

AV4EV - Open-source Autonomous Vehicle
software for Open-standard Electric

Vehicle platforms

Rahul Mangharam

University of Pennsylvania

FINAL REPORT

	

October	29,	2024	

	

Selena Distler
https://orcid.org/0000-0003-2539-896X

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the
facts and the accuracy of the informa9on presented herein. This document is
disseminated in the interest of informa9on exchange. The report is funded, par9ally or
en9rely, under [grant number 69A3552344811] from the U.S. Department of
Transporta9on’s University Transporta9on Centers Program. The U.S. Government

assumes no liability for the contents or use thereof.

AV4EV	-	Open-Source	Modular	Autonomous	Electric	Vehicle	Platform	
1.	Introduction	

The	AV4EV	project	aims	to	create	an	accessible,	open-source,	one-third	scale	electric	vehicle	(go-
kart)	platform	designed	for	autonomous	driving	research	and	development.	This	platform	merges	
the	capabilities	of	full-scale	vehicles	with	the	Blexibility	and	lower	cost	of	smaller	platforms.	The	
objective	is	to	address	the	challenges	of	developing	autonomous	vehicle	(AV)	systems	and	to	make	
AV	research	more	accessible	to	universities	and	research	institutions.	This	project	offers	a	modular,	
open-source	design	and	supports	multiple	driving	modes,	including	manual,	autonomous,	and	
teleoperated.	

	

2.	Problem	Statement	

Research	on	autonomous	vehicles	faces	signiBicant	barriers	due	to	the	cost	and	complexity	of	full-
sized	vehicle	platforms.	Many	existing	AV	platforms	are	expensive	and	require	large,	skilled	teams	
to	develop	and	test	in	specialized	facilities.	On	the	other	end,	scaled-down	RC	cars,	while	affordable,	
lack	the	capabilities	needed	for	advanced	research.	AV4EV	addresses	this	gap	by	offering	an	
affordable,	modular,	open-source	platform	for	AV	research,	enabling	universities	to	develop	and	
test	algorithms	without	the	limitations	of	reduced-size	platforms.	

3.	Approach	

The	AV4EV	platform	combines	mechatronics,	sensors,	and	autonomous	driving	software	in	a	
modular	design.	It	uses	a	Blexible	sensing	suite	and	open-source	autonomous	driving	software	that	
includes	perception,	localization,	planning,	and	control	algorithms.	This	allows	researchers	to	
develop	and	test	new	algorithms	while	avoiding	the	prohibitive	costs	of	full-scale	vehicle	platforms.	

The	go-kart	platform	has	been	validated	in	competitive	settings,	including	the	2023	Autonomous	
Karting	Series	Purdue	Grand	Prix,	where	it	demonstrated	its	autonomous	driving	capabilities.	

	

4.	Methodology	

The	AV4EV	platform	consists	of	the	following	components:	

1. Mechatronics:	The	platform’s	mechatronic	system	includes	a	power	distribution	system,	a	
main	control	system,	and	subsystems	for	steering,	braking,	and	throttle	control,	all	of	which	
communicate	via	a	controller	area	network	(CAN).	

2. Sensing:	The	platform	uses	a	variety	of	sensors,	including	a	LiDAR,	an	OAK-D	camera,	a	
Global	Navigation	Satellite	System	(GNSS),	and	an	Inertial	Measurement	Unit	(IMU).	These	
provide	real-time	data	for	perception	and	localization.	

3. Software:	The	autonomous	driving	software	is	built	on	Robot	Operating	System	(ROS2)	and	
includes	algorithms	for	raceline	optimization	and	adaptive	pure	pursuit	control.	

	

5.	Findings	

1. System	Performance:	The	AV4EV	platform	successfully	demonstrated	its	capabilities	in	
autonomous	driving	scenarios,	including	perception,	localization,	and	control.	The	system	
was	tested	in	both	indoor	and	outdoor	environments,	with	results	showing	high	
performance	in	terms	of	speed,	accuracy,	and	reliability.	

2. Accessibility:	By	lowering	the	cost	of	AV	research	platforms,	AV4EV	has	made	it	easier	for	
universities	and	research	groups	to	develop	and	test	new	algorithms	in	a	real-world	
environment.	The	system’s	modularity	also	allows	for	customization	and	reusability	across	
different	applications.	

3. Education	Impact:	The	platform’s	design	enables	educational	institutions	to	provide	
hands-on	experience	to	students,	helping	them	understand	the	challenges	of	developing	
autonomous	systems	while	working	with	real	hardware.	

	

6.	Conclusions	

The	AV4EV	project	successfully	addresses	the	need	for	a	Blexible	and	affordable	autonomous	
driving	platform	that	can	bridge	the	gap	between	small-scale	and	full-scale	vehicles.	The	system’s	
open-source	nature	and	modular	design	make	it	ideal	for	research	and	educational	purposes,	
providing	a	scalable	solution	for	AV	development.	

7.	Recommendations	

1. Expand	Deployment:	Develop	more	use	cases	for	the	platform,	including	logistics,	
warehouse	management,	and	urban	transport,	to	further	demonstrate	its	versatility.	

2. Increase	Community	Engagement:	Encourage	more	universities	and	research	institutions	
to	adopt	the	AV4EV	platform	and	contribute	to	its	development	through	the	open-source	
community.	

3. Enhance	Modularity:	Continue	to	develop	additional	modules	for	specialized	use	cases,	
such	as	autonomous	delivery	robots	or	urban	mobility	solutions.	

8.	Project	Outputs	and	Documentation	

1. PDFs	for	any	resulting	publications:	https://ieeexplore.ieee.org/document/10588611	
2. Dataset	URL(s)	and	Descriptive	Metadata:	http://av4ev.org	
3. ORCIDs	for	Project	Investigators:	

1. Zhijie	Qiao:	https://orcid.org/0000-0001-9197-2849	
2. Rahul	Mangharam:	https://orcid.org/0000-0003-XXXX-XXXX	

	

1. Report No.

 443

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

AV4EV - Open-source Autonomous Vehicle software for Open-standard
Electric Vehicle platforms

5. Report Date

October 29,2024

6. Performing Organization Code

7. Author(s)

Rahul Mangharam: https://orcid.org/0000-0003-2539-896X

8. Performing Organization Report
No.

443

9. Performing Organization Name and Address

University of Pennsylvania

200 S 33rd St, Philadelphia PA 19104

10. Work Unit No.

11. Contract or Grant No.

Federal Grant No. 69A3552344811

12. Sponsoring Agency Name and Address

Safety21 University Transportation Center

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

13. Type of Report and Period
Covered

Final Report (July 1, 2023-June 30,
2024)

14. Sponsoring Agency Code

USDOT

15. Supplementary Notes

Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

Over the past decade, self-driving capability for all variants of on-street vehicles have promised safer and more
efficient transportation. This remains “work in progress” with large unfilled gaps in addressing user-acceptance, safety,
ethics, regulation, technology and the business model. Our goal is to develop the Open-source Autonomous Vehicle
(AV) software for Open-standard Electric Vehicle (EV) platforms, ie. AV4EV paradigm, to help realize safe, reliable,
and efficient autonomy for off-street use cases. We focus on developing the AV4EV Autonomy Essentials Kit (AV4EV-
Kit) for known controlled application domains: logistics (in-warehouse mobile robots), material handling (autonomous
forklifts) and airside cargo (autonomous ground support equipment). The AV4EV business model addresses these
many smaller domains through simplification and modularity. The EV ‘skateboard’ chassis is orders of magnitude
simpler than on-street vehicles (~20 moving parts compared to nearly 2,000 in contemporary vehicle architectures) -
supporting standardization of interfaces for autonomous driving. Modularity allows AV4EV to address autonomous
vehicle market sizes of 50K-250K vehicles/year for each use case by enabling component re-use and efficient
customizability to meet specific segment needs. If successful, the AV4EV Kit will create a new business category for
Autonomy-as-a-Service with plug-n-play hardware and software for rapid prototyping and deployment. Autonomous
machines have a serviceable market of $2.9B with a 15.5% growth rate.

The AV4EV Autonomy Essentials Kit enables logistics customers to kickstart their journey of autonomous machines
for safe and efficient movement of people and goods, even if their companies have little prior autonomous system
development experience. Using the AV4EV-Kit, customers can rapidly prototype EV platforms into autonomous
machines in 10 days for brownfield deployments.

The AV4EV Autonomy Essentials Kit is dedicated to lowering the entry barrier of autonomous driving development
and deployment. AV4EV-Kit consists of (1) a plug-in-play hardware platform with sensors and compute, (2) an
autonomy software stack to achieve essential autonomous driving functions of perception, sensor fusion, mapping,
localization, path planning, obstacle avoidance, traffic light recognition and safe control; and (3) a new Software
Defined Vehicle approach for autonomous machine software development and testing in the cloud to lower cost of
mixed-criticality software and over-the-air upgrades to enhance safety across the vehicle lifecycle and customize for
different deployment scenarios. The AV4EV-Kit conforms to the open-source Autoware autonomous vehicle software
standard to interface with the EV’s drive-by-wire system for users to easily integrate navigation functions with vehicle
control. The AV4EV-Kit incorporates energy-efficient machine learning-based perception, planning and control
algorithms developed by the PI’s and Co-PI’s labs and will be tested by commercialization partners on a variety of EV
platforms.

17. Key Words

Autonomous vehicles, robotics, computational thinking,
machine learning, control, simulation

18. Distribution Statement

No restrictions. This document is available through
the National Technical Information Service,
Springfield, VA 22161. Enter any other agency
mandated distribution statements. Remove NTIS
statement if it does not apply.

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this
page)

Unclassified

21. No. of
Pages

24

22. Price

Refers to the
price of the
report. Leave
blank unless
applicable.

	

AV4EV: Open-Source Modular Autonomous
Electric Vehicle Platform

for Making Mobility Research Accessible
Zhijie Qiao1,2*, Mingyan Zhou1*, Zhijun Zhuang1, Tejas Agarwal1,2, Felix Jahncke1,3,

Po-Jen Wang2, Jason Friedman1,2, Hongyi Lai1,2, Divyanshu Sahu1, Tomáš Nagy1,4, Martin Endler1,4,
Jason Schlessman2,5, Rahul Mangharam1,2

1School of Engineering and Applied Science, University of Pennsylvania, Email: rahulm@seas.upenn.edu
2Autoware Foundation Center of Excellence for Autonomous Driving

3Professorship of Autonomous Vehicle Systems, Technical University of Munich
4Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague

5Red Hat Research

Abstract—When academic researchers develop and validate

autonomous driving algorithms, there is a challenge in balancing

high-performance capabilities with the cost and complexity of the

vehicle platform. Much of today’s research on autonomous vehi-

cles (AV) is limited to experimentation on expensive commercial

vehicles that require large skilled teams to retrofit the vehicles

and test them in dedicated facilities. On the other hand, 1/10th-

1/16th scaled-down vehicle platforms are more affordable but

have limited similitude in performance and drivability. To address

this issue, we present the design of a one-third-scale autonomous

electric go-kart platform with open-source mechatronics design

along with fully functional autonomous driving software. The

platform’s multi-modal driving system is capable of manual,

autonomous, and teleoperation driving modes. It also features

a flexible sensing suite for the algorithm deployment across

perception, localization, planning, and control. This development

serves as a bridge between full-scale vehicles and reduced-scale

cars while accelerating cost-effective algorithmic advancements.

Our experimental results demonstrate the AV4EV platform’s

capabilities and ease of use for developing new AV algorithms. All

materials are available at AV4EV.org to stimulate collaborative

efforts within the AV and electric vehicle (EV) communities.

Index Terms—Autonomous vehicle, electrical vehicle, open-

source design.

I. INTRODUCTION
The increasing interest in self-driving cars has ushered in

a new area of study in recent years: autonomous racing.
This involves the development of software and hardware
for high-performance racing vehicles intended to function
autonomously at unprecedented levels, including high speeds,
substantial accelerations, minimal response times, and within
unpredictable, dynamic, and competitive settings [1]. However,
a significant hurdle remains the unavailability of full-sized ve-
hicles and the accessibility of smaller-scaled RC cars. For full-
sized platforms that encompass independent driving capacities
such as the Dallara AV21 from Indy Autonomous Challenge
[2], testing the limits of safety and performance is costly
and hazardous, and also outside the reach of most academic

*These authors contributed equally to this work.

departments and research groups. For smaller-scaled RC cars
such as F1TENTH [3], the limited capability of sensing and
computing constrains the complexity of the algorithms and the
level of research conducted.

To address this issue, we created AV4EV, an accessible,
open-source reference model for a one-third-scale autonomous
electric racing platform. This platform merges the capabilities
of full-sized vehicles with the compactness and adaptability of
its smaller size. AV4EV offers open-source designs for mecha-
tronics, sensing, and autonomous driving software, aiming to
provide a standardized solution for modular autonomous and
electric vehicles.

Our go-kart won the championship at the 2023 Autonomous
Karting Series Purdue Grand Prix, where it competed against
several other US national teams [4]. This autonomous go-kart
solution can easily be adopted by universities and research
institutes to promote the safe and effective development and
verification of AV.

This work makes the following contributions:

1) We introduced an accessible modular electric vehicle
platform with multi-driving modes (manual, autonomous,
and teleoperated), bridging the gap between full-scale
vehicles and RC cars. The estimated cost of constructing
one go-kart, including all mechatronic systems, stands
at approximately 12,500 USD. It is expected that with
scaled production, the cost will decrease substantially.

2) We developed a flexible sensing suite and demonstrative
software solutions to handle autonomous driving capabil-
ities validated through experiments. The estimated cost is
around 11,000 USD, while the figure can vary depending
on user-specific requirements and customization.

3) We provided comprehensive open-source resources to
guide building and testing the one-third-scale electric go-
kart with detailed tutorials, GitHub repositories for hard-
ware design and software stacks, demonstration videos,
a bill of materials [5]–[7].

Fig. 1: Go-kart platform overview with Steer-by-Wire System (SBWS) including its hand wheel (HW) and road wheel (RW)
components, Throttle-by-Wire System (TBWS), and Electronic Braking System (EBS). The sensors and computing units
mounted on the double-deck rear shelf are enumerated from top to bottom as follows: (1) Ouster LiDAR, (2) OAK-D camera,
(3) Onboard laptop, (4) Main Control System (MCS), (5) Sepentrio GNSS, and (6) IMU, concealed from the main view
perspective, is positioned on the lower deck.

II. MECHATRONICS

The go-kart mechatronic system is designed as a modular
system, consisting of several subsystems that are responsible
for different vehicle execution tasks. There are five subsys-
tems which integrated with the base go-kart chassis in a
non-intrusive way: Power Distribution System (PDS), Main
Control System (MCS), Throttle-by-Wire System (TBWS),
Steer-by-Wire-System (SBWS), and Electronic Braking Sys-
tem (EBS) (Fig. 1). All subsystems except the PDS utilize
an STM32 Nucleo development board on a standalone PCB
as the electronic control unit (ECU). Communication among
these modular systems is achieved through the controller
area network (CAN), aligning with modern vehicle design
standards for efficient information exchange.

A. Power Distribution System (PDS)

The autonomous go-kart is powered by six Nermak Lithium
LiFePO4 deep cycle batteries, each possessing a voltage of
12V and a capacity of 50Ah. These batteries are installed on
both sides of the go-kart and interconnected via wiring across
the chassis. Four of them are linked in a series, yielding a
net voltage of 48V, which powers the TBWS motor. A step-
down converter is utilized to convert the voltage from 48V to
12V, which in turn provides power to the SBWS and EBS
motor. The remaining two batteries, also interconnected in
series, produce a net voltage of 24V. This voltage is then fed
through several converters to obtain different desired voltages
to power up the sensing (Fig. 2a) and control (Fig. 2b) systems.

B. Main Control System (MCS)

The MCS handles all driving requests from the top-level
supervisory controller and dispatches commands (throttle,

steering, brake) on the CAN bus [8]. It serves as an interface
between the go-kart mechatronic system and the end user.
Three different operation modes are supported: manual, re-
mote, and autonomous. In manual mode, input is read from the
steering wheel, throttle, and brake pedals of a driver, just like
in a conventional vehicle. In remote mode, the operator uses a
Spektrum DX6 2.4GHz radio to send driving commands to the
MCS. In autonomous mode, the command is transmitted from
a high-level computing unit, such as a laptop or an onboard
computer, through USB-to-TTL communication. After receiv-
ing the desired driving commands, the MCS sends these on the
CAN bus to be received by the subsystems. Meanwhile, each
subsystem measures its state with sensors and sends feedback
on the CAN bus. This feedback is gathered by the MCS and
shared with the operator.

C. Throttle-by-Wire System (TBWS)

The TBWS includes the electronic controller unit (ECU)
and VESC 75/300 motor driver to control the go-kart’s main
drive motor. The brushless DC motor (ME1717 from Moten-
ergy) transmits the motion to the go-kart rear axle of through
a chain and drives the wheels in the longitudinal direction.
The ECU receives the desired speed from the MCS via the
CAN bus, measures the current speed through an encoder,
and outputs the desired throttle signal to the VESC controller,
which then powers up the motor. Additionally, a remote kill
switch is added independent of the ECU that allows the user
to kill power, thus ensuring safety in the worst-case scenario.

D. Steer-by-Wire System (SBWS)

The SBWS eliminates the mechanical steering shaft be-
tween the hand wheel (HW) and road wheel (RW), allowing

(a) Sensing (b) Motor

Fig. 2: Sensing (left) and motor (right) power system with connections and devices.

each part to be governed by its motor, sensor, and ECU [9].
This design reduces weight, space, and cost with the modu-
lar structure, while improving the flexibility and availability
of autonomous driving functions [10]. Our HW component
utilizes a brushed DC motor to coaxially drive the HW. The
RW component employs a NEO1650 Brushless DC motor to
propel the two front wheels via steering tie rods as linkages.

E. Electronic Braking System

The original go-kart design translates movement from the
driver pressing the brake pedal to the master cylinder and
reservoir via the push rod, generating hydraulic braking pres-
sure without the need for additional servo motors. To achieve
autonomous braking without human input, a linear actuator is
mounted at the end of the push rod to create a linear movement
simulating the pedal-pressing action. This non-intrusive design
allows the safety operator (if present) to press the brake pedal
regardless of the linear actuator state. Finally, a pressure sensor
is installed onto the braking hydraulic system to collect data
for effective feedback control.

III. SENSING

The sensing system is a fundamental module for research
and development for perception and localization. Our design
employs a flexible sensor setup that can be customized and
reconfigured to suit different objectives and priorities.

To start up, an Ouster OS1 LiDAR is positioned at the
highest point on the rear end of the go-kart to leverage its
max 200-meter range and 360-degree field of view. The OAK-
D camera, placed below the LiDAR, has the capabilities of
high-resolution image capturing, depth measuring, and long-
range object tracking. These features work seamlessly with the
LiDAR point cloud for object fusion and post-processing.

Moreover, the go-kart is equipped with a Global Navigation
Satellite System (GNSS) and an Inertial Measurement Unit
(IMU). For GNSS, we utilized the Sepentrio Mosaic-H carrier
board with two Multiband antennas (IP66) from ArduSimple
mounted on both rear sides of the go-kart. We also subscribed
to Swift Navigation’s real-time kinematic positioning (RTK)
service, enabling our GNSS to achieve centimeter-level posi-
tion accuracy. In situations where GNSS signals are disrupted
due to severe weather or signal obstructions, an IMU is needed
for localization filtering. Thus, we placed a BNO055 9-DOF
IMU on the go-kart’s centerline of mass to provide accurate
accelerometer, gyroscope, and magnetometer information.

All sensors transmit data to an onboard laptop, which then
executes algorithms and transmits drive commands to the
MCS. We used the MSI Pulse GL66 15.6” Gaming Laptop,
integrated with an Intel Core i7-12700H, an RTX3070 GPU,
16GB of internal RAM, and a storage capacity of 512GB. The
laptop also contains three USB 3.0 ports and one Ethernet port
to support high-speed data transmission with the sensors.

IV. SOFTWARE

We designed an autonomous racing framework using the
Robot Operating System (ROS2) for our go-kart platform
with the free tooling of Python and C++. This framework
incorporates two primary algorithms: a GNSS-based pure
pursuit method for pre-mapped racing and a camera-based
follow-the-gap (FTG) algorithm [11] for reactive racing. In
the framework outlined in this paper, LiDAR was not used
due to its complexity. Nevertheless, the LiDAR data is readily
available and will be integrated into future research. The soft-
ware pipeline within the holistic autonomous driving workflow
is illustrated in Fig. 3.

Fig. 3: Software pipeline for go-kart autonomous driving capabilities: GNSS-based adaptive pure pursuit (red), camera-based
follow-the-gap (green), go-kart mechatronics execution (blue).

A. Localization

The position measurements from the GNSS are presented in
latitude and longitude. To convert these geographical coordi-
nates into a more interpretable format within a local frame, we
utilized the equirectangular projection method as in equations
(1):

x = r · cos(lat) · lon, y = r · lat, (1)

where r symbolizes the mean radius of the Earth, which
is 6371 kilometers, lat stands for latitude (radians), and
lon denotes longitude (radians). A reference point is first
established, and all subsequent coordinates are defined with
respect to this reference point, treating it as the origin [12].
While this approach has the potential to introduce distortion,
in our case, the impact is negligible due to the small size of
the testing field.

As previously mentioned, there are instances where the
GNSS signal may experience interruptions. To guarantee
timely and accurate localization information, we implemented
an Extended Kalman Filter (EKF) that integrates IMU data.
Evolving dynamically over time t, the velocity motion model
Xt adopted for the go-kart is consisting of the position xt, yt
and orientation ωt; the input to the system is linear velocity
vt and angular velocity εt; and the identity covariance matrix
Pt that is initialized at timestamp zero:

Xt = [xt, yt,ωt]
T , (2)

ut = [vt,εt], (3)

Pt =




ϑ2
x ϑxy ϑxω

ϑyx ϑ2
y ϑyω

ϑωx ϑωy ϑ2
ω



 . (4)

At timestamp t, the system is linearized around the current
state, and the prediction step is executed as follows:

Xt+1|t =




xt + vt!t · cos(ωt)
yt + vt!t · sin(ωt)

ωt +!tεt



 . (5)

For each state in the system, we calculated the partial deriva-
tives with respect to the other states to obtain the Jacobian

matrix:

J =




1 0 →!t · v · sin(ω)
0 1 !t · v · cos(ω)
0 0 1



 . (6)

The prediction update of the covariance matrix is as follows:

Pt+1|t = JPJT +R, (7)

where the dynamic noise R is approximated as a constant
diagonal matrix of 0.1, with units in meters and radians.

For the observation step, we extracted position data x and
y from the GNSS and orientation data ω from the IMU, and
denote them with subscripts:

Xobs = [xobs, yobs,ωobs]
T . (8)

Given that the observation directly corresponds to the state,
the Jacobian is equivalent to the identity matrix. By combining
the variance readings from the sensors that are organized as a
diagonal matrix M , we could calculate the Kalman gain K:

M =




ϑ2
xobs 0 0
0 ϑ2

yobs 0
0 0 ϑ2

ωobs



 , (9)

K = Pt+1|tI
T (IPt+1|tI

T +M)→1, (10)

Finalize the update step to complete localization:

Xt+1|t+1 = Xt+1|t +K(Xt+1|t →Xobs), (11)

Pt+1|t+1 = (I →KI)Pt+1|t. (12)

B. Raceline Optimization

In pre-mapped racing scenarios, a reference racing line is
generally acquired in advance and subsequently tracked by
the controller. The raceline is represented by a sequence of
waypoints consisting of the target position x, y, velocity v, etc.
While manually piloting the go-kart, waypoints are gathered
at consistent temporal or spatial intervals. It may not account
for vehicle dynamics, resulting in a non-smooth trajectory.

Therefore, we integrated a min-curvature raceline optimiza-
tion algorithm as proposed in [13]. First, we calibrated the
physical properties of the go-kart such as mass, width, maxi-

Fig. 4: Waypoints collection and raceline optimization at
Purdue Grand Prix racing track, which spans a distance of
434 meters.

mum turning radius, maximum acceleration, etc., assuming a
track of uniform width, and then utilized manually collected
waypoints to depict the centerline of the track. The raceline
points can be parameterized as:

ϖri = ϖpi + ϱiϖni, (13)

where ϖpi = [xi, yi]T is the center line point, ϖni is the unit
length normal vector, and ai encodes the track boundaries.
The raceline is then defined through third-order spline inter-
polations of the points ri in x and y coordinates. Followed
the formulation in [13], we minimized the discrete squared
curvature ςi of the splines along the raceline:

minimize
[ε1···εN]

N∑

i=1

ς2
i (t) (14)

subject to ϱi ↑ [ϱi,min,ϱi,max] ↓1 ↔ i ↔ N. (15)

Subsequently, we generated the velocity profile considering
the longitudinal and lateral acceleration limits of the car at
various velocities. As depicted in Fig. 4, the optimized raceline
shows reduced curvature, thereby enhancing smoothness and
eliminating overlapping waypoints.

C. Adaptive Pure Pursuit Controller

To track the generated raceline, we implemented an adaptive
pure-pursuit controller based on the geometric bicycle model
[14]. Initially, a lookahead point is chosen on the raceline,
situated at a fixed lookahead distance L from the vehicle. L
is adaptively interpolated between a minimum Lmin = 2m
and a maximum Lmax = 5m, proportionally scaled to the
vehicle’s current velocity v and regulated by the maximum
velocity vmax = 5m/s:

L = Lmin +
v

vmax
(Lmax → Lmin). (16)

The lookahead point comprises both the desired velocity
and position. Intuitively, for the vehicle to trace the arc
from its current position to the lookahead point, the steering
angle should be proportional to the arc curvature ς. Utilizing
geometric relationships, we deduced the radius r of the arc
and subsequently determine ς:

ς =
1

r
=

2|y|
L2

, (17)

where |y| is the lateral distance from the vehicle to the
lookahead point. To actuate the steering angle and enhance
stability, we utilized a Proportional-Derivative (PD) controller
that modulates the steering angle φt according to ς:

φt = Kpςt +Kd
dςt
dt

, (18)

where ς is treated as the cross-track error term [15], reflecting
the lateral deviation. In practice, Kp = 2.0, Kd = 1.0.

D. Boundary Detection

We devised a vision-based algorithm for detecting race track
boundaries for the reactive component of the AKS compe-
tition, where pre-mapping was not permitted. The algorithm
relies on grass detection surrounding the race track, employing
classical computer vision techniques with OpenCV.

To identify grass regions, the input RGB camera image is
blurred using a Gaussian filter to eliminate unwanted noise. Its
blue and green channels are then extracted and normalized in
grayscale, which grants higher intensities to green pixels than
to pixels of other colors. Green pixels G(x, y) are identified by
the green g and the blue b channel with a threshold ↼ , where
↼ can be affected by many factors such as the environment
and the lighting condition:

G(x, y) =

{
1, if 0.6 · g → b ↗ ↼

0, if 0.6 · g → b < ↼
. (19)

The resultant binary image G represents a mask for grass
regions. This mask is then processed with open and then close
morphology operations to remove small noise.

Next, we conducted a bird’s-eye view (BEV) projection that
converts an image from a front view to a top-down view. A
transformation matrix is determined offline by mapping four
points in the image to their respective BEV coordinates using
OpenCV’s getPerspectiveTransform function (Fig 5).

The final step is to convert the grass BEV into a 2D depth
format. The depth data is denoted by a vector s ↑ Rd, where
each si is a distance measurement from the go-kart to an
object. Correspondingly, a vector a ↑ Rd captures the angles
associated with si. The range of detection is [→↽/2,↽/2],
indicating a 180-degree field of view ahead of the vehicle
sampled at 0.5↑ resolution. The zero angle is aligned with
the vehicle’s heading while angles are measured counter-
clockwise.

E. Follow-the-Gap

After acquiring depth data from boundary detection, we
employed the FTG method to identify the largest gap that

Fig. 5: Grass boundary detection. (a) Raw camera input. (b)
Filtered grass mask. (c) The BEV of the grass mask. Green
lines indicate the angles for searching grass distances. (d) The
converted depth data is plotted as green dots and overlaid onto
the BEV image of the camera input.

meets the required safety distance from the vehicle and nav-
igate toward it. First, we defined a gap g as a continuous
subsequence [si, sj] where i and j are the starting and ending
indices respectively, such that:

↓k ↑ [i, j], sk ↗ ⇀, (20)

where ⇀ = 2.5m is a safety distance threshold that determines
the minimum allowable distance for a gap. We chose the
largest gap as the optimal one, which starts at index iopt and
ends at index jopt. Then, we chose the midpoint of the optimal
gap as the goal at index kmid to reduce unnecessary oscillation:

kmid =
iopt + jopt

2
. (21)

Since the zero angle is parallel to the vehicle’s heading, we
calculated the steering angle φ from the angle vector a:

φ = akmid . (22)

Thereafter, the desired velocity v is interpolated between
a minimum vmin = 2m/s and a maximum vmax = 5m/s,
proportionally scaled to the vehicle’s current steering angle
φ, and regulated by the maximum allowable steering angle
φmax = 1.0rad:

v = vmin +
φ

φmax
(vmax → vmin). (23)

V. CONCLUSION

In this paper, we introduced an open-source design for an
electric go-kart platform enabling advanced research and de-
velopment in autonomous driving systems. The design’s mod-
ular mechatronic systems seamlessly support different driv-
ing modes. Additionally, we have implemented an adaptable
sensor stack to execute tasks such as perception, localization,
planning, and control. Our experimentation has showcased
the go-kart’s versatility, demonstrating its proficiency in the
autonomous mode while running the pure pursuit and follow-
the-gap algorithms. This innovative design effectively bridges
the gap between reduced-scale cars and full-scale vehicles,
enabling both widespread accessibility with high performance.

It consequently provides immense value to universities and
research institutions, fostering collaboration towards the open
development and validation of autonomous vehicles.

Future work will focus on the continuous improvement of
the mechatronic, sensing, and software systems. We plan to
leverage the platform’s different driving modes and explore
human-machine interactions, such as the imitation learning
algorithm [16], which involves dynamic cooperative control
between the driver and the vehicle.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude to the Autoware
Foundation for providing financial support for the project.
Our thanks are also extended to Dr. Jack Silberman and his
team from the University of California, San Diego for their
contributions to the autonomous go-kart community. Lastly,
we would like to thank Andrew Goeden for his efforts in
organizing the 2023 AKS Purdue Grand Prix, providing an
outstanding and enriching experience.

REFERENCES

[1] J. Betz, A. Wischnewski, A. Heilmeier, F. Nobis, T. Stahl, L. Her-
mansdorfer, B. Lohmann, and M. Lienkamp, “What can we learn from
autonomous level-5 motorsport?” in 9th International Munich Chassis

Symposium 2018, P. Pfeffer, Ed. Wiesbaden: Springer Fachmedien
Wiesbaden, 2019, pp. 123–146.

[2] “Indy autonomous challenge,” accessed: 2023-01-10. [Online].
Available: https://www.indyautonomouschallenge.com

[3] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth:
An open-source evaluation environment for continuous control and
reinforcement learning,” Proceedings of Machine Learning Research,
vol. 123, 2020.

[4] Autonomous karting series official website. [Online]. Available:
https://autonomouskartingseries.com/

[5] University of pennsylvania go-kart documentation. [Online]. Available:
https://go-kart-upenn.readthedocs.io/en/latest/index.html

[6] University of pennsylvania go-kart mechatronics github repository.
[Online]. Available: https://github.com/mlab-upenn/gokart-mechatronics

[7] University of pennsylvania go-kart sensor github repository. [Online].
Available: https://github.com/mlab-upenn/gokart-sensor

[8] L. Ran, W. Junfeng, W. Haiying, and L. Gechen, “Design method
of can bus network communication structure for electric vehicle,” in
International Forum on Strategic Technology 2010, 2010, pp. 326–329.

[9] T. Kaufmann, S. Millsap, B. Murray, and J. Petrowski, “Development
experience with steer-by-wire,” SAE transactions, pp. 583–590, 2001.

[10] S. A. Mortazavizadeh, A. Ghaderi, M. Ebrahimi, and M. Hajian, “Recent
developments in the vehicle steer-by-wire system,” IEEE Transactions

on Transportation Electrification, vol. 6, no. 3, pp. 1226–1235, 2020.
[11] V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm:

“follow the gap method”,” Robotics and Autonomous Systems,
vol. 60, no. 9, pp. 1123–1134, 2012. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0921889012000838

[12] W. contributors, “Equirectangular projection,” https://en.wikipedia.org/
wiki/Equirectangular projection, 2021, accessed: 2023-03-01.

[13] A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz, M. Lienkamp,
and B. Lohmann, “Minimum curvature trajectory planning and
control for an autonomous race car,” Vehicle System Dynamics,
vol. 58, no. 10, pp. 1497–1527, 2020. [Online]. Available: https:
//doi.org/10.1080/00423114.2019.1631455

[14] V. Sukhil and M. Behl, “Adaptive lookahead pure-pursuit for au-
tonomous racing,” 2021.

[15] J. M. Snider et al., “Automatic steering methods for autonomous
automobile path tracking,” Robotics Institute, Pittsburgh, PA, Tech. Rep.

CMU-RITR-09-08, 2009.
[16] X. Sun, M. Zhou, Z. Zhuang, S. Yang, J. Betz, and R. Mangharam, “A

benchmark comparison of imitation learning-based control policies for
autonomous racing,” 2022.

https://www.indyautonomouschallenge.com
https://autonomouskartingseries.com/
https://go-kart-upenn.readthedocs.io/en/latest/index.html
https://github.com/mlab-upenn/gokart-mechatronics
https://github.com/mlab-upenn/gokart-sensor
https://www.sciencedirect.com/science/article/pii/S0921889012000838
https://www.sciencedirect.com/science/article/pii/S0921889012000838
https://en.wikipedia.org/wiki/Equirectangular_projection
https://en.wikipedia.org/wiki/Equirectangular_projection
https://doi.org/10.1080/00423114.2019.1631455
https://doi.org/10.1080/00423114.2019.1631455

	1c5e6763-1c0a-4c71-bbcd-07778833ef7b.pdf
	INTRODUCTION
	Mechatronics
	Power Distribution System (PDS)
	Main Control System (MCS)
	Throttle-by-Wire System (TBWS)
	Steer-by-Wire System (SBWS)
	Electronic Braking System

	Sensing
	Software
	Localization
	Raceline Optimization
	Adaptive Pure Pursuit Controller
	Boundary Detection
	Follow-the-Gap

	Conclusion
	References

