goal is to detect instances of semantic objects that belong to 
certain classes, such as humans, cars, and buildings. Recently, object detection benchmarks have 
been dominated by deep Convolutional Neural Network (CNN) models [127, 120, 70, 71, 129, 130]. 
For example, top scores on MS COCO [80], which has over 123K images and 896K objects in the 
training-validation set and 80K images in the testing set with 80 categories, have almost doubled 
thanks to the recent breakthrough in deep CNNs. 

These models are usually trained by supervised learning, with techniques like data augmenta-
tion [138] to increase the variety of data. 

Model generalization. The generalization capability [139] of the state-of-the-art is good 
enough for deploying pre-trained models to new environments. For 2D object detection, even with 
diferent camera models, angles, and illumination conditions, pre-trained models can still achieve 
good performance. 

Therefore, a pre-trained state-of-the-art deep-learning-based pedestrian detector can be directly 
utilized for the task of social distancing monitoring. 

5.4 Method 

We propose to use a fxed monocular camera to detect individuals in a region of interest (ROI) 
and measure the inter-personal distances in real time without data recording. The proposed system 
sends a non-intrusive audio-visual cue to warn the crowd if any social distancing breach is detected. 
Furthermore, we defne a novel critical social density metric and propose to advise not entering into 
the ROI if the density is higher than this value. The overview of our approach is given in Figure 
5.1, and the formal description starts below. 

5.4.1 Problem Formulation 

We defne a scene at time t as a sextuple S = (I, A0, dc, c1, c2, U0), where I ∈ RH×W ×3 is an 
RGB image captured from a fxed monocular camera with height H and width W . A0 ∈ R is 
the area of the ROI on the ground plane in the real world and dc ∈ R is the required minimum 
physical distance. c1 is a binary control signal for sending a non-intrusive audio-visual cue if any 
inter-pedestrian distance is less than dc. c2 is another binary control signal for controlling the 
entrance to the ROI to prevent overcrowding. Overcrowding is detected with our novel defnition 
of critical social density ρc. ρc ensures the social distancing violation occurrence probability stays 
lower than U0. The threshold U0 should be set as small as possible to reduce the probability of 

1−PCIsocial distancing violation. For example, the threshold could be U0 = 2 , where PCI is the 
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cumulative probability of the 95% confdence interval of a normal distribution. Other choices of U0 

also work, depending on the specifc requirement of social distancing monitoring. 

Problem 1. Given S, we are interested in fnding a list of pedestrian position vectors P = 
(p1, p2, · · · , pn), p ∈ R2 , in real-world coordinates on the ground plane and a corresponding list of 
inter-pedestrian distances D = (d1,2, · · · , d1,n, d2,3, · · · , d2,n, · · · , dn−1,n), d ∈ R+ . n is the number 
of pedestrians in the ROI. Additionally, we are interested in fnding a critical social density value 
ρc. ρc should ensure the probability p(d > dc|ρ < ρc) stays over 1 − U0, where we defne social 
density as ρ := n/A0. 

Once Problem 1 is solved, the following control algorithm can be used to warn or advise the 
population in the ROI. 

Algorithm 1. If d ≤ dc, then a non-intrusive audio-visual cue is activated with setting the control 
signal c1 = 1, otherwise c1 = 0. In addition, if ρ > ρc, then entering the area is not advised with 
setting c2 = 1, otherwise c2 = 0. 

Our solution to Problem 1 starts below. 

5.4.2 Pedestrian Detection in the Image Domain 

First, pedestrians are detected in the image domain with 
real-world dataset: 

a deep CNN model trained on a 

{Ti}k = fcnn(I). (5.1) 

fcnn : I → {Ti}n maps an image I into n tuples Ti = (libi, si), ∀i ∈ {1, 2, · · · , n}. n is the number of 
detected objects. li ∈ L is the object class label, where L, the set of object labels, is defned in fcnn. 
bi = (bi,1, bi,2, bi,3, bi,4) is the associated bounding box (BB) with four corners. bi,j = (xi,j , yi,j ) 
gives pixel indices in the image domain. The second sub-index j indicates the corners at top-
left, top-right, bottom-left, and bottom-right, respectively. si is the corresponding detection score. 
Implementation details of fcnn is given in Section 5.5. 

′ We are only interested in the case of l = ‘person’. We defne pi, the pixel pose vector of person 
i, by using the middle point of the bottom edge of the BB: 

′ (bi,3 + bi,4) 
pi := . (5.2)

2 

5.4.3 Image to Real-World Mapping 
′ The next step is obtaining the second mapping function h : p → p. h is an inverse perspective 

′ transformation function that maps p in image coordinates to p ∈ R2 in real-world coordinates. 
p is in 2D bird’s-eye-view (BEV) coordinates by assuming the ground plane z = 0. We use the 
following well-known inverse homography transformation [107] for this task: 

bev im p = M−1 p , (5.3) 

where M ∈ R3×3 is a transformation matrix describing the rotation and translation from world 
im ′ ′ ′ ′ ′ coordinates to image coordinates. p = [px, py, 1] is the homogeneous representation of p = [px, py] 

bev bev bev in image coordinates, and p = [px , py , 1] is the homogeneous representation of the mapped 
pose vector. 
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The transformation matrix M can be found by identifying the geometric relationship among 
some key points in both the real world and the image, respectively, and then calculating M based 
on homography [107]. More details on camera calibration in this particular work can be found in 
Section 5.5. 

bev bev The world pose vector p is derived from pbev with p = [p , p ].x y 

5.4.4 Social Distancing Detection 

After getting P = (p1, p2, · · · , pn) in real-world coordinates, obtaining the corresponding list of 
inter-pedestrian distances D is straightforward. The distance di,j for pedestrians i and j is obtained 
by taking the Euclidean distance between their pose vectors: 

di,j = ∥pi − pj ∥. (5.4) 

The total number of social distancing violations v in a scene can be calculated by: 

n nXX 
v = I(di,j ), (5.5) 

i=1 j=1 
j ̸=i 

where I(di,j ) = 1 if di,j < dc, otherwise 0. 

5.4.5 Critical Social Density Estimation 

Finally, we want to fnd a critical social density value ρc that can ensure the social distancing 
violation occurrence probability stays below U0. It should be noted that a trivial solution of ρc = 0 
will ensure v = 0, but it has no practical use. Instead, we want to fnd the maximum critical social 
density ρc that can still be considered safe. 

To fnd ρc, we propose to conduct a simple linear regression using the social density ρ as the 
dependent variable and the total number of violations v as the independent variable: 

ρ = β0 + β1v + ϵ, (5.6) 

where β = [β0, β1] is the regression parameter vector and ϵ is the error term which is assumed to be 
normal. The regression model is ftted with the ordinary least squares method. Fitting this model 
requires training data. However, once the model is learned, data are not required anymore. After 
deployment, the surveillance system operates without recording data. 

Once the model is ftted, we can obtain the predicted social density ρ̂|v=0 when there is no 
social distancing violation (v = 0). To further reduce the probability of social distancing violation 
occurrence, instead of using ρ̂|v=0, we propose to determine the critical social density as: 

predρc = ρlb , (5.7) 

pred pred predwhere ρ is the lower bound of the 95% prediction interval (ρ , ρ ) at v = 0, as illustratedlb lb ub 
in Figure 5.2. 
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Figure 5.2: Obtaining the critical social density ρc. Keeping ρ under ρc will drive the number of 
social distancing violations v towards zero with the linear regression assumption. 

If we keep the social density ρ of a scene to be smaller than the lower bound ρlb of the social 
density’s 95% prediction interval at v = 0, the probability of social distancing violation occurrence 
can be pushed near zero. This is because under the linear regression assumption, the cumulative 

predprobability P (ρ < ρlb ) = 0.05, which is very small. 

5.4.6 Broader Implementation 

To further utilize the obtained critical social density ρc, subsequent measures must be taken to 
prevent the spread of COVID-19. There are two branches of post-processing mechanisms. 

First, social distancing can be monitored and controlled online. Non-alarming audio-visual cues 
are sent to the people in the areas where the social density ρ is larger than the critical value ρc. In 
this way, people are immediately aware that they are violating the social distancing practice. The 
system can also send infow modulation signals. Site managers can use these signals to keep the 
people density under ρc. This way, overcrowding is prevented. 

Second, the critical density ρc, as well as the statistics, can be used for ofine analysis. Analyzed 
ofine data, such as averaged people densities of certain public areas or trends of people density of 
public events, can be utilized by regulators for better policymaking and large event organization. 

Combining both the ofine and online information provided by the proposed system, wider 
prevention measures can be taken as quickly as possible when necessary. The above procedures can 
be visualized in Figure 5.1. 

5.5 Experiments 

We conducted three case studies to evaluate the proposed method. Each case utilizes a diferent 
pedestrian crowd dataset. They are the Oxford Town Center Dataset (an urban street) [140], the 
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Mall Dataset (an indoor mall) [141], and the Train Station Dataset (New York City Grand Central 
Terminal) [142]. Table 5.2 shows detailed information about these datasets. 

To validate the efectiveness of the proposed method in detecting social distancing violation, 
we conducted experiments over Oxford Town Center Dataset to determine the accuracy of the 
proposed method. 

Table 5.2: Information of each pedestrian dataset. 

FPS Resolution Duration 

Oxford Town Ctr. 25 1920 × 1080 5 mins 
Mall ∼1 640 × 480 33 mins 

Train Station 25 720 × 480 33 mins 

Implementation 

The frst step was fnding the perspective transformation matrix M for the scene of each dataset. 
For the Oxford Town Center Dataset, we directly used the transformation matrix available on its 
ofcial website. The other two datasets do not provide the transformation matrices, so we need to 
fnd them manually. We frst identifed the real distances among four key points in the scene and 
the corresponding coordinates of these points in the image. Then, these four points were used to 
identify the perspective transformation (homography) [107] so that the transformation matrix M 
can be calculated. For the Train Station Dataset, we found the foor plan of NYC Grand Central 
Terminal and measured the exact distances among the key points. For the Mall Dataset, we frst 
estimated the size of a reference object in the image by comparing it with the width of detected 
pedestrians and then utilized the key points of the reference object. 

The second step was applying the pedestrian detector on each dataset. The experiments were 
conducted on a regular PC with an Intel Core i7-4790 CPU, 32GB RAM, and an Nvidia GeForce 
GTX 1070Ti GPU running Ubuntu 16.04 LTS 64-bit operating system. Once the pedestrians were 
detected, their positions were converted from the image coordinates into the real-world coordinates. 

The last step was conducting the social distancing measurement and fnding the critical density 
ρc. Only the pedestrians within the ROI were considered. The statistics of the social density ρ, 
the inter-pedestrian distances di,j , and the number of violations v were recorded over time. 

5.6 Results 

5.6.1 Real-Time Pedestrian Detection 

We experimented with two diferent deep-CNN-based object detectors: Faster R-CNN and 
YOLOv4. Figure 5.3 shows the qualitative results of pedestrian detection in the image using 
Faster R-CNN [120] and the corresponding social distancing in world coordinates. According to 
the qualitative results, there are a few missed detections. The reasons could be two-fold. First, 
occlusions can cause missed detections. This can be found in Mall Dataset, in which the shopping 
cart may afect the detection. Second, if the pedestrian size is too small, missed detections may also 
happen. This can be found in the Train Station Dataset. A limited number of missed detections 
do not afect the social distancing violation too much, as the frst priority of the system is to detect 
whether there is any social distancing violation. For the number of violations and critical social 
density, as long as we can fnd a close enough estimation, it will satisfy our requirement. 
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Figure 5.3: Illustration of pedestrian detection using Faster R-CNN and the corresponding social 
distancing. 

The detector performances are given in Table 5.3. As can be seen in the Table, both detectors 
achieved an inference time of about 0.1s per frame. This is adequate to achieve real-time social 
distancing detection. For detection accuracy, we provide the results of MS COCO dataset from 
original works [120, 71]. 
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Table 5.3: Real-time performance of pedestrian detectors. 

Method mAP (%) Inference Time (s) 

Faster R-CNN [120] 42.1–42.7 0.145/0.116/0.108 
YOLOv4 [71] 41.2–43.5 0.048/0.050/0.050 

The mAP indicates mean average precision. The inference time reports the mean inference 
time for Oxford Town Center/Train Station/Mall datasets, respectively. 

5.6.2 Social Distancing Violation Detection 

Figure 5.4 shows the change of pedestrian density ρ and the number of violations v as time 
evolves. The result indicates an obvious positive correlation between ρ and v. For example, at 
t = 41 s in the Oxford Town Center Dataset, t = 84 s in the Mall Dataset, and t = 6 s in the Train 
Station Dataset, when ρ is low, v is also relatively low. Figure 5.5 shows 2D histograms of this 
relationship. It further validates the observed positive correlation. This correlation leads to the 
subsequent proposed linear regression method to identify critical social density. 

To validate our proposed methodology, we conducted the evaluation over the Oxford Town 
Center dataset, as it provides ground truth pedestrian detection. There are, in total, 4501 annotated 
frames. We split them into two parts, 2500 frames for training and 2001 frames for validation. The 
reason for splitting the dataset is to compare the proposed method with an end-to-end CNN model 
for social distancing violation detection, which was trained based on the training frames. All the 
evaluation results used the validation frames. 

We frst calculated the mean absolute error (MAE) of the average closest physical distanceP1 n dminover all frames. is calculated by davg = , where dmin = min(di,j ), ∀j ̸= i ∈ 
{1, 2, · · · n} is the closest physical distance for a particular pedestrian i. We also calculated the 
MAE of the social distancing violation ratio rv = v/n, where n is the number of pedestrians inside 
the ROI. The results were compared with a variant of our method which uses the center of the 
detected BB as the pedestrian position (BB-center method) instead of the middle point of the 
bottom edge, as described in Section 5.4.2 (BB-bottom method). 

Table 5.4 reports the MAE of davg and the MAE of rv. It quantifes the error in the detection of 
physical distance and social distancing violations. The proposed BB-bottom method has relatively 
low MAEs and is better than its variant BB-center method. 

davg davg n i=1 i i 

Table 5.4: Social distancing detection performance. 

Method MAE of davg (m) MAE of rv (Count) 

BB-center 1.416 0.196 
BB-bottom 0.587 0.143 

Furthermore, the social distancing violation detection (the number of violations v > 0) was 
evaluated in terms of the precision, recall, and accuracy against the ground truth violation. In 
addition to the comparison with the variant method using the BB center, we also tried an end-to-
end CNN model. Specifcally, the CNN model inputs the image frame and outputs whether there 
is any social distancing violation or not. This new model employs ResNet50 as a backbone and has 
additional layers for social distancing violation detection. The loss is defned as weighted binary 
cross-entropy. The model was trained based on the frst 2500 frames. The model performance was 
tested based on the remaining 2001 frames, which provides a fair comparison with the other two 
methods. 
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Table 5.5 shows the confusion matrix of social distancing violation detection using the BB-
bottom method. In the Oxford Town Center Dataset, social distancing violation happens in the 
majority of the frames, so the number of true positives dominates the confusion matrix. Table 5.6 
reports precision, recall, and accuracy of the violation detection and compares them over the 
methods of End-to-End CNN, BB-center, and BB-bottom. The result shows that the BB-bottom 
method performs better than the other two methods in all three metrics. The other two methods 
are not able to balance between the precision and recall metrics. End-to-end CNN has relatively 
high recall, but the precision is not good enough. BB-center has relatively high precision, but low 
recall. This further demonstrates the efectiveness of using pre-trained pedestrian detectors in the 
image domain and transforming the middle point of the BB bottom edge as the pedestrian position 
into world coordinates. 

Figure 5.4: The change of pedestrian density ρ and the number of violations v over time. It shows 
an obvious positive correlation between ρ and v. The positive correlation is further illustrated in 
Figures 5.5 and 5.6, which show a linear relationship between ρ and v. The darker green horizontal 
line indicates the critical pedestrian density ρc and the lighter green line, the intercept density β0. 
They are obtained by the proposed critical social density estimation methodology in Section 5.4.5. 
The shaded lighter green area shows that there will be more violations if the pedestrian density 
is above β0. The shaded darker green area shows that more violations will be eliminated if the 
pedestrian density is further pushed below ρc, which is our critical social density. 
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Figure 5.5: Two-dimensional histograms of the social density ρ versus the number of social distanc-
ing violations v. From the histograms we can see a linear relationship with positive correlation. 

Table 5.5: Confusion matrix of social distancing violation detection. 

Ground Truth 

Violation No Violation 
Total 

Detected 
Violation 

No Violation 

1584 

67 

77 

273 

1661 

340 

Total 1651 350 2001 
The table reports the results of the BB-bottom method. 

Table 5.6: Social distancing violation detection accuracy. 

Method Precision (%) Recall (%) Accuracy (%) 

End-to-end CNN 83.27 94.37 79.71 
BB-center 94.60 79.59 79.41 
BB-bottom 95.36 95.94 92.80 

5.6.3 Critical Social Density 

To fnd the critical density ρc, we frst investigated the relationship between the number of 
social distancing violations v and the social density ρ in 2D histograms, as shown in Figure 5.5. As 
can be seen in the Figure, v increases with an increase in ρ, which shows a linear relationship with 
a positive correlation. This indicates that the proposed linear regression can be used. 

Then, we conducted the linear regression using the regression model of Equation (5.6), on 
the data points of v versus ρ. The skewness values of ρ for the Oxford Town Center Dataset, 
Mall Dataset, and Train Station Dataset are 0.32, 0.16, and −0.14, respectively, indicating the 
distributions of ρ are symmetric. This satisfes the normality assumption of the error term in linear 
regression. The regression result is displayed in Figure 5.6. The critical density ρc was identifed 
as the lower bound of the prediction interval at v = 0. As can be seen from the Figure, for a social 
density value ρ that is smaller than the lower bound ρc, there are almost no data points. This 
means that according to the scene in the dataset, when v = 0, pedestrian density is hardly ever 
smaller than ρc. Since ρc is the lower bound of the 95% prediction interval, if we keep a social 
density ρ < ρc, we can push the probability of social distancing violation to almost zero. 

Table 5.7 summarises the identifed critical densities ρc, as well as the intercepts β0 of the 
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Figure 5.6: Linear regression (red line) of the social density ρ versus number of social distancing 
violations v data. Small random noise was added to each data point for better visualization. Green 
lines indicate the prediction intervals. The critical social densities ρc are the x-intercepts of the 
regression lines. Data points might overlap. 

regression models. The obtained critical density values for all datasets are similar. They also 
follow the patterns of the data points as illustrated in Figure 5.6. This verifed the efectiveness of 
our method. 

To evaluate the efect of social distancing detection on determining the critical density, we also 
conducted the linear regression on the data of ground truth pedestrian positions in the Oxford 
Town Center Dataset. The obtained regression result over ground truth pedestrian positions are 
β0,gt = 0.0217 and ρc,gt = 0.0086. The critical density ρc only has an error of 2%, which is very 
small. This further validated our proposed method of determining critical social density. 

Table 5.7: Critical social density detection. 

Dataset Intercept β0 Critical Density ρc 

Oxford Town Ctr. 0.0207 0.0088 
Mall 0.0396 0.0123 
Train Station 0.0389 0.0305 

The critical density was identifed as the lower bound of the prediction interval at the number 
of social distancing violations v = 0. 

5.7 Conclusions 

This work proposed an AI- and monocular-camera-based real-time system to detect and monitor 
social distancing. In addition, our system utilized the proposed critical social density value to avoid 
overcrowding by modulating infow to the ROI. The proposed approach was demonstrated using 
three diferent pedestrian crowd datasets. Quantitative validation was conducted over the Oxford 
Town Center Dataset that provides ground truth pedestrian detections. 

There were some missed detections in the Mall Dataset and Train Station Dataset, as in some 
areas the pedestrian density is extremely high and occlusions occur. However, after our qualitative 
and quantitative analysis, most pedestrians were successfully captured and the missed detections 
have an minor efect on the proposed method. One future activity could be testing and verifying 
the proposed method over more datasets of various scenes. 

Finally, in this work we did not consider that a group of people might belong to a single family or 
have some other connection that does not require social distancing. Understanding and addressing 
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this issue could be a futher direction of study. Nevertheless, one may argue that even individuals 
who have close relationships should still try to practice social distancing in public areas. 

Our system is open-sourced. The implementation and the experiment data can be assessed via 
our GitHub repository: 

https://github.com/dongfang-steven-yang/social-distancing-monitoring. 
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Chapter 6 

Faraway-Frustum: Dealing with Lidar 
Sparsity for 3D Object Detection 
using Fusion 

6.1 Introduction 

3D/bird’s-eye view (BEV) object detection is a critical task for many robotics applications. 
Existing lidar-based methods show good performance for close to medium range objects. However, 
a closer look at the state-of-the-art exposes an inherent problem: learned pointcloud representations 
do not generalize well with an increase in sparsity. This is not a surprising phenomenon. At a range 
greater than sixty meters, lidar pointcloud sparsity reaches a point where even humans cannot 
discern object shapes from each other. For example, in the KITTI 3D/BEV object detection 
benchmark [143], the state-of-the-art 3D object detection performance is remarkable. But when 
these high performing models face objects that are located at 60 meters and beyond, mean average 
precision drops to almost zero. We believe this is an important issue for automated driving. For 
instance, detecting faraway objects can ofer more time for the automated vehicle to make better 
decisions. 

3D/BEV object detection for faraway objects is challenging, and state-of-the-art (SOTA) lidar-
based detectors [144, 145, 146, 147, 148] do not perform well for this task. We believe this is caused 
by sparsity and near-random scattering of the few points obtained from faraway objects. Learned 
representations from close to medium range objects do not generalize to faraway cases, and since 
SOTA approaches are primarily deep neural networks, they cannot learn the representations of 
faraway cases. 

RGB-pointcloud fusion is a common strategy [149, 150, 151, 152, 153, 154] to increase 3D object 
detection performance. For example, some works [149], [154] focus on using 2D detection results 
to generate frustum-based search spaces in pointclouds. As shown in Fig. 6.1, a faraway object in 
the RGB image domain usually contains around 400 pixels, which can be easier to recognize with a 
mature 2D detector. As such, a fusion-based approach can be a good candidate for faraway object 
detection. However, even though the aforementioned studies use RGB imagery to boost detection 
performance, they still depend exclusively on learned pointcloud representations to localize objects 
in 3D. 

In this work, we propose an alternative 3D/BEV detector, Faraway-Frustum, to address the 
problem of faraway object detection. We follow the idea of frustum generation but use clustering 
instead of a neural network to estimate an initial object location in the cropped pointcloud for 
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Figure 6.1: Learned pointcloud representations do not generalize well with an increase in sparsity. 
This problem does not translate to the 2D RGB image domain in the same fashion, as object shape 
does not change drastically with an increase in depth. However, sparse points in the target object’s 
vicinity can still be used to estimate depth. Our method utilizes these sparse points to estimate 
depth while using 2D RGB information to recognize shape and object-class. 

faraway objects. We still train a neural network to regress bounding box shape and refne depth. 
The overview of the proposed method is shown in Fig. 6.2. We frst use 2D instance segmentation 
masks (or 2D bounding boxes) for each object in the RGB image space to generate frustums in 
the pointcloud space and fnd the corresponding lidar points for each object. Then, a pointcloud 
clustering technique is applied to estimate the 3D centroid of the object. By comparing the centroid 
distance with a faraway threshold, a decision is made to treat an object as either faraway or nearby. 
If faraway, a 3D bounding box is regressed by our Faraway Frustum Network (FF-Net) to the object 
based on the estimated centroid and the frustum pointcloud. Otherwise, instead of clustering 
the raw pointcloud, learned representations are directly used for 3D box ftting, following SOTA 
practices. 

To evaluate the proposed method, we conducted bench-marking experiments using the KITTI 
dataset [143]. In KITTI, the average number of lidar points for each faraway object (e.g. pedestri-
ans over 60 meters and cars over 75 meters) is ten or less, which supports our motivating assertion 
that an alternative approach is necessary for detecting faraway objects instead of directly us-
ing pointcloud-driven neural network approaches. The experimental results demonstrate that our 
method outperforms SOTA methods on faraway object detection, which indicates that our method 
efectively fuses the RGB data with a very sparse pointcloud. As shown in Fig. 6.6, our proposed 
method successfully detects faraway objects where SOTA methods (fusion or pointcloud only) fail. 
Our main contributions can be summarized as follows: 
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Figure 6.2: Overview of the 3D/BEV object detection system based on our proposed method 
(Faraway-Frustum). It contains three main stages: frustum generation, centroid estimation, and 
box regression. First, the 2D object information (classifcation and 2D semantic mask) is extracted 
from the image by conducting instance segmentation, and then the 3D frustum is shaped by extrud-
ing the 2D semantic mask to the 3D coordinate system. Second, lidar pointcloud (red) points in the 
frustum are collected and clustered, and then the 3D object centroid is estimated. Finally, depend-
ing on the faraway/nearby decision, the 3D bounding box is predicted by our Faraway Frustum 
Network or a state-of-the-art method. 

6.1.1 Contributions 

The main contributions of this work are: 

• Introduction of a novel fusion strategy: depending solely on 2D vision sensing for object-
class recognition and using frustum-cropped pointcloud data with clustering for 3D object 
localization. 

• Showing that using clustering with cropped, very sparse raw pointcloud data is a better 
strategy than using learned representations for faraway 3D object detection. As shown in Fig. 
6.1, within very sparse pointclouds, the shape of objects changes drastically and randomly. 
As such, using representations learned mostly from closer objects is not efective. 

• Demonstrating the failure of state-of-the-art 3D object detectors with objects at a distance 
over sixty meters in the KITTI dataset. The proposed faraway-frustum approach outperforms 
SOTA methods with a signifcant margin. 

6.2 Related Work 

In this section, we briefy review state-of-the-art 3D/BEV object detection methods. We divide 
them into two main categories: pointcloud only methods and RGB-pointcloud fusion methods. In 
the second category, we mainly discuss feature-based fusion and frustum-based fusion. We also 
discuss their performance in detecting faraway objects. 

Pointcloud only methods. One way of processing pointcloud data is based on voxels [145, 
146, 144, 155]. Such methods frst convert the pointcloud into voxel grids and then learn the 
representation of each voxel. 3D/BEV detection is achieved with the learned voxel representation. 
Alternatively, raw pointcloud data can be used for 3D/BEV object detection [156, 157, 148] by 
directly utilizing PointNet-based architectures [158]. These methods are robust for most objects. 
However, pointcloud only methods all have difculty detecting faraway objects, because the lidar 
points of faraway objects are too sparse to be voxelized and learned, leading to no detection result 
in most cases. 

Feature-based Fusion. Feature-based fusion methods try to make the pointcloud data and 
the RGB data complement each other. One way is to fuse the information from the pointcloud 
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into the RGB image. For example, [150] fuses the features from a Region of Interest (RoI) in both 
2D image and 2D depth map, and then conducts 3D box regression. MV3D [151] projects the 
lidar pointcloud to two image representations (bird’s-eye view and front view). The features and 
information extracted from these two image representations and the RGB image are then fed into a 
region-based fusion network for 3D object detection. AVOD [152] frst generates a BEV map from 
a voxel grid representation of the lidar pointcloud. The features extracted from both the BEV 
map and the RGB image are fused for 3D object detection through a frst-stage region proposal 
network and a second-stage detector network. The main problem of these methods is the loss of 
the 3D geometric information in the lidar pointcloud caused by using only the pointcloud’s 2D 
representations, leading to some errors in locating small objects such as pedestrians. Feature-based 
fusion can also be achieved by fusing the information from the image space into the pointcloud. For 
example, [153] extracts the geometric features in 3D and color features in 2D from RGB-D images 
and then fuses them for 3D object detection. MVX-Net [159] fuses the RGB image and pointcloud 
point-wise or voxel-wise. The features extracted from the RGB image by a pre-trained 2D CNN are 
fused with the pointcloud in a voxel-based network to do 3D object detection. PointPainting [160] 
assigns the semantic feature to each lidar point by fusing the 2D detection result from the RGB 
image, thus achieving better results in pointcloud-based neural network detector. Since these 
approaches heavily rely on the pointcloud features, they still can not generate good results for 
faraway objects with sparse lidar points. 

Frustum-based Fusion. Frustum-based fusion methods use the detection results from 2D 
image to generate frustums for the pointcloud, hence reducing the search space in 3D. An early and 
classic method is Frustum PointNets [149]. This method frst generates a frustum for each object 
detected in 2D, then applies a PointNet-based approach to do instance segmentation and 3D box 
estimation in each frustum. Some work [161, 162] have improved the process of frustum generation 
by fltering out some background noise, and there is work focusing on changing the content of 
frustums. For example, Frustum ConvNet [154] generates a sequence of sub-frustums via sliding 
in the original 3D frustum. Frustum Voxnet [163] voxelizes parts of the frustum instead of using 
the whole frustum space, which ofers more accurate representations around the area of interest. 
Some other researchers aimed to provide more fusion information for improving the accuracy of 3D 
detection. For example, one work [164] combines the pointcloud features in the frustum with the 
image features in the 2D bounding box as early-fusion and then applies a PointNet-based detector. 
Another work [165] fuses their own BEV detection results with 3D/BEV results from Frustum 
PointNets as late-fusion. These perform well for most objects. But unfortunately, for faraway 
objects with sparse lidar points, pure neural network based approaches cannot generalize well. 

One recent work [166] achieved good 3D/BEV pedestrian detection results around 30 meters. 
In our work, we extend the range signifcantly, detecting pedestrians at 60 meters and beyond, 
where most SOTA approaches completely fail. 

6.3 Proposed Method 

An overview of our proposed method is shown in Fig. 6.2 and Algorithm 2. Our method takes 
both the RGB image and lidar pointcloud as input and outputs 3D/BEV bounding boxes Bi with 
class id ci. There are three main stages in our method: frustum generation, centroid estimation, 
and depth-refnement with box regression. Each stage will be illustrated in detail in the following 
subsections. 
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Algorithm 2: Faraway-Frustum(P, I, T, zth) 
Input: 
Lidar pointcloud P ∈ RN,3 . 
RGB image I ∈ RH,W,3 . 
Calibration matrix T ∈ R4,4 . 
Faraway object threshold zth ∈ R 
Output: 
3D object bounding box Bi ∈ R7 . 
Class id ci. 
Main algorithm: 
{ci, bi, Mi, si} = fMask R-CNN(I) (i = 1, 2...n) ; 
foreach i(1, 2...n) do 

P ′ i = fMask-frustum(Mi, T, P); 
(xi, yi, zi) = fclustering(P ′ i); 
if zi ≥ zth then 

P ′′ i = fprojection(P ′ i, xi, yi, zi); 
′ (zi, wi, li, hi, αi) = fFF-Net(Pi 

′′ , ci); 
′ Bi = (xi, yi, zi, αi, wi, li, hi); 

else 
Bi, ci = fSOTA(P, I); 

end 
end 

6.3.1 Frustum Generation 

2D instance segmentation. 2D instance segmentation serves as the basis of frustum gen-
eration. It takes an image as input and outputs the 2D object detection results containing 2D 
bounding boxes and semantic masks. 

In this work, we use the 2D instance segmentation framework Mask R-CNN [167] to obtain 2D 
object information {Ri} from image I: 

{Ri} = fMask R-CNN(I) (6.1) 

where fMask R-CNN represents the Mask R-CNN framework. Ri = (ci, bi, Mi, si) is the instance 
segmentation result, which is a 4-tuple consisting of class label ci, 2D bounding box bi, 2D semantic 
mask Mi, and confdence score si for object i. 

Frustum generation. We use the set of 2D results {Ri} to generate frustums and to further 
identify the lidar points that correspond to each object i. With the known transformation T 
between the camera and the lidar, we use the semantic mask Mi for 2D-to-3D projection as shown 
in Fig. 6.3(a). Then the corresponding ”frustrum pointcloud” P ′ can be identifed from the raw i 
lidar pointcloud P based on the frustum: 

P ′ i = fMask-frustum(Mi, T, P) (6.2) 

The mask-frustum based projection fMask-frustum is our main approach. As shown in Fig. 6.3(b), 
we believe that using the semantic mask can exclude some noise points that do not belong to the 
target object, e.g., the points from occluded objects or the background. As an alternative, we also 
tested the box-frustum based projection P ′ i = fBox-frustum(bi, T, P), which is used as a comparison 
with our main approach. 
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Figure 6.3: An illustration of frustum generation. The main diference between box frustum and 
mask frustum is that box frustum uses the 2D bounding box as the projection source, while mask 
frustum uses the 2D semantic mask. Mask frustum gives a more compact search space alongside 
the outline of the object, and thus excludes some noise points caused by potential occlusions. 

6.3.2 Centroid Estimation 

Centroid estimation. With P ′ i obtained from the frustum, we then estimate the 3D centroid 
(xi, yi, zi) for object i: 

(xi, yi, zi) = fclustering(P ′ i) (6.3) 

The 3D object centroid plays two key roles in our method. One is to use the depth zi to determine 
whether object i should be treated as a faraway object. The other is to further generate the 
3D/BEV detection results for faraway objects. 

Based on our observation in the KITTI dataset, regardless of whether the pointcloud in the 
frustum is dense or sparse, there are always some points on the object’s surface. Thus, we adopt a 
fast clustering technique using histograms to estimate the 3D object centroid. 

First, for all points in the pointcloud P ′ i, the histogram of all the coordinate values in each axis 
is generated (here we have 3 axes x, y, and z). For the histogram of each axis, we defne the edges 

l rof every bin in the histogram as (ej , ej ), ∀j ∈ {0, 1, · · · , N}, and the count of values belonging to 
each bin as nj , ∀j ∈ {0, 1, · · · , N}, where N is the number of bins. Then, we identify the bin with 
the largest count value. This indicates that most of the points are concentrated within this bin. 
The corresponding index will be obtained by j∗ = arg maxj (nj ). Finally, the centroid value of an 

1 l raxis, for example, the centroid of x-axis, xi, can be obtained by xi = (e + ej∗ ). The centroid 2 j∗ 

values yi and zi for the other two axes is estimated in the same way. 
Faraway threshold. Using the estimated centroid (xi, yi, zi), we determine whether each 

object i is considered faraway or nearby. We select diferent faraway thresholds zth for diferent 
object classes based on the statistics of the number of ground truth lidar points in each object. 
As shown in Fig. 6.5, we frst draw a line for the objects that have 10 lidar points, then we 
approximately select the zth such that most objects of distance larger than zth have less than 10 
points. To determine whether object i should be treated as a faraway object, we compare the 
estimated distance zi with zth of the corresponding object class ci. If zi > zth, then it is a faraway 
object, otherwise it is not. 
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Figure 6.4: An illustration of coordinate transformation for pointcloud and Faraway Frustum Net-
work (FF-Net). (a) Illustrates the process of projecting the pointcloud into diferent coordinate 
systems in our method. After carrying out frustum generation, frustum rotation, clustering, and 
centroid estimation, the frustum pointcloud is projected into the centroid coordinate system. Our 
goal is to further localize the 3D object by the 2D projection of the frustum pointcloud and the 
FF-Net. (b) The FF-Net is essential to refne the object center, regress the box size, and resolve 
certain issues that may occur while creating the frustum. For example, due to errors in detection or 
segmentation, the cluster centroid may not be aligned well with the object. The FF-Net is trained 
to deal with such issues and refne the object localization. 

6.3.3 Box Regression 

To obtain the 3D/BEV bounding box Bi for object i based on the estimated object centroid 
(xi, yi, zi), we need to estimate the box shape: the length li, width wi, height hi, and orientation 
αi. If object i is a faraway object, directly using learned representations from state-of-the-art 
models is not a good choice because they do not generalize well from dense pointclouds to very 
sparse pointclouds. Furthermore, the estimated object centroid (especially the depth) may still be 
quite far from the box center. As such, we propose to use a light model named Faraway Frustum 

′ Network (FF-Net) for faraway objects to refne the depth zi and regress the shape (wi, li, hi, αi) of 
the 3D bounding box with the input of the object class ci and a 2D projection P ′′ of the frustumi 
pointcloud, as shown in Fig. 6.4. 

Pointcloud Projection. 2D projection P ′′ of the frustum pointcloud is generated using ai 
coordinate transformation as shown in Fig. 6.4(a). After conducting frustum generation for the 
raw pointcloud P, the frustum pointcloud P ′ is obtained. First, the camera coordinate system isi 
rotated to the center view of the frustum to build the frustum coordinate system. Second, after 
histogram-based clustering and centroid estimation, the frustum coordinate system is transformed 
to the centroid coordinate system with the estimated centroid at the origin. Finally, all lidar points 
inside of the frustum are projected into the centroid coordinate system in bird’s-eye view. The 
projected frustum pointcloud in the centroid coordinate system is taken as the 2D projection P ′′ i 
of the frustum pointcloud. 

Box Regression. FF-Net takes the object class ci and a 2D projection 

P ′′ i = fprojection(P ′ i, xi, yi, zi) (6.4) 

of the frustum pointcloud P ′ whose origin is the estimated centroid (xi, yi, zi) as input and combines i 
a MobileNet-based [168] backbone network with a multi-output regression head as shown in Fig. 
6.4(b). 

The estimated centroid (xi, yi, zi) is considered as the origin of the input projection, and the 
goal of the FF-net is to shift this origin to the real center of the 3D bounding box, i.e. to transform 
a centroid coordinate to a 3D object coordinate as shown in Fig. 6.4(a). Furthermore, another 
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Figure 6.5: The number of points belonging to an object (pedestrians and cars) versus distance 
from the sensor in the KITTI dataset. As the distance (x-axis) increases, the number of lidar points 
in an object (y-axis) decreases drastically and the pointcloud of each faraway object is very sparse. 
When the number of lidar points is less than 10, the shape of objects cannot be recognized. Thus, 
objects with fewer than 10 points are considered faraway objects. We use this distribution to decide 
the faraway decision threshold. 

goal is to regress the box shape, achieved by minimizing the loss of the regressed length, width and 
height of the box. We use mean absolute error (MAE) to compute the loss Lx,Ly,Lz,Lw,Ll,Lh,Lα 

′ ′ ′ of box centroid (xi, yi, z ) and shape (wi, li, hi, αi) respectively. By summing these losses, FF-Neti 
is trained and optimized with multi-task losses LFF −Net. 

′ Finally, for a faraway object, we take the shifted depth zi and the regressed 3D bounding box 
shape (wi, li, hi, αi) from the output of FF-Net and combine them with (xi, yi) from the estimated 
centroid. We assign a 3D bounding box to the faraway object i as: 

′ Bi = (xi, yi, zi, αi, wi, li, hi). (6.5) 

It should be noted that the class id ci is directly obtained with Mask R-CNN. If object i is 
not a faraway object, we switch to using learned representations following SOTA (e.g. Frustum-
PointNets [149], PV-RCNN [144]) methods. In this case, the 3D bounding box and class id for a 
non-faraway object are obtained by Bi, ci = fSOTA(P, I). 

6.4 Experiments 

We utilized the KITTI dataset [143] to conduct our experiments. We specifcally extracted far-
away objects in KITTI and investigated them separately. Details of dataset preparation, evaluation 
metrics, and implementation are described below. 

Dataset preparation. First we analyzed the statistics of the original KITTI dataset by 
evaluating the distribution of the objects at diferent distances and having diferent numbers of 
lidar points, as shown in Fig. 6.5. It is obvious that as the distance increases, the number of lidar 
points in an object decreases. That is to say, the pointcloud is very sparse for faraway objects. We 
selected the faraway threshold zth for cars as 75 meters and for pedestrians as 60 meters. We also 
split the KITTI dataset into the training set (3724 frames) and the validation set (3757 frames). 
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Evaluation metric. The major evaluation metric is the mean average precision (mAP) with 
a given IoU threshold, as suggested by the KITTI dataset. We use both the ofcial benchmark 
and our specifc benchmark for faraway objects. In the benchmark for faraway objects, we only 
evaluate faraway objects and we use a specifc IoU threshold (0.1) for the mAP. We use a low IoU 
threshold because detecting an object with a small overlap with the ground truth is still better, at 
long distances, than no detection at all. The mAP results are computed with 11 recall positions 
which is the same as in [143]. 

We also evaluate the faraway objects using the average IoU (aIoU ), which is defned as P n IoU 
aIoU = i=1 (6.6) 

n P nwhere n is the total number of faraway objects and i=1 IoU is the sum of the IoU values calculated 
based on the ground truth and the predicted bounding box. 

Implementation. Our method uses the instance-level semantic segmentation method (Mask 
R-CNN [167] pre-trained on the COCO dataset [169]) to generate 2D object information from the 
image space. Our frst approach (ours1) uses 2D semantic masks to generate frustums in 3D. The 
second approach (ours2) uses 2D bounding boxes to generate frustums. As a baseline (ours3), we 
also use ground truth 2D bounding boxes provided by KITTI to generate frustums. All of our 
approaches are combined with PV-RCNN [144] for non-faraway objects. The Faraway Frustum 
Network (FF-Net) is trained using the Adam optimizer with early stopping. FF-Net is trained 
with the whole training set, but during inference only faraway objects are fed to the FF-Net. 

We compared our proposed method with the following SOTA 3D/BEV object detectors: SEC-
OND [145], PointPillars [146], PV-RCNN [144], and Frustum PointNets [149]. These SOTA meth-
ods are all trained from scratch using our data split, and we evaluated them with the same faraway 
metrics. 

6.5 Results 

Quantitative results. Table 6.1 shows the average IoU results for BEV detection of faraway 
objects in the KITTI validation dataset. All of our methods outperform SOTA methods with higher 
average IoU of at least 0.051 and at most 0.157. And surprisingly, none of the methods except ours 
can achieve an average of 0.1 IoU for both pedestrians and cars. This result not only demonstrates 
the efectiveness of our method, but also underlines an important shortcoming of SOTA methods. 
Furthermore, we believe fnding the exact shape of faraway objects is not a priority. As long as we 
obtain the 3D/BEV detection result with even a small IoU (e.g. 0.1), it can still be very useful 
for certain applications such as automated driving. In other words, a 0.1 IoU detection is better 
than a false negative. As such, we set the IoU threshold to 0.1 for faraway objects in the mAP 
comparison. 

The mAP results of faraway 3D/BEV detection over KITTI validation dataset for pedestrians 
and cars are shown in Table 6.2. For faraway pedestrians (over 60 meters), our methods (ours1 
and ours2) outperform SOTA methods on 3D/BEV detection with large mAP margins (BEV: at 
least 22.14% and at most 45.45%, 3D: at least 9.55% and at most 44.54%). For faraway cars (over 
75 meters), our methods (ours1 and ours2) outperform SOTA methods again with a higher mAP 
(BEV: at least 27.09% and at most 46.90%, 3D: at least 16.52% and at most 46.90%). 

The mAP results of 3D/BEV detection over the KITTI validation dataset for pedestrians and 
cars are shown in Table 6.3. For the non-faraway ofcial Easy/Mod/Hard benchmark, our method 
performs as well as the baseline SOTA method (PV-RCNN). 
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Figure 6.6: Example 3D detection results of faraway objects from the KITTI test set. (a) Pedestrian 
detection. Top row : Frustum PointNets, which is based on fusing multiple modalities (RGB and 
pointcloud). Middle row : PV-RCNN, which uses only the pointcloud. Bottom row : Our proposed 
method. (b) Car detection. Same arrangement as in (a). In these examples, for both the faraway 
pedestrian and the faraway car, our proposed method successfully detects the targets. However, 
state-of-the-art methods (Frustum PointNets and PV-RCNN all fail. 

All the above results demonstrate that our method achieves better performance on faraway 
object detection without impairing the overall performance of SOTA methods. 

Qualitative results. Fig. 6.6 shows a visual example of the results of diferent methods for 
faraway object detection. We compared our method with PV-RCNN [144] and Frustum Point-
Nets [149]. In frame (a), Frustum PointNets mistakenly detects the pole as a pedestrian, while 
PV-RCNN provides no detection. However, for detecting the faraway pedestrian near the pole, 
only our detector succeeds. In frame (b), state-of-the-art methods all fail in detecting the faraway 
car. In contrast, our method successfully detects the car in 3D. 

6.6 Conclusion 

In this chapter, we proposed an alternative 3D/BEV detector, named Faraway-Frustum, to deal 
with lidar sparsity of faraway objects. Our method takes advantage of relatively dense image data 
to fnd faraway objects and circumvents the disadvantages of pointcloud-driven neural networks 
working on very sparse points. Moreover, our alternative detector can be fexibly combined with 
a state-of-the-art method to form an overall 3D/BEV object detection system via setting faraway 
thresholds. 

The experiments demonstrated the feasibility of our approach, but they also exposed a signif-
cant shortcoming of state-of-the-art object detection methods: Relying on learned representations 
of very sparse lidar points to detect faraway objects is not a good strategy. 
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Table 6.1: Average IoU Comparison of Faraway BEV Object Detection on KITTI Val Dataset 

Method BEV Ped. BEV Car 
> 60 m > 75 m 

Frustum PointNets [149] 
SECOND [145] 
PointPillars [146] 
PV-RCNN [144] 

0.000 
0.036 
0.072 
0.051 

0.000 
0.009 
0.000 
0.018 

Ours1 (FF-net mask) 
Ours2 (FF-net box) 

0.123 
0.124 

0.157 
0.150 

* Name explanation: Ped. (Pedestrian). 
** The bold result indicate the best in all methods, and the blue result 
represents the second place. 

Table 6.2: mAP Comparison of Faraway 3D/BEV Object Detection on KITTI Val Dataset 

Method 
3D Ped. BEV Ped. 3D Car BEV Car 

IoU threshold 0.1 
Over 60 meters Over 75 meters 

FP [149] 
SE [145] 
PP [146] 
PV [144] 

00.00 
13.63 
22.40 
19.69 

00.00 
13.63 
22.40 
19.69 

00.00 
09.09 
00.00 
18.18 

00.00 
09.09 
00.00 
18.18 

Ours1 
Ours2 

44.54 
31.95 

44.54 
45.45 

34.70 
46.90 

45.27 
46.90 

* Name explanation: FP (Frustum PointNets), SE (SECOND), PP (PointPillars), 
PV (PV-RCNN), Ours1 (FF-net mask), Ours2 (FF-net box), Ped. (Pedestrian). 

** The bold result indicates the best in all methods, and the blue result represents the 
second place. We set the experimental IoU threshold as 0.1 for faraway pedestrians 
because in the current stage, it is extremely difcult to precisely locate faraway 
objects, while detecting faraway objects even with low IoU is still practical and 
useful. 

Table 6.3: mAP Comparison of 3D/BEV Object Detection on KITTI Val Dataset 

Method 
3D/BEV Pedestrian 3D/BEV Car 
IoU threshold 0.5 IoU threshold 0.7 

Easy Mod Hard Easy Mod Hard 

PV-RCNN [144] 69.53/73.32 66.02/67.42 62.91/65.70 96.73/97.53 93.18/94.77 85.76/94.78 
Ours1 (FF-net mask 

+ PV-RCNN) 
Ours2 (FF-net box 

+ PV-RCNN) 

71.65/73.02 67.29/68.73 62.08/66.87 

71.74/73.11 67.29/68.73 62.08/66.88 

96.73/97.54 93.17/94.75 85.76/94.77 

96.73/97.54 93.17/94.75 85.76/94.77 

For the non-faraway ofcial Easy/Mod/Hard benchmark, our method performs as well as the baseline SOTA 
method (PV-RCNN). This result shows that the proposed method can be used to improve the faraway 
detection performance without sacrifcing the non-faraway detection performance. 
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Chapter 7 

Predicting Pedestrian Crossing 
Intention With Feature Fusion and 
Spatio-Temporal Attention 

7.1 Introduction 

Autonomous driving technology has progressed signifcantly in the past few years. However, 
to develop vehicle intelligence that is comparable to human drivers, understanding and predicting 
the behaviors of trafc agents is indispensable. This work aims to develop behavior understanding 
algorithms for vulnerable road users. Specifcally, a vision-based pedestrian crossing intention 
prediction algorithm is proposed. 

Behavior understanding plays an crucial role in autonomous driving. It establishes the trust 
between people and autonomous driving systems. By explicitly showing passengers how the system 
makes its decisions, people will be more willing to accept this technology. 

In level 4 autonomy’s driving, pedestrian crossing behavior is one of the most important behav-
iors that needs to be studied urgently. In urban scenarios, vehicles frequently interact with crossing 
pedestrians. If the autonomous system fails to handle vehicle-pedestrian interactions appropriately, 
casualties will most likely occur. With accurate intention prediction, the decision-making and plan-
ning modules in autonomous driving systems can access additional meaningful information, hence 
generating safer and more efcient maneuvers. 

Nowadays, visual sensors such as front-facing cameras are becoming the standard confguration 
for autonomous driving systems. In the tasks of object detection and tracking, both the software 
and hardware of vision components are mature and ready for mass production. This provides a 
perfect platform on which vision-based behavior prediction algorithms can be deployed. Researchers 
and engineers in the prediction feld can just focus on algorithm design. When the algorithm is 
ready, deployment becomes relatively trivial. The proposed algorithm is based on pure vision, it 
can be easily deployed. As long as the prediction algorithm is appropriately tested and verifed, 
mass deployment becomes straightforward. 

Vision-based pedestrian crossing intention prediction has been explored for several years. Early 
works [170] usually utilized a single frame as input to a convolutional neural network (CNN) based 
prediction system. This approach ignores the temporal aspect of image frames, which plays a critical 
role in the intention prediction task. Later on, with the maturity of recurrent neural networks 
(RNNs), pedestrian crossing intention was predicted by considering both the spatial and temporal 
information [171, 172, 173]. This led to diferent ways of fusing diferent features, e.g., the detected 

87 



Image Processing Approaches to Trafc Understanding, Risk Assessment, and Safety 

Figure 7.1: Predicting pedestrian crossing intention is a multi-modal spatio-temporal problem. Our 
method fuses inherently diferent spatio-temporal phenomena with CNN-based visual encoders, 
RNN stacks, and attention mechanisms to achieve state-of-the-art performance. 

pedestrian bounding boxes, poses, appearance, and even the ego-vehicle information [174, 175, 176, 
177, 178]. The most recent benchmark of pedestrian intention prediction was released by [179], 
in which the PCPA model achieved the state-of-the-art in the most popular dataset JAAD [170]. 
However, PCPA does not consider global contexts such as road geometry and other road users, 
factors we believe are nonnegligible in pedestrian crossing intention prediction. Furthermore, the 
existing fusion strategies may not be optimal. 

In this work, we focus on improving the performance of vision-based prediction of pedestrian 
crossing intention, i.e., whether a pedestrian detected by a front-facing camera will cross the road 
or not in a short time horizon (1-2s). Our work leverages the power of deep neural networks and 
fuses the features from diferent channels. As shown in Figure 7.1, the proposed model considers 
both non-visual and visual information. They are extracted from a sequence of video frames 1-2s 
before the crossing / not crossing (C/NC) event. Non-visual information includes the pedestrian’s 
bounding box, pose keypoints, and ego-vehicle speed. Visual information contains local context 
and global context. Local context is the enlarged pedestrian appearance based on the bounding 
box position. Global context is the semantic segmentation of the road, pedestrians (all pedestrians 
in the scene), and vehicles. They are used because they signifcantly afect the target pedestrian’s 
crossing decision. We propose a hybrid method of fusing the the non-visual and visual features, 
which is justifed by comparing diferent strategies of feature fusion. 
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Our main contributions are as follows: 

• A novel vision-based pedestrian intention prediction framework for ADSs and ADASs. The 
proposed method employs a novel neural network architecture for utilizing diferent spatio-
temporal features with a hybrid fusion strategy. 

• Extensive ablation studies on diferent feature fusion strategies (early, later, hierarchical, or 
hybrid), input confgurations (adding/removing input channels, using semantic segmentation 
masks as explicit global context), and visual encoder options (3D CNN or 2D convolution 
with RNN + attention) to identify the best model layout. 

• Demonstrating the efciency of the proposed method on the commonly used JAAD [170] and 
PIE [173] datasets, and achieving state-of-the-art performance on the most recent pedestrian 
action prediction benchmark [179]. 

7.2 Related Work 

Vision-based pedestrian crossing prediction traces back to the works [180] that utilize the Cal-
tech Pedestrian Detection Benchmark [181]. However, the Caltech dataset does not explicitly 
annotate the crossing behavior of the pedestrians. This gap was later flled by the introduction of 
the JAAD dataset [170] that ofers high-resolution videos and explicit crossing behavior annota-
tions. With the release of the JAAD dataset, a simple baseline was also created that uses a 2D 
convolutional neural network (CNN) to encode the features in a given previous frame and then uses 
a linear support vector machine (SVM) to predict the C/NC event. 

Spatio-temporal modeling. Instead of using a single image, most recent works use image 
sequences as input to the prediction model due to the importance of temporal information in the 
prediction task. This leads to spatio-temporal modeling. 

Spatio-temporal modeling can be achieved by frst extracting visual (spatial) features per frame 
via 2D CNNs [182] or graph convolution networks (GCNs) [183], and then feeding these features into 
RNNs such as the long-short term memory (LSTM) model [184] and the gate recurrent unit (GRU) 
model [185]. For example, [171, 172, 173] use 2D convolution to extract the visual features from 
image sequence and RNNs to encode the temporal information among these features. The encoded 
sequential visual features are fed into a fully-connected layer to obtain the fnal intention prediction. 
[183] uses a graph representation to encode the spatial relationship among the target pedestrian 
and surrounding agents. The prediction task was evaluated from two diferent perspectives, a 
pedestrian-centric setting and a location-centric setting. However, ego vehicle motion and explicit 
visual features are not modeled in this work. 

Another way of extracting the sequential visual features is utilizing a 3D CNN [186]. It directly 
captures the spatio-temporal features by replacing the 2D kernels of the convolution and the pooling 
layers in the 2D CNN with 3D counterparts. For example, [187, 188] use a 3D CNN based 
framework (3D DenseNet) to directly extract the sequential visual features from the pedestrian 
image sequence. The fnal prediction is achieved by using a fully-connected layer. 

The crossing intention prediction task can also be combined with scene prediction. A couple of 
works [189, 190] attempted to decompose the prediction task into two stages. In the frst stage, the 
model predicts a sequence of future scenes using an encoder/decoder network. Then, pedestrian 
actions are predicted based on the generated future scenes using a binary classifer. 

Feature fusion. Instead of end-to-end modeling of visual features, information such as pedes-
trian’s bounding box, body-pose keypoints, vehicle motion, and the explicit global scene context 

89 



Image Processing Approaches to Trafc Understanding, Risk Assessment, and Safety 

can also be modeled as separate channels as inputs to the prediction model. This requires a proper 
way of fusing the above information. 

For example, [174, 191, 192, 193, 175] introduced human poses/skeletons in pedestrian crossing 
prediction tasks since the human pose can be considered as a good indicator of human behaviors. 
By extracting the pose keypoints from cropped pedestrian images, crossing behavior classifers 
were built based on the human pose feature vectors. Improvement in prediction accuracy shows 
the efectiveness of using pose features. However, these methods either only rely on human pose 
features without considering other important features or pay less attention to feature fusion. 

Some other methods focused on novel fusion architectures. For instance, [176] proposed SF-
GRU, a stacked RNN-based architecture, to hierarchically fuse fve feature sources (pedestrian 
appearance, surrounding context, pose, bounding box, and ego-vehicle speed) for pedestrian cross-
ing intention prediction. Nevertheless, this method does not take global context into account. [177] 
proposed a multi-modal based prediction system that integrates four feature sources (local scene, 
semantic map, pedestrian motion, and ego-motion). The global context (semantic map) is uti-
lized, but it lacks other important features such as human pose. [194] proposed a multi-task based 
prediction framework to take advantages of feature sharing and multi-task learning. It fuses four 
feature sources (semantic map, pedestrians’ trajectory, grid locations, and ego-motion). However, 
local context and human pose are not considered in the model. 

Very recently, more datasets such as PIE [173] and PePScenes [195] provide annotations for 
fusing diferent features. A benchmark was also released with the PCPA model [179]. These 
create more room for researchers to explore the task of vision-based pedestrian crossing intention 
prediction. 

7.3 Proposed Method 

7.3.1 Problem formulation 

The task of vision-based pedestrian crossing intention prediction is formulated as follows. Given 
a sequence of observed video frames from the vehicle’s front view and the relevant information of 
ego-vehicle motion, the goal is to design a model that can estimate the probability of the target 
pedestrian i’s action At+n ∈ {0, 1} of crossing the road, where t is the specifc time of the lasti 
observed frame and n is the number of frames from the last observed frame to the crossing / not 
crossing (C/NC) event. 

It is worth noting that the existing literature usually uses the terms pedestrian action, behavior, 
and intention interchangeably. What is being predicted in this work is whether a pedestrian will 
cross or not in a short time horizon. Here we use pedestrian crossing intention as surrogates for 
crossing action or behavior. We assume that the action of crossing is equivalent to the intention of 
crossing. 

In the proposed model, explicit features such as pedestrian’s bounding box, pose keypoints, 
local context (cropped image around the pedestrian), and global context (semantic segmentation) 
are frst extracted. They are then used together with the vehicle’s speed as separate channels that 
serve as the input to the prediction model. Our model has the following inputs: 

• The sequential local context around pedestrian i: 

t−m t−m+1 tCli = {cli , c , ..., cli};li 

• The 2D location trajectory of pedestrian i denoted by bounding box coordinates (top-left 
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points and bottom-right points): 

Li = {lt−m, lt−m+1, ..., li
t};i i 

• Pose keypoints of pedestrian i: 

t−m t−m+1 tPi = {p , p , ..., pi};i i 

• Speed of ego-vehicle: 
t−m t−m+1S = {s , s , ..., s t}; 

• The sequential global context denoted by the mask of semantic segmentation: 

t−m t−m+1 tCg = {c , c , ..., c }.g g g 

Each source has a sequence of length m + 1. The input sources are illustrated in Figure 7.2 and 
further described below. 

7.3.2 Input acquisition 

Local context and 2D location trajectory. The local context Cli provides visual features 
of the target pedestrian. The 2D location trajectory Li gives the position change of the target 

Figure 7.2: Overview of the proposed pedestrian crossing intention prediction model. The yellow 
part denotes the fusion of visual features. 2D convolutional features of local context and global 
context are encoded by GRUs and fed to the attention blocks respectively. The two outputs are 
concatenated as fnal visual features. The blue part denotes the fusion of local features (non-visual). 
These non-visual features are encoded by another GRU and fused hierarchically, and then fed to 
an attention block to obtain the fnal non-visual features. The red part denotes the fnal fusion. 
Final visual features and fnal non-visual features are concatenated and fed to an attention block. 
A fully-connected (FC) layer is then applied to make the fnal prediction. 
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pedestrian in the image. They can be extracted by a detection (e.g. YOLO [196]) and tracking 
(e.g. Deep-SORT [197]) system. At present, the detection and tracking algorithms are good enough 
to generate near ground-truth results. Therefore, in this work, we directly use the ground truth Cli 

and Li from the dataset. The main reason is that pedestrian detection and tracking are not the 
primary focus of this work. We would like to focus on the model architecture design and remove the 
noise from the detection and tracking. This also follows the confgurations in most related works. 
A small part of the work of [175] considers the impact of 2D detection in the prediction task. 
However, their innovation and focus are on how to build the overall pipeline. Another reason is 
that by using ground truth we can fairly compare our method with most related works. Specifcally, 

t−m t−m+1 tthe local context Cli = {c , c , ..., c } consists of a sequence of RGB images of size [224, 224]li li li 
pixels around the target pedestrian. The 2D location trajectory Li = {lt−m, lt−m+1, ..., lt} consistsi i i 
of target pedestrian’s bounding box coordinates, i.e., 

t−m t−m t−m t−mlt−m = {x , y , x , y },i it it ib ib 

t−m t−m t−m t−mwhere x , y denotes the top-left point and x , y bottom-right point. it it ib ib 
Pedestrian pose keypoints. Pedestrian pose keypoints represent the target pedestrian’s 

detailed motion, i.e., the posture at each frame while moving. They can be obtained by applying 
a pose estimation algorithm on the local context Cli. Since the applied JAAD dataset does not 
provide ground truth pose keypoints, we utilize the pre-trained OpenPose model [198] to extract 

t−m t−m+1 tthe pedestrian pose keypoints Pi = {p , p , ..., p }, where p is a 36D vector of 2D coordinates i i i 
that contain 18 pose joints, i.e., 

t−m t−m t−m t−m t−m t−m t−m p = {x , y , x , y , ..., x , y }.i i1 i1 i2 i2 i18 i18 

Ego-vehicle speed. Ego-vehicle speed S is a major factor that afects the pedestrian’s crossing 
decision. It can be directly read from the ego-vehicle’s system. Since the dataset contains the 
annotation of ego-vehicle’s speed, we directly use the ground truth labels for the vehicle speed 

t−m t−m+1S = {s , s , ..., st}. 
t−m t−m+1 tGlobal context. Global context Cg = {c , c , ..., c } ofers the visual features thatg g g 

account for multi-interactions between the road and road users, or among road users. In our work, 
we use pixel-level semantic masks to represent the global context. The semantic masks classify and 
localize diferent objects in the image by labeling all the pixels associated with the objects. Since 
the JAAD dataset does not have annotated ground truth of semantic masks, we use the DeepLabV3 
model [199] pre-trained on the Cityscapes Dataset [200] to extract the semantic masks and select 
important objects (e.g. road, street, pedestrians and vehicles) as the global context. For the model 
to learn the interactions between the target pedestrian i and these objects, the target pedestrian is 
masked by an unique label. The mask area uses the target pedestrian i’s bounding box (obtained 
from Li). The semantic segmentation of all input frames are scaled to be of size [224, 224] pixels, 
which is the same as the local context. 

7.3.3 Model architecture 

The overall architecture is shown in Figure 7.2. It consists of CNN modules, RNN modules, 
attention modules, and a novel way of fusing diferent features. 

CNN module. We use the VGG19 [182] model pre-trained on the ImageNet dataset [201] 
to build the CNN module. Sequential RGB images are collected as a 4D array input with the 
dimensions of [number of observed frames, row, cols, channels] ([16, 224, 224, 3] in this work), and 
then loaded by the CNN module. First, the feature map of every image from the fourth maxpooling 
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layer of VGG19 is extracted with size [512, 14, 14]. Second, every feature map is averaged by a 
pooling layer with a 14 × 14 kernel, and then fattened and concatenated, to obtain a fnal feature 
tensor with size [16, 512], as sequential visual features. 

RNN module. We use a gated recurrent unit (GRU) [185] to build the RNN module. The 
reason for choosing a GRU is that the GRU is more computationally efcient than its counterpart 
LSTM [184], which is older, and its architecture is relatively simple. The applied GRUs have 256 
hidden units, which result in a feature tensor of size [16, 256] 

Attention module. An attention module [202], by selectively focusing on parts of features, is 
used for better memorizing sequential sources. Sequential features (e.g. the output of RNN-based 
encoder) are represented as hidden states h = {h1, h2, ..., he}. The attention weight is computed 
as: 

˜exp(score(he, hs))
α = P , 

′ exp(score(he, h̃  
s ′ ))s 

˜ hT ˜where score(he, hs) = e Wshs and Ws is a weight matrix. Such attention weight trades of the 
˜end hidden state he with each previous source hidden state hs. The output vector of the attention 

module is produced as 
Vattention = tanh(Wc[hc; he]), 

where Wc is a weight matrix, and hc is the sum of all attention weighted hidden states as hc =P 
′ αh̃  

s ′ . The output of the attention module in our work is a feature tensor with size [1, 256].s 
Hybrid fusion. We applied a hybrid way of fusing the features from diferent sources. The 

strategy is shown in Figure 7.2. The proposed architecture has two branches, one for non-visual 
features and one for visual features. 

The non-vision branch fuses three non-visual features (bounding boxes, pose keypoints, and 
vehicle speed). They are hierarchically fused according to their complexity and level of abstraction. 
The later the fusion stage occurs, the more impact the fused features will have on the fnal pre-
diction. This is illustrated in Figure 7.2(a). First, sequential pedestrian pose keypoints Pi are fed 
to an RNN-based encoder. Second, the output of the frst stage is concatenated with 2D location 
trajectory Li and fed to a new RNN-based encoder. Finally, the output of the second stage is 
concatenated with ego-vehicle speed S and fed to a fnal RNN-based encoder. The output of the 
fnal encoder is then fed to an attention block to obtain the fnal non-visual feature vectors Vnvi. 

The vision branch fuses two visual features, consisting of local context (enlarged pedestrian 
appearance around the bounding box) and global context (semantic segmentation of important 
objects in the whole scene), as shown in Figure 7.2(b). Local context Cli is encoded by frst 
extracting spatial features from the CNN module (as explained in the previous section) and then 
extracting temporal features from the GRU module. Global context Cg is encoded in the same way. 
Both local and global features are then fed into their attention modules, and fnally, concatenated 
together to generate the fnal visual feature vectors Vvi. 

Lastly, as shown in Figure 7.2(c), the fnal non-visual feature vectors Vnvi and the fnal visual 
feature vectors Vvi are concatenated and fed into another attention block, followed by a fully-
connection (FC) layer to obtain the fnal predicted action: 

At+n 
i = fFC (fattention(Vnvi; Vvi)). 
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7.4 Experiments 

7.4.1 Dataset and Benchmark 

The proposed model was evaluated using both the JAAD [170] and PIE [173] datasets. The 
JAAD dataset contains two subsets, JAAD behavioral data (JAADbeh) and JAAD all data (JAADall). 
JAADbeh contains pedestrians who are crossing (495 samples) or are about to cross (191 samples). 
JAADall has additional pedestrians (2100 samples) with non-crossing actions. To create a fair 
benchmark, the dataset confguration is the same as used in [179]. It uses a data sample overlap of 
0.8 and a local context scale of 1.5. 

The PIE dataset is a more comprehensive dataset compared to the JAAD dataset. It contains 
1322 non-crossing samples and 512 crossing samples. Besides, the PIE dataset covers pedestrians 
with more diferent appearances and scenes with more diferent surroundings than those in the 
JAAD dataset. 

The evaluation metrics use accuracy, AUC, F1 score, precision, and recall. These are the most 
recognized metrics and are used by most related works. False alarm rate is another important 
metric when deploying this algorithm in autonomous driving systems. False alarms may cause 
unnecessary brakes for autonomous cars, resulting in unpleasant experiences for the passengers. 
The above metrics inherently include the false alarm rate. They are more balanced metrics for 
evaluating a prediction system. Most related works and benchmarks adopt this metric system to 
report their results. Using this metric system, we can fairly compare our works with others. 

7.4.2 Implementation 

In the experiments, the proposed model was compared with the following methods: SingleRNN 
[171], SF-GRU [176] and PCPA[179]. We adopted the benchmark implementation released with 
the PCPA model [179]. This benchmark collects the implementations of most pedestrian intention 
prediction methods. Our model was developed based on this benchmark. We use a dropout of 0.5 
in the attention module, L2 regularization of 0.001 in the FC layer, binary cross-entropy loss, and 
the Adam optimizer [203]. For the JAAD dataset, we use learning rate = 5 × 10−7 , epochs = 40, 
and batch size = 2. For the PIE dataset, we use learning rate = 5 × 10−5 , epochs = 60, and batch 
size = 2. ll models were trained and tested on the same split of the dataset, as suggested by the 
benchmark [179]. Note that the JAAD dataset does not provide explicit vehicle speed. Instead, 
the driver’s action is recorded as an abstract encoding of the vehicle speed. The action contains 
[stopped (0), moving slow (1), moving fast (2), decelerating (3), accelerating (4)]. 

7.4.3 Ablation study 

An ablation study was also conducted to compare diferent strategies of fusing diferent features. 
In addition to the baseline methods (SingleRNN [171], SF-GRU [176] and PCPA [179]) and the 
proposed model (Ours), a total of 7 variants of the proposed model (Ours1, Ours2, ... Ours7, as 
indicated in Table 7.5 and Table 7.6) were trained and compared with the proposed one. First, for 
the visual encoder, we tried (1) a 2D CNN combined with RNN (VGG and GRU in our experiments) 
and (2) a 3D CNN as proposed in the PCPA model. Second, we tried the models with and without 
the global feature (semantic segmentation). Finally, we tried diferent fusion strategies that include 
later fusion, early fusion, and hierarchical fusion so that they can be compared with the proposed 
hybrid fusion strategy. Later fusion (Figure 7.3) is the same as that proposed in PCPA [179]. Early 
fusion (Figure 7.4) concatenates non-visual features and visual features directly and then sends 
them into one RNN module followed by an attention module. Hierarchical fusion (Figure 7.5) 
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gradually fuses both visual features and non-visual features by RNN modules in the same manner 
as in Figure 7.2(a), followed by an attention module. 

Figure 7.3: Illustration of Later Fusion 

Figure 7.4: Illustration of Early Fusion 
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Figure 7.5: Illustration of Hierarchical Fusion 

7.5 Results 

7.5.1 Quantitative Results 

Table 7.1 shows the qualitative results on the JAADbeh dataset. It compares the proposed model 
with baseline models of SingleRNN [171], SF-GRU [176] and PCPA [179]. The proposed model 
achieved the best scores in accuracy, F1, and recall. F1 score is an balanced metric considering 
both recall and precision. For binary classifcation, it is the most important indicator of quality 
of the model. Our model achieved about 4% improvement in F1. In addition to F1, accuracy is 
another important metric, and our model also achieved the best score. 

Table 7.2 shows the qualitative results on the JAADall dataset. JAADall has additional samples 
of non-crossing behaviors. It is larger than JAADbeh. The data distribution is more similar to real 
world scenarios. As illustrated by Table 7.2, the proposed method achieved the best in accuracy, 
AUC, F1, and precision. Similar to the results in JAADbeh, our model achieved the best score in 
terms of the two important metrics, F1 and accuracy. 

Table 7.3 shows the qualitative results on the PIE dataset. On such a comprehensive dataset, our 
proposed method outperforms other methods with a considerable gap, which shows the importance 
and advantages of designing a hybrid fusion strategy and utilizing global context. 

Table 7.1: Quantitative Results on the JAAD Behavior Subset 

Models 
Model Variants JAADbeh 

Visual Encoder 
Global 
Context 

Fusion Approach Accuracy AUC F1 Score Precision Recall 

SingleRNN [171] VGG + GRU ✗ ✗ 0.60 0.54 0.70 0.65 0.76 
SF-GRU [176] VGG + GRU ✗ hierarchical-fusion 0.58 0.56 0.65 0.68 0.62 
PCPA [179] 3D CNN ✗ later-fusion 0.56 0.54 0.63 0.66 0.60 

Ours VGG + GRU ✓ hybrid-fusion 0.62 0.54 0.74 0.65 0.85 

Table 7.2: Quantitative Results on the JAAD All Dataset 

Models 
Model Variants JAADall 

Visual Encoder 
Global 
Context 

Fusion Approach Accuracy AUC F1 Score Precision Recall 

SingleRNN [171] VGG + GRU ✗ ✗ 0.78 0.77 0.54 0.42 0.75 
SF-GRU [176] VGG + GRU ✗ hierarchical-fusion 0.76 0.77 0.53 0.40 0.79 
PCPA [179] 3D CNN ✗ later-fusion 0.77 0.79 0.56 0.42 0.83 

Ours VGG + GRU ✓ hybrid-fusion 0.83 0.82 0.63 0.51 0.81 
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Table 7.3: Quantitative Results on the PIE Dataset 

Models 
Model Variants PIE 

Visual Encoder 
Global 
Context 

Fusion Approach Accuracy AUC F1 Score Precision Recall 

SingleRNN [171] VGG + GRU ✗ ✗ 0.83 0.78 0.69 0.72 0.67 
SF-GRU [176] VGG + GRU ✗ hierarchical-fusion 0.84 0.80 0.71 0.72 0.71 
PCPA [179] 3D CNN ✗ later-fusion 0.87 0.85 0.78 0.76 0.81 

Ours VGG + GRU ✓ hybrid-fusion 0.89 0.86 0.80 0.79 0.81 

Note that the results of PCPA were generated based on the ofcial implementation released by 
the PCPA author. We cannot reproduce the same results as reported in the PCPA paper. After 
communicating with PCPA’s authors, they confrm that our reproduced result is normal. 

We also analyzed the computational cost of the above models. The total number of model pa-
rameters is used as an indicator of computational cost. Table 7.4 shows the comparison. PCPA [179] 
has the highest number of model parameters as it utilizes 3D convolution. Our model has only one-
tenth of the parameters in PCPA, but still achieved better performance. This provides advantages 
in real-time deployment. 

Table 7.4: Comparison of Computational Cost 

Model Number of Params. 
SingleRNN [171] 1,016,321 
SF-GRU [176] 2,595,329 
PCPA [179] 31,165,953 

Ours 2,988,545 

7.5.2 Qualitative Results 

Figure 7.6 provides qualitative results for the proposed model of pedestrian crossing intention 
prediction. We mainly compared the proposed method with the PCPA model. In the provided 
examples, our method correctly predicted the crossing intention but the PCPA failed. Taking a 
closer look at the examples, the following argument is raised. Without utilizing the global context, 
the task of crossing intention prediction may face the problems of (1) unknown direction of the 
pedestrian (Case a in Figure 7.6), (2) occlusion (Case b in Figure 7.6), and (3) poor vision (Case 
c in Figure 7.6). Global context can provide additional information to account for the interaction 
between the whole scene and the target pedestrian. 

Figure 7.7 provides more qualitative results to analyze the advantages of the proposed model 
over the PCPA model as well as a few failure cases. Figure 7.7-(a) and Figure 7.7-(b) show cases 
when the proposed model generated correct predictions but the PCPA failed. The main reason is 
that our model considers the global visual context that contains the semantic segmentation of the 
drivable area. The model can learn from this whether the pedestrian is moving toward or on the 
drivable area, which is an important indicator of pedestrian crossing intention. 

Figure 7.7-(c) and Figure 7.7-(d) show cases when both the proposed model and the PCPA 
failed. Figure 7.7-(c) shows an intersection scenario. The pedestrian (yellow bounding box) has 
already crossed the ego road but is near the edge of the road on the other side. This may mislead 
the model to generate a prediction of crossing. The failure in Figure 7.7-(d) was mainly due to the 
poor illumination such that the model cannot obtain enough detailed features. 
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Figure 7.6: Qualitative results on the JAAD dataset produced by and our proposed model (Ours). 
The target pedestrians in images are enclosed by orange bounding boxes. The prediction results 
as well as ground truth labels are represented as red crossing or green not crossing. 

Figure 7.7: More qualitative results. (a) and (b) show cases of correct prediction by the proposed 
model for which the PCPA failed. (c) and (d) show results when both the proposed and the PCPA 
model failed. 

7.5.3 Results of Ablation Study 

Table 7.5 and Table 7.6 show the ablation study on the JAADbeh and JAADall datasets, re-
spectively. Table 7.7 shows the ablation study on the PIE dataset. Diferent model variants are 
denoted by Ours1, Ours2, ..., Ours7. By comparing Ours5 with Ours4 and Ours1 with the PCPA 
model, it shows that introducing global context can improve the model performance. In terms 
of fusion strategies, the proposed hybrid fusion strategy achieved the best performance, as seen 
by comparing Ours with Ours5, Ours6, and Ours7. If we further compare Ours4 with the PCPA 
model, it shows that using a 2D CNN plus RNN instead of a 3D CNN has a minimal impact on 
performance. This evidence also demonstrates that the improvement of our proposed method is 
mainly due to the new hybrid fusion strategy and global context. 

7.5.4 Efect of Longer Prediction Horizon 

It is claimed in some trafc studies [204] that the most suitable prediction horizon, i.e., time-to-
event (TTE), is 1-2 seconds, because longer prediction horizon is impractical due to unpredictable 
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Table 7.5: Ablation Study on the JAAD Behavior Subset 

Models 
Model Variants JAADbeh 

Visual Encoder 
Global 
Context 

Fusion Approach Accuracy AUC F1 Score Precision Recall 

Ours VGG + GRU ✓ hybrid-fusion 0.62 0.54 0.74 0.65 0.85 
Ablations 

Ours1 3D CNN ✓ later-fusion 0.59 0.53 0.69 0.65 0.75 
Ours2 3D CNN ✓ early-fusion 0.59 0.54 0.69 0.65 0.74 
Ours3 3D CNN ✓ hierarchical-fusion 0.57 0.48 0.70 0.62 0.81 
Ours4 VGG + GRU ✗ later-fusion 0.59 0.51 0.72 0.63 0.83 
Ours5 VGG + GRU ✓ later-fusion 0.64 0.59 0.73 0.68 0.78 
Ours6 VGG + GRU ✓ early-fusion 0.60 0.56 0.70 0.67 0.73 
Ours7 VGG + GRU ✓ hierarchical-fusion 0.54 0.50 0.64 0.63 0.65 

Table 7.6: Ablation Study on the JAAD All Dataset 

Models 
Model Variants JAADall 

Visual Encoder 
Global 
Context 

Fusion Approach Accuracy AUC F1 Score Precision Recall 

Ours VGG + GRU ✓ hybrid-fusion 0.83 0.82 0.63 0.51 0.81 
Ablations 

Ours1 3D CNN ✓ later-fusion 0.77 0.77 0.54 0.42 0.76 
Ours2 3D CNN ✓ early-fusion 0.77 0.74 0.51 0.41 0.69 
Ours3 3D CNN ✓ hierarchical-fusion 0.78 0.77 0.55 0.43 0.75 
Ours4 VGG + GRU ✗ later-fusion 0.75 0.79 0.54 0.40 0.85 
Ours5 VGG + GRU ✓ later-fusion 0.77 0.80 0.56 0.43 0.84 
Ours6 VGG + GRU ✓ early-fusion 0.79 0.74 0.52 0.43 0.66 
Ours7 VGG + GRU ✓ hierarchical-fusion 0.80 0.81 0.59 0.46 0.84 

nature of most urban scenarios and human dynamics [204]. However, to show the generalization 
ability, we still evaluated the proposed model with a longer TTE prediction horizon of 2-3 seconds. 
This was done by recreating the samples with a larger number of future frames. Table 7.8 shows 
the efect of diferent prediction horizons for the proposed model. It can be seen from the table 
that the model performance drops on both the JAAD and PIE datasets. This supports the claims 
that a TTE of 1-2 seconds is more suitable than a TTE of 2-3 seconds. 

7.5.5 Comparison of Diferent Prediction Task Confgurations 

There are some works that formulate the pedestrian intention prediction task in a diferent 
setting. Although using the same datasets, JAAD and PIE, they prepare the training, evaluation, 
and testing samples in a diferent way. The quantitative results cannot be directly compared 
with the proposed method. We analytically compared their results with ours with the conditions 

Table 7.7: Ablation Study on the PIE Dataset 

Models 
Model Variants PIE 

Visual Encoder 
Global 
Context 

Fusion Approach Accuracy AUC F1 Score Precision Recall 

Ours VGG + GRU ✓ hybrid-fusion 0.89 0.86 0.80 0.79 0.81 
Ablations 

Ours1 3D CNN ✓ later-fusion 0.84 0.85 0.76 0.67 0.86 
Ours2 3D CNN ✓ early-fusion 0.85 0.85 0.76 0.68 0.87 
Ours3 3D CNN ✓ hierarchical-fusion 0.86 0.84 0.76 0.75 0.77 
Ours4 VGG + GRU ✗ later-fusion 0.85 0.85 0.76 0.69 0.84 
Ours5 VGG + GRU ✓ later-fusion 0.86 0.84 0.76 0.74 0.78 
Ours6 VGG + GRU ✓ early-fusion 0.74 0.64 0.47 0.55 0.41 
Ours7 VGG + GRU ✓ hierarchical-fusion 0.86 0.84 0.77 0.74 0.80 
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Table 7.8: Efect of Longer Prediction Horizon 

Dataset TTE Acc. AUC F1 Precision Recall 

JAADbeh 
1-2s 0.62 0.54 0.74 0.65 0.85 
2-3s 0.53 0.47 0.65 0.62 0.68 

JAADall 
1-2s 0.83 0.82 0.63 0.51 0.81 
2-3s 0.79 0.78 0.57 0.46 0.76 

PIE 
1-2s 0.89 0.86 0.80 0.79 0.81 
2-3s 0.78 0.77 0.65 0.59 0.73 

• The bold result indicates he best result among the models. 

described. The comparison can be found in Table 7.9. The following works were compared: 

Table 7.9: Comparison of Diferent Pedestrian Intention Prediction Task Confgurations 

Work Prediction Task Confguration Results Comparison to Ours 

Liu et al. [183] 
Both pedestrian-centric and 
location-centric confguration 

Achieved 0.77 accuracy on 
JAAD dataset for action 
prediction at 1s 

Achieved 0.83 accuracy on 
JAAD dataset for 1-2s fu-
ture action prediction 

Zhang et al. [205] 
Pedestrian crossing intention at 
red-light scenario 

Achieved 0.91 accuracy on 
self-created red-light sce-
nario dataset 

Unable to directly compare 
as the self-collected dataset 
is not accessible 

Chen et al. [206] 

Utlized a balanced sampling strat-
egy, observing 15 frames (0.5s), 
predicting the action for 45 frames 
(1.5s) 

Achieved 0.79 accuracy 
and 0.78 F1 score on 
randomly sampled testing 
set (balanced) using PIE 
dataset 

Achieved 0.89 accuracy 
and 0.80 F1 score on PIE 
dataset with the commonly 
adopted confguration in 
[179] 

Rasouli et al. [178] 

Jointly predicting pedestrian ac-
tion (intention), trajectory, and 
grid position 

Achieved 0.91 accuracy 
with the auxiliary labels 
on PIE dataset 

Achieved 0.89 accuracy 
with only action (inten-
tion) labels on PIE dataset 

• Liu’s work [183] formulated the prediction task in two diferent perspectives of pedestrian-
centric and location-centric settings. In addition to the JAAD dataset, it also introduces 
a specifcally designed new dataset. The spatio-temporal information is encoded by GCN 
and RNN. They reported an accuracy of 0.77 on the JAAD dataset for predicting exactly 1 
second into the future. We use the more commonly recognized benchmark proposed in [179] 
in our work. We achieved an accuracy of 0.83 on the JAAD dataset for future actions of 1-2 
seconds. With a longer prediction horizon and higher accuracy scores, the efectiveness of our 
proposed method is validated. 

• Zhang’s work [205] focuses on pedestrian’s crossing intention at red-light scenario. It ana-
lyzed 4 diferent machine learning models, SVM, RF, GBM, and XGBoost, that are fed with 
pedestrian pose features. It achieved an accuracy of 0.91. However, the results were obtained 
on a self-collected and self-labeled red-light scenario dataset. Our proposed model cannot 
be directly compared with this method due to the inability of accessing the dataset and the 
diferent task confgurations. Nevertheless, our method achieved an accuracy of 0.89 on the 
PIE dataset, which is very similar to Zhang’s results. 

• Chen’s work [206] utilized a balanced sampling strategy to extract the samples for pedestrian 
crossing prediction. They use 15 frames (0.5s) as observation to predict the pedestrian crossing 
action for 45 future frames (1.5s). A graph convolutional autoencoder is used to embed 
spatio-temporal information. It achieved 0.79 accuracy and 0.78 F1 scores on a randomly 

100 



Image Processing Approaches to Trafc Understanding, Risk Assessment, and Safety 

sampled testing set (balanced) using the PIE dataset. Our model uses the commonly adopted 
confguration in [179]. We achieved 0.89 accuracy and 0.80 F1 score on the PIE dataset. 

• Rasouli’s work [178] formulates the pedestrian crossing intention as a sub-task of a multitask 
prediction framework, i.e., jointly predicting action (intention), trajectory, and grid position. 
They use a combined independent and joint encoding strategy with a categorical interaction 
module to fuse all the input channels. With the auxiliary labels, their work achieved 0.91 
accuracy on the PIE dataset. As a comparison, our model achieved 0.89 accuracy on PIE 
but with only the action (intention) labels. Without auxiliary labels, our model still achieves 
comparable results. This validates the efectiveness of our model. 

7.6 Conclusion 

In this work, we proposed a novel method for vision-based pedestrian crossing intention predic-
tion. Our method explicitly considers the global context as a channel representing the interaction 
between the target pedestrian and the whole scene. We also proposed a hybrid fusion strategy for 
diferent features using 2D CNNs, RNNs, and attention mechanisms. Experiments on the JAAD 
and PIE datasets show that the proposed method achieves the state-of-the-art against baseline 
methods in the pedestrian action prediction benchmark. 

Future work can focus on improving our model’s robustness in unexpected situations, e.g., poor 
vision and occlusion. Additionally, feature fusion with more information sources can be explored. 
Finally, fne-tuning the model for particular pedestrian subsets, such as children and disabled 
people, can increase overall safety and performance. 
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Chapter 8 

Photorealism in Driving Simulations: 
Blending Generative Adversarial 
Image Synthesis With Rendering 

8.1 Introduction 

Driving simulations are important for developing and evaluating intelligent transportation sys-
tems [207]. A good simulation environment should have accurate vehicle dynamics, realistic traf-
fc behavior, and high visual fdelity. Visual fdelity is especially crucial for validating vision-
based algorithms and conducting human-in-the-loop experiments. There are numerous studies 
[208, 209, 210, 211, 212, 213] that utilize a driving simulation whose integrity greatly depends on 
the visual quality of the simulation environment. 

The aforementioned studies all use rendered images that are generated by a simulation envi-
ronment. However, limited work has been done on evaluating and improving the visual fdelity 
of state-of-the-art driving simulators. Here we investigate a new approach: introducing genera-
tive photorealism to virtual driving environments using deep learning. Data-centric applications 
trained or fne-tuned in a photorealistic driving simulation can be more confdently deployed to 
the real world. Furthermore, automated driving systems can be tested with photorealistic-looking 
dangerous scenes that are difcult to obtain outside a simulation environment. In addition, if non-
realistic repetitive patterns can be replaced by photorealistic scenery, the degree of immersion for 
human-in-the-loop simulation experiments can be increased. 

The fdelity of a conventional driving simulator depends on the quality of its computer graphics 
pipeline, which consists of 3D models, textures, and a rendering engine. High-quality 3D mod-
els and textures require artisanship, whereas the rendering engine must run complicated physics 
calculations for the realistic representation of lighting and shading [214]. These processes are labor-
intensive, and images obtained this way are not photorealistic. Here we investigate alternatives for 
alleviating the aforementioned costs. An overview of our approach is shown in Figure 8.1. 

The alternative to rendering is neural network based generative adversarial image synthesis. 
The advent of Generative Adversarial Networks (GAN) [215] enabled the realization of photo-
realistic image synthesis [216, 217, 218, 219, 220, 221, 222]. A particular sub-problem, conditional 
image synthesis [223, 224, 225, 226, 227], delves into the more specifc task of mapping a pixel-wise 
semantic layout to a complying photo-realistic image. The conditional semantic layout is the key 
link between the 3D scene and the generative synthesizer in our framework. More recently, video-
to-video synthesis [228] was proposed as an alternative to image synthesis. The temporal dimension 

102 



Image Processing Approaches to Trafc Understanding, Risk Assessment, and Safety 

Figure 8.1: The proposed framework generates photorealistic imagery for driving simulators. First, 
we obtain the semantic layout of the scene through a conventional simulation pipeline with texture-
less simple 3D models. Then, this semantic layout is converted into a photorealistic RGB image 
using GANs with the proposed image formation and blending strategy. 

was added to the generative process to reduce inconsistencies between synthesized frames. 
The main motivation of this work is twofold: to increase the visual fdelity of driving simulations 

and reduce the manual labor requirements for 3D mesh and texture creation. With the use of GAN-
based photorealistic image synthesizers, background objects such as trees, mountains, and the sky 
can be generated without detailed meshes or texture information. However, conventional rendering 
is still needed to have full control over important objects of interest, such as vehicles and road 
markers. 

In this work, we propose to integrate generative adversarial image synthesis into a driving 
simulation. For each time step, CARLA, an open-source driving simulator [39], determines the 
scene’s semantic layout with simple, textureless 3D models that are radiant with a unique class 
color. It should be noted that there is no illumination source other than the radiant 3D objects 
and no refections or ambient occlusion are considered at this step. Then, a virtual pinhole camera 
is used to form a 2D semantic image from this scene. This image is the equivalent of a pixel-wise 
semantic segmentation mask. Next, the GAN-based image synthesizer converts the 2D semantic 
image to a photorealistic image. Conditional GAN (cGAN) [229] and CYcle GAN (Cy-GAN) [223] 
are the main techniques for this step. Simultaneously, a few objects of interest are partially rendered 
using a conventional rendering engine [230]. This is necessary as full control over some critical 
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objects, such as lane markings and vehicles in a driving scene, is only achieved with a conventional 
graphics pipe. Finally, a blending GAN mixes the cGAN/Cy-GAN synthesized image with the 
individually rendered objects. The proposed method was evaluated with semantic segmentation 
[231], an important driving-related perception task. 

The main contributions of this work are: 

• We introduce a novel driving simulation graphics pipeline for expediting scene creation using 
automated synthesis of background elements such as buildings, vegetation, and sky. To 
the best of our knowledge, this is the frst GAN-render hybrid graphics pipeline for driving 
simulations. 

• Blending GAN-based image synthesis with physics-based partial rendering. 

• Replacing recurring patterns, such as repeating tree and building models, that are common in 
driving simulations with generative photorealistic surfaces as shown in Figure 8.2. Repetitive 
patterns can break immersion for human-in-the-loop simulation experiments. In addition, 
machine learning algorithms trained or fne-tuned in a repetitive environment can fail in the 
real world due to overftting. As such, the proposed approach aims at increasing the integrity 
of simulation-based intelligent transportation research. 

Figure 8.2: We frst create the semantic layout, and then use a GAN-based image synthesizer with 
diferent style encodings to generate random but photorealistic RGB background imagery. Repeti-
tive patterns that are common in driving simulations are memorazible by learning algorithms and 
break immersion for human driver subjects. The proposed approach alleviates these shortcomings. 
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8.2 Related work 

Simulation based driving studies. Human driver reaction to various driving-related stimuli 
has been observed via simulation environments in numerous studies. The simulation’s visual fdelity 
is critical for such experiments, as humans are accustomed to a real-world driving setting. Driving 
simulators have been used to study the driver’s reaction during an automated driving take-over 
[210], to monitor human responses to stressful driving stimuli [208], to fnd the efect of inter-
vehicular distances on human car following behavior [211], and to measure the efect of acoustic 
cues on situational awareness of human drivers [213]. An automated highway driving system with 
human-like decision-making capabilities has been developed via a driving simulator [212]. Another 
study [209] focused on human pose estimation using simulated images and showed that data-centric 
algorithms fne-tuned in these simulations could be used in real-world scenarios. 

A recent study showed that human subjects gaze with higher variance and exhibit more diverse 
steering activity in driving simulations that have better visual fdelity [232]. Higher visual fdelity 
is always desired in human-in-the-loop experiments because human driving behavior deviates from 
real-world behavior in unrealistic simulation environments [233]. Furthermore, data-centric meth-
ods that are trained on synthetic data generated by conventional rendering engines fail to perform 
with real-world images [234]. 

The number and signifcance of these studies underline the importance for improving the visual 
fdelity in driving simulations. New technologies can be developed more efectively with a better 
simulator. For example, if photorealism can be achieved, a learning-based lane-boundary detection 
algorithm [235] can be trained in a simulation and deployed in the real world. 

Rendering. Physics-based rendering [214] has been used at the end of the line of conventional 
computer graphics pipelines to form 2D imagery from virtual 3D scenes for a long time. The most 
common approaches, rasterization and ray-tracing, require a full pipeline of detailed 3D models, 
their surface textures and materials, and a physics engine such as Unreal Engine 4 [230] to run 
complicated calculations for representing light and shading. Here, we propose to partially replace 
this pipe with much simpler 3D models and remove light, texture, and material information for 
most of the objects in the scene. We also show that the visual fdelity can be increased with the 
proposed method. 

Neural rendering. Recent work [236] demonstrated that 2D image formation could be 
achieved given a camera pose and light position in a 3D scene using diferentiable convolutional 
networks. The key enabler here is the formulation of the discrete rasterization problem [237]. With 
a diferentiable rendering framework, a neural network can be trained with backpropagation. There 
is additional work [238, 239, 240] focusing on the diferent aspects of diferentiable rendering for-
mulations and approximations. Neural rendering is a promising technique. However, this approach 
still requires detailed 3D models and is incapable of generating texture information, which reduces 
the visual fdelity of the output. In comparison, we propose to use generative models for reducing 
3D model and texture complexity. 

Generative adversarial image synthesis. Generative adversarial image synthesis omits 
rasterization and rendering. Physical phenomena such as lighting and refectivity are completely 
ignored by GAN based neural image synthesizers [216, 217, 218, 219, 220, 221, 222]. Instead, the 
photorealism is achieved by training the GAN with real-world data. In other words, the network 
learns to generate photorealistic images by capturing a latent probability distribution underlying 
real-world datasets. This approach has one major drawback: there is no constraint on the semantic 
layout of the generated 2D image. Hence, no association with 3D scenery can be constructed. As 
such, this methodology cannot be applied for our image formation purposes. 

Conditional generative adversarial image synthesis. On the other hand, conditional 

105 



Image Processing Approaches to Trafc Understanding, Risk Assessment, and Safety 

GANs [223, 224, 225, 226, 228, 227], [241] have been efectively used for image synthesis while re-
taining a semantic constraint. Typically, this constraint is a pixel-wise semantic segmentation mask, 
but other modalities such as text [242] have also been used. One limiting factor for Conditional 
GAN (cGAN) is the paired data requirement. The dataset must contain semantic segmentation 
masks and the corresponding real-world images. Building such paired datasets is labor-intensive 
because every real-world image needs a corresponding semantic segmentation label assigned by a 
human annotator. 

Cycle-consistency and domain adaptation. Cycle consistent GANs and unsupervised 
domain adaptation techniques make the paired dataset requirement uneccessary [243, 234, 244, 
245, 246, 247, 244]. These works have illustrated that high fdelity image synthesis can also be 
achieved with unpaired data. Cycle-consistency is very promising and has a huge application 
range. For example, CyCADA [234] can translate an existing game-engine generated image into a 
photorealistic image. 

The aforementioned GAN-based image synthesis techniques have not been integrated into driv-
ing simulation pipelines until now. This contribution makes our proposed method novel. We 
propose to use simple 3D models radiant with unique class color-codes without textures to form a 
2D semantic image. This image is analogous to a 2D semantic segmentation mask. Then, a state-
of-the-art GAN-based image synthesizer trained on real-world datasets is used to generate RGB 
imagery. We tried both cGAN and Cy-GAN variants. Additionally, we render certain important 
objects of interest, such as cars in an urban scene, with Unreal Engine 4. Images obtained by 
blending the partial-render foreground and GAN background are more realistic. Blended images 
also retain the semantic layout of the scene better. 

8.3 Preliminaries 

Generative Adversarial Networks (GAN) [215] use a generator G and a discriminator D in a 
simultaneous adversarial training strategy. The goal of G is to generate data x̂ that is indistin-
guishable from the real data x ∈ X. During training, G captures the probability distribution pdata 

which should closely match the distribution underlying the real data. This is achieved by training a 
generative mapping function G(z) that maps an a priori noise distribution pz(z) to the data domain 
X. While G tries to generate the most realistic x̂, the discriminator D tries to discriminate fake 
data x̂ from real data x. The output of D(x) is the probability that x is real. G(z) and D(x), both 
of which are neural networks, are trained simultaneously with the following min max function: 

minmaxV (D, G) = Ex∼pdata(x) [logD(x)] + 
G D (8.1) 

Ez∼pz (z) [log(1 − D(G(z)))] . 

8.4 Method 

8.4.1 Problem formulation 

We defne a virtual 3D driving scene S with a 6-tuple (O1, O2, P1, P2, T2, x). Where O1 = 
(o1,1, o1,2, · · · , o1,n) is a list of object pose vectors, o ∈ R6 , and P1 = (M1,M2, · · · ,Mn) is the list 
of corresponding simple object meshes. We assume P1 is radiant with unique class color-codes. O2 

is a sublist of O1 for certain objects of interest, and it has a corresponding list of more complicated 
object meshes P2. P2 is not radiant. T2 is a list of texture maps that corresponds to P2. x ∈ R6 
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Figure 8.3: Overview of the proposed method. We introduce a novel neural graphics pipeline to 
form 2D image representations from virtual 3D scenes. Most of the scene is generated with very 
simple 3D models without texture except for a few partially rendered objects of interest. We then 
blend the cGAN synthesized image with a physics-based partial render for increasing visual fdelity 
and to maintain full control over the appearance of objects of interest. 

is the pose vector of a virtual camera. It should be noted that a corresponding T1 to O1 does not 
exist. 

We follow the formal defnition of a triangular mesh given in [248]. M := (V, Q) is a triangular 
mesh defned with faces Q ⊆ {1, · · · , |V |}3 and vertices V ⊆ R3 , where q = (q1, q2, q3) ∈ Q is a 
triangular face with corresponding vertices vq1 , vq2 , and vq3 . E(Q), the edges between the vertices, 
are defned by the faces implicitly. 

Problem 1. Given S, we are interested in fnding a mapping function U : x → RH×W ×3 that 
will convert the camera pose vector x to a photo-realistic RGB image with height H and width W . 

The overview of our solution, Hybrid Generative Neural Graphics (HGNG) is shown in Figure 
8.3 and Algorithm 3, and the formal description follows. 

8.4.2 Semantic Image formation 

A semantic image formation function h can be obtained with O1, P1 and a pinhole camera 
model. Let m ∈ MH×W be a pixel-wise semantic image whose entries correspond to the semantic 
classes of the scene. Then h : x → MH×W maps x to an integer subspace (M ⊂ Z) using the 
pinhole camera model [249] given by: 
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Algorithm 3: HGNG(O1, O2, P1, P2, T2, x) 
Input: 
O1, the list of object pose vectors 
P1, the list of simple object meshes w/o texture. 
O2, a sublist of O1, corresponds to objects of interest 
P2, the list of complex object meshes. 
T2, the list of texture maps that corresponds to P2, O2. 
x, the pose vector of the pinhole camera 
Output: 
I ∈ RH×W ×3 , 2D RGB image. 
Main algorithm: 
m = hpinhole(O1, P1, x); 
Ibackground = fgenerator(m, z ∼ N); 
foreach i(1, 2...n) do 

object-of-interestI = Lrendering(O2(i), P2(i), T2(i));i 
end P n object-of-interest Iforeground = i Ii ; 
I = bgenerator-blending(Ibackground, Iforeground); 

� � � � 
m1 d p1 = − (8.2)
m2 p3 p2 

where (p1, p2, p3) are the 3D coordinates of point p in R3 , (m1,m2) are the corresponding pixel 
coordinates in m, and d is the distance between the focal point and image formation plane. m is 
an upside-down image as shown in Figure 8.3. m is rotated 180◦ for the next step. For simplicity, 
we use the same notation m for the rotated image in the remainder of the chapter. 

Then, the problem narrows down to fnding f : m → RH×W ×3 . This is the exact same goal as 
the well-studied [223, 224, 225, 226] conditional image synthesis problem. 

8.4.3 Generative Adversarial Image Synthesis with cGANs and Cy-GANs 

We propose to use the generator networks of cGANs or Cy-GANs to map G : m → RH×W ×3 . 
Training is to be done on a real-world paired dataset of RGB images and pixel-wise semantic masks 
for cGAN. On the other hand, Cy-GANs can be trained with an unpaired dataset. 

cGAN [229] extends the original GAN and can generate realistic fake data while retaining a 
conditional constraint. This is achieved by pairing the conditional constraint y with the data x 
and creating a new paired dataset (x, y). This pair can be an RGB image and pixel-wise semantic 
layout pair, or an image and text pair. x and y do not have to share the same modality. Details 
of cGAN can be found in [229]. cGAN can successfully generate photo-realistic fake data with a 
conditional constraint. However, the paired dataset requirement increases the cost of this approach. 

In comparison, building an unpaired X and Y is relatively easy. Cycle GAN (Cy-GAN) [246] 
enables photo-realistic image synthesis with unpaired data. In summary, Cy-GAN contains two 
generators, G(x) and F (y), which map X → Y and Y → X respectively. Also, two discriminators, 
DX and DY , try to distinguish fake data from real data. The adversarial losses are similar to the 
original GAN; the addition is the novel cycle consistency loss. This loss prevents the mappings of 
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Figure 8.4: The proposed framework (a) converts the semantic layout of the scene into a photore-
alistic image by blending partially rendered foreground objects with a GAN generated background. 
The conventional rendering engine (CARLA) (c) requires detailed models and texture information 
while outputting unrealistic background trees and vegetation (shown with a yellow circle). On the 
other hand, using only the SPADE cGAN (b) approach leads to poor car shapes and omitting road 
markings (shown with a red circle), while removing the need for texturing and rendering calcula-
tions. The proposed method (a) has the best of both worlds. 

G and F from diverging from each other. The key idea of cycle GAN is the use of two generators 
to create a cycle. First, G(x) generates fake ŷ, then F (G(x)) translates the fake ŷ  back to x̂. If the 
cycle is consistent, then x ≈ x̂. 

The baseline cGAN employed in this study is a SPatially-Adaptive-(DE)-normalization (SPADE) 
[225] network, which is a state-of-the-art cGAN based image synthesizer. SPADE outperforms other 
image-to-image synthesizers by retaining semantic information against conventional normalization 
operations [225]. This is achieved through the following de-normalization operation where the 
activation value at layer i is given by: 

hi i− µn,c,y,x c
γi (m) + βi (m) (8.3)c,y,x c,y,x σi c 

iwhere hi is the activation before normalization and µ and σi are the mean and standard devi-n,c,y,x c c 
ation in channel c. γi (m) and βi (m) are learned variables that modulates the normalizationc,y,x c,y,x 
process. We refer the readers of the original SPADE paper [225] for more details. 

We use a SPADE network pre-trained on the Cityscapes dataset [19] as the mapping function 
fs and obtain the synthesized image with it as I = fs(m). 

8.4.4 Partial rendering 

To increase visual fdelity and have full control over certain objects of interest, we propose using 
physics-based rendering to obtain partially-rendered images Ir. Besides O2, P2, T2 and x, a light 
source is also needed for rendering. Here we assume that the properties and location of the light 
source are fxed and known relative to x. Then the rendering equation [214] can be used to render 
objects of interest. 

L0(p, ω, λ, t) = Le(p, ω0, λ, t)+Z 
(8.4)

fr(p, ωi, ω0λ, t)Li(p, ωi, λ, t)(ωi.n)dωi 
Ω 
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where L0(p, ω, λ, t) is the total spectral radiance, λ is wavelength, ω0 is the outgoing light direction, 
ωi is the incoming light direction, t is time and p is a point in 3D space. Le(p, ω0, λ, t) is the emitted 
spectral radiance, Ω is a unit hemisphere with the surface normal center n of p and it contains all 
values for ωi, fr(p, ωi, ω0λ, t) is the bidirectional refectance function and fnally Li(p, ωi, λ, t) is 
the spectral radiance of the incoming wavelength. 

With Equation 8.4, the spectral radiance of each 3D point on a few objects of interest is obtained. 
Then, the partially rendered image Ir is formed with the same pinhole camera model introduced 
in Equation 8.2. 

8.4.5 Blending 

Here we propose to blend the synthesized image I with the partially rendered image Ir to obtain 
a hybrid image Ih as shown in Figure 8.3. The hybrid image is defned as: 

Ih := b(I, Ir) (8.5) 

) → RHxW ×3where the blending function b : (I, Ir maps the synthesized and partially rendered 
images to a new hybrid RGB image. We compared three diferent blending functions b in this 
study. 

Alpha blending. Taking I as the background image and Ir as the foreground image, the alpha 
blended image Ih can be obtained with: 

Ih = αI + (1 − α)Ir. (8.6) 

Pyramid blending. With the gaussian pyramid mask GR [250], La the laplacian pyramid of 
the foreground Ir, and Lb the laplacian pyramid of background I, the laplacian blended pixel b(i, j) 
can be obtained with: 

b(i, j) = GR(i, j)La(i, j) + (1 − GR(i, j))Lb(i, j). (8.7) 

GAN blending. As a third blending option, we employed GP-GAN [251]. The generator 
of GP-GAN converts a naive copy-paste blended image to a realistic well-blended image. Besides 
conditional GAN loss, GP-GAN employs an auxiliary l2 loss to sharpen the image. The overall 
combined loss function is given by: 

L(x, xg) = λLl2 (x, xg) + (1 − λ)Ladv(x, xg) (8.8) 

where L(x, xg) is the fnal loss, Ll2 is the l2 loss and Ladv is the adverserial loss. λ is a hyperpa-
rameter and set to 0.999. 

8.5 Experiments 

8.5.1 Implementation details 

We used SPADE [225] as our cGAN image synthesizer to convert the semantic layout of the scene 
to a photorealistic background image. The network was trained on Cityscapes [19], an urban driving 
dataset with paired semantic mask and image data. CARLA [39], an open-source driving simulator 
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Figure 8.5: An illustration of semantic retention analysis. The semantic segmentation result should 
stay true to the initial semantic layout. (a) Full-render yields unrealistic shadows. On the bottom 
right-hand side of the left-most image (shown with a yellow circle), shadows of trees cast on the 
sidewalk were misclassifed as a road by DeepLabV3. (b) cGAN generated vehicles do not retain 
their shapes perfectly (middle image, shown with a red circle). (c) Blending retains the semantic 
relationship with the source layout (right-most image). This fgure employs diferent color codes 
to distinguish the semantic layout formation and semantic segmentation processes for illustration 
purposes. 

built upon Unreal Engine 4, was utilized to obtain the semantic layout and partially rendered 
images. We used the shading and lighting engine [230] of Unreal Engine 4 in our experiments. 
Only vehicles and lane markings were considered as objects of interest. For blending, we used a 
GP-GAN [251] trained on the Transient Attributes Database [252]. All computational experiments 
were conducted with an Nvidia RTX 2080. 

8.5.2 Evaluation 

Semantic retention 

Figure 8.5 illustrates semantic retention analysis, a common [224, 227, 225] evaluation method 
for fake image synthesis. Semantic retention measures the semantic correspondence between the 
conditional semantic mask and the synthesized image. In summary, an external semantic seg-
mentation network is used to segment the synthesized image. Then, the discrepancy between the 
conditional semantic layout (input of the synthesizer) and the semantic mask obtained from the 
generated image (output of the pre-trained external segmentation network) is calculated with top-
1 accuracy. A good synthesizer should produce photorealistic images while retaining the initial 
conditional semantic layout. In other words, the initial semantic layout is accepted as the ground 
truth, and the image synthesizer’s mask accuracy is calculated to obtain the retention score. A 
higher retention score is favorable. 

In this study, we employed DeepLabV3 [231], a state-of-the-art semantic segmentation network, 
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to measure semantic retention. The network was trained on Cityscapes, an urban driving dataset 
[19]. 

FID 

Frechet Inception Distance (FID) [253] is a commonly used [225, 228] performance metric for 
measuring visual fdelity. In summary, a deep neural network is employed to extract features of 
all images in a dataset. Then, the covariance and mean of features obtained from synthesized and 
real datasets are compared to generate a score. We do not have any real-data corresponding to our 
virtual 3D scene, but FID can still be used with unpaired data. As such, three diferent real-world 
datasets [19, 254, 255] were utilized as the ground truth. 

An InceptionV3 [256] model that was trained on ImageNet [257] was employed as the feature 
extractor. After features were extracted from the synthesized images and from real-world images 
from Cityscapes [19], KITTI [254], and ADE20K [255], the FID is calculated as follows: 

p
d2 = ||µ1 − µ2||2 + Tr(C1 + C2 − 2 (C1C2)) (8.9) 

where µ1, µ2 are the means of features, and C1, C2 are the covariances obtained from datasets 1 and 
2 respectively, where the frst dataset consists of real images and the second synthesized images. 
The smaller the distance d2 , the more similar are the two datasets. In other words, a small FID 
indicates that fake data is similar to real-world data. 

The synthesized images were then compared against each other using FID scores as shown in 
Table 8.2. µ1 and C1 were obtained from the real datasets and do not change in a column, whereas 
µ2 and C2 were obtained from synthesized images and vary with each row. A lower FID indicates 
high visual fdelity. 

Inception score 

Inception Score (IS) was initially proposed to evaluate the generator performance of GANs 
[258]. In summary, a pre-trained image classifer is run over a GAN generated fake dataset. The 
distribution of predicted classes, along with the confdence intervals, were then compared against a 
real dataset. A higher Inception Score indicates higher image quality and diversity. IS difers from 
FID by its use of actual classifcation results, whereas FID utilizes latent features. Details of IS 
can be found in [258]. 

Comparisions and ablations 

Ablation studies were conducted to demonstrate the efect of each component of the proposed 
method. The ablation list is: 

1. No partial-render (only vanilla cGAN or Cy-GAN) 

2. No cGAN or Cy-GAN (only full render) 

3. Alpha blend (cGAN or Cy-GAN + partial render) 

4. Pyramid blend (cGAN or Cy-GAN + partial render) 

5. GAN blend (cGAN or Cy-GAN + partial render) 
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Figure 8.6: InceptionV3 feature vector correlation matrices of real and synthetic data. The synthetic 
dataset that was generated with the proposed blending approach shows a similar correlation pattern 
with real data. This pattern does not emerge with the only render or only GAN methods. 

Where SPADE [225] was used as the vanilla cGAN and the original Cycle-GAN [223] was 
employed as the vanilla Cy-GAN variant. 

We used CARLA [39] to obtain fully rendered images of urban scenery. The semantic layout 
of the scene was also imported from CARLA and used as the conditional input for the generative 
adversarial image synthesizers. Only vehicles and lane markings were considered by the partial-
renders. In this work, the image synthesis was done frame-by-frame with a fxed random seed. 

8.5.3 Results 

Qualitative results 

The qualitative results are shown in Figures 8.4, 8.5, and 8.6. These fgures illustrate fully 
rendered, blended, and only cGAN images. As can be seen in Figure 8.5, rendered shadows are 
unrealistic, while only cGAN generated vehicles cannot retain their shapes. These results underline 
the importance of partial rendering of objects of interest such as cars, vans, and lane markings. 
The hybrid approach combines the accuracy of a full-render with the realism of a generative model. 

Treating foreground objects diferently from background scenery with the proposed blending 
technique improves the photorealism of the fnal image as can be seen in Figures 8.4, 8.5, 8.6. 
The appearance of foreground objects, such as vehicles, needs to be controllable and rendered in 
detail. This necessitates employing conventional rendering techniques with high-detail models and 
textures. However, background scenery’s cannot be controlled at the same level of detail because 
they contain a higher number of elements such as mountains, trees, and buildings. In practice, 
conventional driving simulators pay less attention to these background elements by lowering 3D 
model quality and using less rendering focus. This causes lower overall visual fdelity. In contrast, 
GAN-based image synthesizers can automate background scene generation while achieving higher 
visual fdelity by learning the background compositions of real-world data. Our use of a GAN-based 
image synthesizer completely removes the texture and detailed model requirements of background 
scenery generation while increasing visual fdelity. In Figure 8.4, the conventional rendering method 
produced unrealistic trees and vegetation (shown with a yellow circle) around the vanishing point 
of the image. At the same time, the proposed method and the only-cGAN approach generated a 
more blended background scene with vegetation at the same spot. 

On the other hand, only using a GAN-based image synthesizer reduces control over the ap-
pearance of objects of interest, such as cars. This causes lower visual fdelity. In Figure 8.4, the 
only GAN-based approach failed to generate road-markings. In addition, the surface quality of cars 
(shown with a red circle) was much lower than the full-render approach and the proposed method. 
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Figure 8.5 demonstrates the unrealistic shadows of full-render and incomplete vehicle shapes of the 
only GAN approach with a yellow and red circle. The proposed method alleviates these issues. 
These results indicate a qualitative validation of our hypothesis: the proposed approach, blending 
GAN-based synthesizers with conventional rendering, has the best of both worlds. 

Figure 8.7: Inception score results. A high Inception score indicates better image quality and higher 
diversity. 

Quantitative results 

Figure 8.6 shows Inception V3 feature vector correlations. Even though real-world images of the 
Cityscapes and KITTI datasets are entirely diferent, they have similar latent feature correlations. 
However, this pattern does not emerge with a synthetic dataset of low visual fdelity. The proposed 
blended synthetic dataset has, albeit being weak, a similar correlation pattern. In comparison, the 
same pattern does not emerge with the conventional render or pure GAN approaches. This shows 
that the proposed blending approach is a good strategy for the realistic representation of driving 
scenes. 

IS (Inception Score [258]), FID, and semantic retention scores are given in Table 8.1, Table 8.2 
and Figure 8.7. These results indicate that the proposed hybrid blending approach consistently 
outperforms conventional rendering and pure generative adversarial image synthesis. Using detailed 
models with a conventional rendering engine for objects-of-interest produces high-quality visuals. 
However, building the rest of the driving scene with this level of detail is extremely challenging. 
Our hybrid method mitigates this problem by replacing the background elements with a GAN 
synthesizer and blending high-quality objects of interest renders into the scene. This blending 
strategy is the main reason for achieving higher visual fdelity. 

The Cityscapes dataset contains only urban driving scenes, while ADE20K also has miscella-
neous scenes. All of our virtual 3D scenes were in an urban environment. As such, most of the 
methods received better FID scores for the Cityscapes dataset, as can be seen in Table 8.2. 

GAN blend and Alpha blend showed similar performances as shown in Table 8.1 and Table 8.2. 
However, it should be noted that the blending GAN was not trained on an urban driving dataset. 
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Table 8.1: Semantic retention performance- higher scores are better. Our methods outperform the 
physics-based rendering approach. 

Method Semantic retention ↑ 
Baseline: only render [39] 
only Cycle GAN [223] 

0.819 
0.343 

Proposed 
cy-GAN alpha blend 
cy-GAN pyramid blend 
cy-GAN GAN blend 
cGAN alpha blend 
cGAN pyramid blend 
cGAN GAN blend 

0.362 
0.353 
0.318 
0.879 
0.868 
0.846 

Table 8.2: FID performance- lower scores are better. Our methods outperform the physics-based 
computer graphics pipeline. Cy-R stands for CyGAN-Render blend, and c-R stands for cGAN-
Render blend. 

Method 
FID ↓ 

Cityscapes[19] KITTI[254] ADE20K[255] 
Only render [39] 231.768 285.222 361.496 
Proposed 
Cy-R alpha blend 
Cy-R pyramid blend 
Cy-R GAN blend 
c-R alpha blend 
c-R pyramid blend 
c-R GAN blend 

175.832 
196.911 
194.191 
188.809 
202.120 
194.898 

220.223 
228.277 
234.087 
220.161 
214.488 
217.663 

272.069 
279.704 
266.615 
272.877 
265.603 
260.404 

The blending performance can possibly be increased with a better blending dataset for training the 
blending GAN. 

The cGAN variants performed better on average as expected, as shown in Table 8.1 and 8.2. 
The synthesized images were both realistic and loyal to the initial semantic layout. However, cGAN 
requires a paired dataset for training. The full render is better at semantic retention than Cy-GAN 
variants, but Cy-GAN variants have a higher FID score than rendering. This means that Cy-GAN 
can generate realistic images but fails to retain the semantic constraints. 

8.6 Conclusions 

This work introduced and investigated the feasibility of Hybrid Generative Neural Graphics 
(HGNG). The proposed approach utilizes a GAN-based image synthesizer to remove the need 
for rendering calculations and labor-intensive texture-making steps for background elements while 
increasing photorealism. In addition, our method achieves full control over the appearance of 
objects of interest using partial-rendering. Our novel image formation strategy blends the GAN-
generated background image with these partial renders and outperforms conventional approaches. 
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Experimental results indicate that conventional generation of driving simulation graphics now has 
a strong alternative. 

In order to train the cGAN-based synthesizers, real-world urban images and their semantic 
labels, i.e., a paired dataset, are needed. Therefore, with the publication of more paired real-world 
datasets, the performance of the proposed method can be further increased. On the other hand, 
CyGANs remove this paired dataset requirement with the use of cycle consistency, but cyGANs 
do not perform as well as cGANs. As such, without a paired dataset, the proposed system cannot 
outperform the conventional pipelines yet. However, potential future developments in domain 
adaptation and cycle consistency can greatly beneft HGNG and may remove the paired dataset 
requirement in the future. 

This work focused on frame-by-frame image formation with GANs. However, computer graph-
ics applications such as driving simulations may require more temporally consistent approaches. 
Each subsequent frame of a driving simulation needs to be consistent with the overall sequence. 
The proposed method already achieves temporal consistency for objects of interest using partial 
rendering. The temporal consistency of the GAN-generated background scene can potentially be 
increased with larger urban video datasets. To this end, future work can focus on creating better 
urban video datasets and developing GAN-based video-to-video synthesis methods. 
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Chapter 9 

Conclusion 

In this report, we have detailed a number of potential applications of image processing, in-
cluding both traditional and neural network and deep learning image processing technologies, to 
automated vehicle sensing and control, trafc scene analysis, pedestrian detection and intention 
estimation, and improved image synthesis for automated vehicle simulation and testing. Seven spe-
cifc problems were defned, studied through a survey of relevant literature and current state of the 
art practices, and addressed. For each the technological and methodological approaches explored, 
the implementation process, and the analysis and validation results were presented. 

For the frst application, integrated deep reinforcement learning with model-based path plan-
ners for automated driving, a novel hybrid approach for integrating path planning into model-free 
DRL frame-works was proposed. A proof-of-concept implementation and experiments in a virtual 
environment showed that the proposed method is capable of learning to drive. This work is part 
of a larger efort to investigate and improve the safety, robustness, and explainability of end-to-end 
automated driving systems. 

For the second application, optical fow based potential feld for autonomous driving, we demon-
strated that it is possible to obtain a visual potential feld from the optical fow information from 
a monocular camera. The novelty of this work consists on the formulation of the potential feld for 
both the obstacles and the road boundaries and applying it to control a vehicle. This visual based 
navigation method is less computationally expensive than learning based techniques, but at the 
same time, it allows to capture the features of dynamically changing environment. For this reason, 
it can serve as a baseline for comparison with both classical and learning based approaches. 

For the third application, automated trafc surveillance using existing cameras on transit buses, 
we developed and evaluated a fully automatic vision-based method for trafc count and fow es-
timation by counting and tracking vehicles captured in video imagery from cameras mounted on 
buses for the purpose of estimating trafc fows on roadway segments using a previously developed 
moving observer methodology. The proposed method was implemented and tested using imagery 
from in-service transit buses, and its feasibility and accuracy was shown through experimental 
validation. 

For the fourth application, a vision-based social distancing and critical density detection system 
for COVID-19, we proposed and implemented an AI and monocular-camera-based real-time system 
to detect and monitor social distancing, the spacing between individuals, and crowd densities. In 
addition, our system utilized the proposed critical social density value to avoid overcrowding by 
modulating infow to the area of interest. The proposed approach was demonstrated using three 
diferent pedestrian crowd datasets. Quantitative validation was conducted over the Oxford Town 
Center Dataset that provides ground truth pedestrian detections. 
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For the ffth application, faraway-frustum: dealing with lidar sparsity for 3D object detection 
using fusion, we proposed an alternative 3D bird’s-eye-view pedestrian detector, named Faraway-
Frustum, to deal with lidar sparsity of faraway objects. Our method takes advantage of relatively 
dense image data to fnd faraway objects and circumvents the disadvantages of pointcloud-driven 
neural networks working on very sparse points. Moreover, our alternative detector can be fexibly 
combined with a state-of-the-art method to form an overall 3D BEV object detection system via 
setting faraway thresholds. The experiments demonstrated the feasibility of our approach, but 
they also exposed a signifcant shortcoming of state-of-the-art object detection methods: relying on 
learned representations of very sparse lidar points to detect faraway objects is not a good strategy. 

For the sixth application, predicting pedestrian crossing intention with feature fusion and spatio-
temporal attention, we proposed a novel method for improving vision-based pedestrian crossing 
intention prediction that explicitly considers the global context as a channel representing the in-
teraction between the target pedestrian and the whole scene. We also proposed a hybrid fusion 
strategy for diferent features using 2D CNNs, RNNs, and attention mechanisms. Experiments on 
the JAAD and PIE datasets show that the proposed method achieves the state-of-the-art results 
against baseline methods in the pedestrian action prediction benchmark. 

And fnally, for the seventh application, photo-realism in driving simulations: blending gener-
ative adversarial image synthesis with rendering, we introduced and investigated the feasibility of 
producing more realistic imagery in driving simulators using Hybrid Generative Neural Graphics. 
The proposed approach utilizes a GAN-based image synthesizer to remove the need for render-
ing calculations and labor-intensive texture-making steps for background elements while increasing 
photo-realism. In addition, our method achieves full control over the appearance of objects of 
interest using partial-rendering. Our novel image formation strategy blends the GAN-generated 
background image with these partial renders and outperforms conventional approaches. Experi-
mental results indicate that conventional generation of driving simulation graphics now has a strong 
alternative. 

9.1 Research Products from this Project 

9.1.1 Available Source Code 

The source code from the work described in Chapter 2, Integrating Deep Reinforcement Learn-
ing with Model-based Path Planners for Automated Driving, is open-source from theand available 
online at: https://github.com/Ekim-Yurtsever/Hybrid-DeepRL-Automated-Driving. 

The implementation and experimental data from the work described in Chapter 5, A Vision 
based Social Distancing and Critical Density Detection System for COVID-19, is open-sourced and 
available at: https://github.com/dongfang-steven-yang/social-distancing-monitoring. 

The source code from the work described in Chapter 6, Faraway-Frustum: Dealing with Lidar 
Sparsity for 3D Object Detection using Fusion with Vision, is open-source and publicly available 
at: https://github.com/dongfang-steven-yang/faraway-frustum. 

The source code from the work described in Chapter 7, Predicting Pedestrian Crossing Intention 
With Feature Fusion and Spatio-Temporal Attention, is open-source and publicly available: https: 
//github.com/OSU-Haolin/Pedestrian_Crossing_Intention_Prediction. 
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9.1.2 Available Datasets 

The original video data used in the work described in Chapter 4, Automated Trafc Surveillance 
using Existing Cameras on Transit Buses, as well as the manually extracted ground truth records 
are available in the Zenodo repository at DOI 10.5281/zenodo.7955464. 
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[208] Antonio Lanatà, Gaetano Valenza, Alberto Greco, Claudio Gentili, Riccardo Bartolozzi, 
Francesco Bucchi, Francesco Frendo, and Enzo Pasquale Scilingo. How the autonomic ner-
vous system and driving style change with incremental stressing conditions during simulated 
driving. IEEE Transactions on Intelligent Transportation Systems, 16(3):1505–1517, 2014. 
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