

Low-cost Real-Time Learning-based
Localization for Autonomous Systems

Rahul Mangharam

University of Pennsylvania
200 S 33rd St, Philadelphia PA 19104

FINAL REPORT

	

October	29,	2024	

	

Selena Distler
https://orcid.org/0000-0003-2539-896X

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the
facts and the accuracy of the informa9on presented herein. This document is
disseminated in the interest of informa9on exchange. The report is funded, par9ally or
en9rely, under [grant number 69A3552344811] from the U.S. Department of
Transporta9on’s University Transporta9on Centers Program. The U.S. Government
assumes no liability for the contents or use thereof.

1. Report No.

 441

2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle

Low-cost Real-Time Learning-based Localization for Autonomous Systems

5. Report Date

October 29,2024

6. Performing Organization Code

7. Author(s)

Rahul Mangharam: https://orcid.org/0000-0003-2539-896X

8. Performing Organization Report
No.

441

9. Performing Organization Name and Address

University of Pennsylvania

200 S 33rd St, Philadelphia PA 19104

10. Work Unit No.

11. Contract or Grant No.

Federal Grant No. 69A3552344811

12. Sponsoring Agency Name and Address

Safety21 University Transportation Center

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

13. Type of Report and Period
Covered

Final Report (July 1, 2023-June 30,
2024)

14. Sponsoring Agency Code

USDOT

15. Supplementary Notes

Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

Robot localization is the problem of finding a robot’s pose using a map and sensor measurements, like LiDAR scans or
camera images. It is crucial for any moving autonomous vehicle to interact with the physical world correctly. However,
finding injective mappings between measurements and poses is difficult because sensor measurements from multiple
distant poses can be similar.

To solve this ambiguity, Monte Carlo Localization (MCL), the widely adopted method, uses random hypothesis
sampling and sensor measurement updates to infer the pose. Other common approaches are to use Bayesian filtering or
to find better-distinguishable global descriptors on the map. Recent developments in localization research usually
propose better measurement models or feature extractors within these frameworks. On contrary, this project we
propose a radically new approach to frame the localization problem as an ambiguous inverse problem and solve it with
an invertible neural network (INN). We claim that INN is naturally suitable for the localization problem with many
benefits, in terms of high accuracy (within 0.25m for city-scale maps), high-speed operation (>150Hz) and operates on
low-cost embedded system hardware. We will demonstrate this on point-cloud and camera datasets with evaluation on
indoor and outdoor localization benchmarks, and also deploy it on 1/10th scale and 1/2 scale autonomous vehicles to
show real-time and scalable operation.

17. Key Words

Invertible Neural Network, Autonomous vehicles, robotics,
computational thinking, machine learning, control, simulation

18. Distribution Statement

No restrictions. This document is available through
the National Technical Information Service,
Springfield, VA 22161. Enter any other agency
mandated distribution statements. Remove NTIS
statement if it does not apply.

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this
page)

Unclassified

21. No. of
Pages

24

22. Price

Refers to
the price of
the report.
Leave blank
unless
applicable.

	

Localization	with	Invertible	Neural	Networks	(LocalINN	and	PoseINN)	

1.	Introduction	

Localization	is	a	critical	problem	for	autonomous	systems,	whether	for	mobile	robotics,	
augmented	reality,	or	self-driving	vehicles.	The	challenge	lies	in	accurately	determining	the	
vehicle	or	robot’s	position	within	an	environment,	using	sensor	data	such	as	LiDAR	or	
cameras.	Traditional	methods,	such	as	Monte	Carlo	Localization	(MCL)	and	Bayesian	Filters,	
face	limitations	in	computational	cost	and	speed,	especially	when	applied	to	real-time	
systems.	

	

In	this	report,	we	describe	two	novel	methods—LocalINN	and	PoseINN—that	leverage	
Invertible	Neural	Networks	(INNs)	to	improve	localization	accuracy	and	speed.	These	
approaches	compress	map	representations	and	utilize	latent	space	sampling	for	
uncertainty	estimation.	LocalINN	focuses	on	LiDAR-based	localization,	while	PoseINN	
extends	the	framework	to	visual-based	localization	using	camera	data.	The	report	
summarizes	the	problem,	approach,	methodology,	Findings,	conclusions,	and	
recommendations	based	on	extensive	research	and	experimentation.	

2.	Problem	Statement	

Current	robot	localization	methods	often	require	high	computational	power,	large	amounts	
of	training	data,	and	expensive	sensors.	Localization	with	LiDAR	or	camera	systems	has	

inherent	ambiguities	due	to	similarities	in	measurements	from	different	positions,	making	
it	difFicult	to	map	sensor	readings	directly	to	unique	poses.	

LocalINN	and	PoseINN	address	these	issues	by	framing	localization	as	an	ambiguous	
inverse	problem,	solving	it	with	INNs.	These	approaches	provide	high	accuracy	(within	
0.25	meters	for	city-scale	maps),	fast	processing	speeds	(up	to	270Hz),	and	operate	on	low-
cost	hardware,	making	them	suitable	for	real-time	autonomous	applications.	

	

3.	Approach	

Both	LocalINN	and	PoseINN	use	Invertible	Neural	Networks	(INNs)	to	transform	sensor	
data	(LiDAR	or	camera	images)	into	pose	estimations.	These	neural	networks	learn	a	
bijective	mapping	between	the	source	(sensor	data)	and	target	distributions	(robot	poses),	
with	an	emphasis	on	fast	runtime	and	uncertainty	estimation.	The	key	difference	between	
the	two	approaches	lies	in	the	type	of	sensor	data	used—LiDAR	for	LocalINN	and	visual	
camera	data	for	PoseINN.	

1. LocalINN:	Compresses	a	2D/3D	map	into	the	neural	network,	allowing	the	system	
to	localize	without	needing	to	access	a	separate	map	File.	LocalINN	outputs	a	full	
posterior	distribution	of	poses	with	covariance,	which	enhances	robustness	in	
challenging	environments.	

2. PoseINN:	Uses	NeRF	(Neural	Radiance	Fields)	to	generate	synthetic	views	from	
cameras	and	maps	the	camera	images	to	corresponding	poses.	PoseINN	provides	a	
fast	data	preparation	pipeline	and	achieves	real-time	visual	localization	on	
embedded	platforms	like	mobile	robots.	

	

4.	Methodology	

The	development	and	testing	of	LocalINN	and	PoseINN	followed	these	key	steps:	

1. Map	Compression	and	Data	Preparation:	LocalINN	learns	the	implicit	
representation	of	a	2D/3D	map	and	compresses	it	into	the	neural	network.	PoseINN	
uses	NeRF	to	generate	synthetic	camera	images,	which	are	used	to	train	the	model	
for	visual	localization.	

2. Training	and	Testing:	The	models	were	trained	on	various	benchmark	datasets.	
LocalINN	was	tested	with	LiDAR	data,	while	PoseINN	was	tested	with	both	
simulated	and	real-world	camera	data.	

3. Uncertainty	Estimation:	Both	models	provide	pose	estimations	along	with	
uncertainty	values,	which	are	integrated	into	an	Extended	Kalman	Filter	(EKF)	for	
more	robust	results.	

4. Real-Time	Deployment:	Both	LocalINN	and	PoseINN	were	deployed	on	mobile	
robots,	including	the	F1TENTH	autonomous	vehicle	platform,	demonstrating	their	
capability	for	real-time	operation	in	complex	environments.	

5.	Findings	

1. LocalINN	Performance:	In	tests	using	2D	and	3D	LiDAR	data,	LocalINN	achieved	
comparable	or	superior	accuracy	to	particle	Filter	methods,	with	much	lower	latency	
(up	to	270Hz	using	TensorRT).	LocalINN	showed	robust	performance	even	in	
challenging	environments,	with	fast	global	localization	recovery.	

2. PoseINN	Performance:	PoseINN,	when	tested	on	mobile	robots,	provided	real-time	
camera-based	localization	with	lower	computational	overhead	than	traditional	
methods.	The	model’s	performance	was	comparable	to	state-of-the-art	systems	but	
required	much	less	training	data	and	processing	power.	

3. Uncertainty	Estimation:	Both	models	output	pose	distributions,	which	provide	
more	reliable	results	when	fused	with	other	sensor	data.	The	models’	ability	to	
output	conFidence	values	enables	more	accurate	navigation	in	uncertain	or	dynamic	
environments.	

6.	Conclusions	

LocalINN	and	PoseINN	represent	a	signiFicant	advancement	in	real-time	localization	for	
autonomous	systems.	By	leveraging	INNs,	these	models	reduce	the	need	for	large	
computational	resources,	enable	fast	and	accurate	localization,	and	provide	uncertainty	
estimation	for	safer	autonomous	operations.	The	integration	of	NeRF	in	PoseINN	further	
demonstrates	how	synthetic	data	generation	can	be	used	to	reduce	training	time	while	
maintaining	accuracy.	

7.	Recommendations	

1. Further	Development:	Future	work	should	focus	on	expanding	these	methods	to	
more	challenging	environments	and	improving	their	robustness	in	dynamic	
environments	with	moving	objects.	

2. Wider	Deployment:	Encourage	wider	adoption	of	these	methods	in	autonomous	
vehicle	research,	including	applications	in	self-driving	cars,	drones,	and	augmented	
reality.	

3. Community	Collaboration:	Developing	an	open-source	toolkit	for	LocalINN	and	
PoseINN	would	enable	broader	community	collaboration	and	innovation.	

8.	Project	Outputs	and	Documentation	

1. Final	Report	URL(s)	or	PDFs:	https://ieeexplore.ieee.org/document/10161015	
2. Dataset	URL(s)	and	Descriptive	Metadata:	

https://github.com/zzangupenn/Local_INN	
3. ORCIDs	for	Project	Investigators:	

1. Zirui	Zang:	ORCID	link	
2. Rahul	Mangharam:	ORCID	link	

	

	

	

	

Local INN: Implicit Map Representation and Localization with
Invertible Neural Networks

Zirui Zang, Hongrui Zheng, Johannes Betz, Rahul Mangharam

Abstract—Robot localization is an inverse problem of finding
a robot’s pose using a map and sensor measurements. In recent
years, Invertible Neural Networks (INNs) have successfully
solved ambiguous inverse problems in various fields. This
paper proposes a framework that approaches the localization
problem with INN. We design a network that provides implicit
map representation in the forward path and localization in
the inverse path. By sampling the latent space in evaluation,
Local INN outputs robot poses with covariance, which can be
used to estimate the uncertainty. We show that the localization
performance of Local INN is on par with current methods
with much lower latency. We show detailed 2D and 3D map
reconstruction from Local INN using poses exterior to the
training set. We also provide a global localization algorithm
using Local INN to tackle the kidnapping problem.

I. INTRODUCTION

Robot localization is the problem of finding a robot’s pose
using a map and sensor measurements, like LiDAR scans. It
is crucial for any moving robot to interact with the phys-
ical world correctly. However, finding injective mappings
between measurements and poses is difficult because sensor
measurements from multiple distant poses can be similar.

To solve this ambiguity, Monte Carlo Localization (MCL)
[1], [2], the widely adopted method, uses random hypothesis
sampling and sensor measurement updates to infer the pose.
Other common approaches are to use Bayesian filtering [3]
or to find better-distinguishable global descriptors on the map
[4], [5]. Recent developments in localization research usually
propose better measurement models or feature extractors
within these frameworks. On contrary, this paper proposes
a new approach to frame the localization problem as an
ambiguous inverse problem and solve it with an invertible
neural network (INN). We claim that INN is naturally suitable
for the localization problem with many benefits, as we will
show in this paper.

Robot localization is an inverse problem, which is when
we are given a set of observations and try to find the
causal factors. In a well-modeled environment, it’s easier to
calculate the expected observations if given the causal factors.
In the context of LiDAR-based localization, the robot’s pose
in the environment causes the particular scan measurements.
In addition, when given a map, we can easily simulate LiDAR
scans from any pose on the map.

Invertible neural networks such as normalizing flows [6]–
[9] have been used to solve inverse problems in various

This work was supported in part by NSF CCRI tel:1925587 and DARPA
FA8750-20-C-0542 (Systemic Generative Engineering). The views, opin-
ions, and/or findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government.

All authors are with the University of Pennsylvania, Department of
Electrical and Systems Engineering, 19104, Philadelphia, PA, USA. Emails:
{zzang, hongruiz, joebetz, rahulm}@seas.upenn.edu

Fig. 1. Local INN is a framework of localization with invertible neural
networks. Compared to current localization methods, Local INN stores map
information within the neural network. Evaluation of Local INN in the
forward direction gives compressed map information, and in the reverse
direction gives accurate localization with fast runtime and uncertainty
estimation.

fields [10]–[15]. It learns a bijective mapping between the
source and target distributions with a series of invertible
transformations. It uses a latent space to capture the lost
ambiguous information during training. We use pose-scan
data pairs to train such a bijective mapping. The forward
path is from pose to scan and the reverse path is from scan
to pose. Because INNs require the same input and output
dimensions, we use a Variational Autoencoder (VAE) [16] to
reduce the dimension of the lidar scans and use Positional
Encoding [17] to augment the dimension of the poses. With
the help of conditional inputs, we can reduce the ambiguity
of the inverse problem. In our case, we use zones in the map
calculated from the previous pose of the robot as conditional
input into the INN. During the evaluation, we sample the
latent space to find the full posterior distribution of the pose,
given a sensor measurement. We validated our method in
localization experiments with 2D and 3D LiDARs, both in
simulation and with real data. To summarize, this paper has
four major contributions:
1) Map Compression: Local INN provides an implicit

map representation and a localization method within one
neural network. Map files are no longer needed when
localizing.

2) Uncertainty Estimation: Local INN outputs not just a
pose but a distribution of inferred poses, the covariance
of which can be used as the confidence of the neural
network when fusing with other sensors, enhancing the
overall robustness.

3) Fast and Accurate: We demonstrate that the localization
performance of Local INN is comparable to particle filter
at slow speed and better at high speed with much lower

latency with 2D LiDAR experiments.
4) Ability to Generalize: We demonstrate that the frame-

work of Local INN can learn complex 3D open-world
environments and provides accurate localization. We also
provide an algorithm for global localization with Lo-
cal INN.

II. RELATED WORK

Local INN sits at the intersection of two research fields:
Localization and Normalizing Flows. In this section, we will
briefly introduce both fields.

A. Lidar-based Localization
Monte Carlo Localization (MCL) [1], ever since its intro-

duction, has been a popular localization framework for its
reliable performance and the modularity to swap the motion
or measurement model with any desired method. Many devel-
opments in localization seek to improve within the framework
of MCL. [18]–[20] Outside the framework of MCL, people
have used methods such as Bayesian inference [21], RNNs
[22], [23], global descriptors [24], [25], or combining them
[26]. We propose Local INN as a new framework of solve
the problem.

For learning-based localization methods, uncertainty esti-
mations of the neural networks become a challenge. There
are efforts to approximate the uncertainty [27]–[29], but it
hasn’t been widely applied. Local INN comes naturally with
an uncertainty estimation due to the use of normalizing flows.

Large map size is also becoming a burden as pointed out
by [30]. After the advent of NeRF [31], it was clear that
neural networks are very capable of implicitly representing
spatial information. There are developments in using neu-
ral networks for implicit map representation in the SLAM
pipeline [32], [33]. Local INN builds on that while providing
a method of localization.

B. Normalizing Flows
A normalizing flow is a series of invertible transformations

that gradually transform a source data distribution into a
target data distribution. Methods of achieving such bijective
mappings have been developing rapidly in recent years [9].
Real-valued non-volume preserving (RealNVP) transforma-
tions introduced by Dinh et al. [7] use coupling layers that are
efficient to compute in both forward and reverse processes.
Although newer normalizing flows have better expressiveness
[34]–[36], we choose to use RealNVP for its efficiency.

The framework of solving ambiguous inverse problems
using normalizing flows was introduced by Ardizonne et
al. [10] and was later extended by [11], [37] to include a
conditional input that is concatenated to the vectors inside
the coupling layers. They proposed to use a latent variable to
encode the lost information in training due to the ambiguity
of the problem. During the evaluation, repeatedly sampling
the latent variable can give the full posterior distribution
given the input. In this paper, we added a VAE to the
framework so that we can use high-dimensional input. The
use of latent variables gives us distributions of estimated
poses, which we can use to calculate the covariance.

III. METHODOLOGY

LiDARs are widely used in moving robots and autonomous
vehicles. 2D or 3D LiDARs produce one or multiple arrays
of range distances with each value in the array being the
distance from the robot to the closest obstacle at a certain
angle. The localization problem with LiDAR is: given a
LiDAR scan, find the robot’s [x, y] coordinates on the map
and its heading ω relative to the x axis of the map.

We use normalizing flow to find a bijective mapping
between a robot’s pose vector x → R3 on the map and
LiDAR scan vector y → Rangle with a latent vector z → R6.
The forward path of the localization problem is easy, so we
can simulate an infinite amount of pose-scan data pairs for
training by randomly sampling the state space. We use a
rounded pose (as in equation 2) of the robot to produce
the conditional input c → R3 in the INN. This rounded
pose can be computed during testing by rounding the robot’s
previous pose. Because INN requires the same input and
output dimension, we use positional encoding to augment the
pose vector x to x̂ → R6L, where L is the level of the sine-
cosine positional encoding [17]. On the LiDAR scan side, we
use a VAE [16] to encode the LiDAR scan y to ŷ → R6L→6,
which is concatenated with latent vector z ↑ N (0, 1). We
use the latent vector to catch the full posterior distribution of
x conditioned on c given y. This can later be used to sample
the covariance of the inferred pose vector.

A. Conditional Normalizing Flow
Normalizing flows contain a series of invertible trans-

formations. We use the affine coupling block architecture
introduced in Real-NVP [7] and extended by [11], [37] to
incorporate a conditional input. The forward path of a single
coupling block is:

v1 = u1 ↓ exp(s2(u2, ĉ)) + t2(u2, ĉ),

v2 = u2 ↓ exp(s1(v1, ĉ)) + t1(v1, ĉ).
(1)

The input u is split into two halves u1 and u2, which undergo
affine transformations with scale coefficient si and translation
coefficient ti for i → {1, 2}. Here ↓ is element-wise multipli-
cation. The outputs v1 and v2 are then concatenated together
before exiting this coupling block. The exponential function
here is to eliminate zero outputs, which ensures invertibility.
In the reverse direction, given v1 and v2, this structure
is easily invertible without any computational overheads.
Therefore, si and ti are not required to be invertible and
can be learned with neural networks. Multiple coupling
blocks are connected to increase the expressiveness of the
normalizing flows. After each coupling block, there is a
predefined random permutation to shuffle the variables so that
the splitting of the input vector is different for each block. We
followed [15] to use two layers of MLP with ReLU activation
in each affine coupling block and used a parameterized soft
clamping mechanism to prevent instabilities. Let’s denote the
forward and reverse path of the INN network with hforward

inn ,
hreverse

inn .
To deal with the inverse ambiguity due to map symmetry,

a rounded pose computed from the robot’s previous pose xpre

Fig. 2. Network Structure of the Local INN. The forward path (solid arrows) is from pose to LiDAR scan. The reverse path (dashed arrows) is from
LiDAR scan to robot pose. Conditional input is calculated from the robot’s previous pose. The INN used in this paper has 6 coupling layers and the VAE
encoder and decoder have 2 layers of MLPs for 2D LiDARs and plus 6 layers of 2D convolutions for 3D LiDARs.

is passed through a positional encoding ε(·), then encoded
by a separate MLP hcond before concatenating to ui or vi in
the coupling block:

c =
↔Nxpre↗

N
, ĉ = hcond(ε(c)). (2)

During training, xpre is approximated by adding a zero mean
Gaussian noise to the ground truth pose:

xpre
training = x+ ϑ, ϑ ↑ N (0, ϖ2). (3)

The rounded previous states essentially divide the state space
into N3 zones, and which zone the robot previously existed
in is provided to the INN as conditional input. The Gaussian
noise during training ensures that it’s okay for the xpre near
zone boundaries to be rounded into either neighboring zones.
Depending on the map, ϖ2 for [x, y, ω] and integer parameter
N needs to be picked. We picked ϖ2 around 0.5 meters and
N = 10 for all our experiments, which means the zones are
quite large for the 3D maps.

B. Positional Encoding
Positional encoding was used in [17] [31] to boost the

performance of the neural network in fitting high-frequency
information. The positional encoding ε(·) we used maps from
R to R2L with increasing frequencies:

ε(p) = (sin(20ϱp), cos(20ϱp), . . . ,

sin(2L→1ϱp), cos(2L→1ϱp)).
(4)

When applied to pose vectors, function ε(·) is applied sepa-
rately to [x, y, ω]. Pose vector x is encoded with L = 10 and
the conditional input is encoded with L = 1. All variables
are normalized to [0, 1) before being applied to ε(·). We
observed that adding positional encoding directly helps the
forward path by augmenting the 3-dimensional input, which
in turn helps the reverse training as well.

C. Variational Autoencoder
LiDARs produce hundreds to thousands of range data

points per channel. Due to the input and output dimension
requirement of the INN, putting everything into the INN

would vastly increase the size of the network without pro-
portional benefit. On the other hand, sub-sampling LiDAR
scans increase susceptibility to noisy or invalid LiDAR
points. Therefore, to fully utilize the LiDAR scans points
and simultaneously limit the network size, we use a VAE to
first encode the LiDAR scans into a multivariate Gaussian
latent space with mean µvae and variance ω2

vae.
The encoder hencode

vae of the VAE has one-layer MLP with
ReLU that is connected to the input, and two separate one-
layer MLPs for encoding µvae and ω2

vae. Then, the encoder
outputs by random sampling the encoded distribution:

ŷ ↑ N (µvae, ω
2
vae) (5)

The decoder hdecode
vae of the VAE has two layers of MLP.

The first one is with ReLU and the second is with Sigmoid.

D. Optimization

The guaranteed invertibility of INN means that we can do
bi-directional training by optimizing loss from both sides of
the network. We train both the forward and reverse paths with
supervised losses. In each epoch, the forward and reverse
paths are both calculated and gradients are added together
before an optimizer step.

The VAE network is responsible for encoding and recon-
structing the LiDAR scans:

ŷvae = hencode
vae (ygt),

yvae = hdecode
vae (ŷvae),

(6)

which is optimized for the commonly used ELBO loss:

Lvae = ↘ygt≃yvae↘1+ςKLKL(N (µvae,ω
2
vae),N (0, 1)), (7)

where ςKL is a weight for the KL divergence term. The VAE
is trained together with the INN.

Each epoch of training the INN starts with evaluating the
encoder of the VAE with ground truth LiDAR scans ygt to
get the encoded scans ŷvae, and evaluating the decoder of
the VAE with the output of the encoder, as in (6). Lvae is

calculated as in (7). The next step is to evaluate the forward
path of the INN with x̂gt to get the forward output:

[ŷinn, zinn] = hforward
inn (x̂gt, ĉ). (8)

We then evaluate the decoder of VAE again with output from
the INN forward path:

yinn = hdecode
vae (ŷinn), (9)

and calculate a loss on the LiDAR scan output:

Ly = ↘ygt ≃ yinn↘1. (10)

We also calculate a loss that matches the output of the INN
forward path with the output of the VAE encoder:

Lŷ = ↘ŷvae ≃ ŷinn↘1. (11)

For the reverse path of the INN, we first evaluate with
the encoded scan from VAE encoder concatenated by the
latent vector generated by the forward path: [ŷvae, zinn]. This
produces a predicted pose we call x̂inn,0:

x̂inn,0 = hreverse
inn ([ŷvae, zinn], ĉ). (12)

We calculated a L1 loss between x̂inn,0 and the ground truth:

Lx̂,0 = ↘x̂gt ≃ x̂inn,0↘1. (13)

Following [15], the intuition of this reverse evaluation is to
link the encoded scans plus the predicted latent vector to the
single corresponding pose in the ambiguous inverse problem.

To capture the full posterior, we then sample m latent
vectors z ↑ N (0, 1) and evaluate the reverse path using
the sampled latent vectors combined with ŷvae.

x̂inn,i = hreverse
inn ([ŷvae, zi], ĉ), for i = 1 . . .m. (14)

This generates m poses and we select the minimum of the
L1 losses as the second part of the reverse loss:

Lx̂,i = min
i=1...m

↘x̂gt ≃ x̂inn,i↘1. (15)

Overall, the training loss of the whole network is:

Lall = Lvae + Ly + ςŷLŷ + Lx̂,0 + Lx̂,i, (16)

where ςŷ is the weight for Lŷ.

IV. EXPERIMENTS

A. 2D LiDAR Localization on Real-world Robot
We first validate the proposed method of localization with

three different 2D LiDAR maps. The first map is a race
track in simulation, and the second and third maps are real-
world indoor hallway and outdoor environments mapped
using the ROS SLAM toolbox with an F1TENTH racecar
[38], which is a 1/10 scale autonomous racing car equipped
with a Hokuyo 30LX LiDAR and a NVIDIA Jetson Xavier
NX board. To collect training data, we uniformly sample
[x, y, ω] on the drivable surface of each map, and use a 2D
LiDAR simulator to find the corresponding LiDAR ranges.
This means the trained network will be able to localize
everywhere on the map. We collect 100k data pairs and train
a separate network for each map.

To test the localization performance, we localize a car
robot following a test trajectory in each environment and
compare the inferred pose with the ground truth. For the real
maps, we train with simulated data but test using real LiDAR
data on the F1TENTH car driving in indoor and outdoor
environments. We approximate the ground truth poses using
a particle filter with the full LiDAR inputs and running it
offline on a desktop with an infinite compute budget. For
a baseline, we configured a GPU-accelerated particle filter
[39], so that it can run around the same frequency as the
Local INN on the Jetson NX.

In these experiments, we use 270 points for each LiDAR
scan y covering 270 degrees in front of the LiDAR, following
the FoV of the Hokuyo LiDARs. ŷ is set to have 54
dimensions and z to have 6 dimensions. The encoder of the
VAE has one layer of MLP before regressing the µvae and
ω2

vae with separate MLP layers. The decoder has two layers
of MLP converting 54-dimension ŷvae back to 270 ranges
points. The INN network has 6 coupling layers, each having
separate MLP layers for scale and translation coefficients. We
trained the network with batchsize of 500 and with a learning
rate that starts from 1 ⇐ 10→3 and exponentially decays to
5⇐ 10→5 in 600 epochs.

The map reconstruction is qualitatively evaluated by cal-
culating the forward path with additionally random sampled
test poses. The inferred LiDAR ranges are then converted
into the map frame and accumulated to produce an occupancy
map. The orange dots in table I are reconstructed maps. We
can see the reconstructed map largely overlaps with the real
map with some losses in high spatial-frequency information
at hard corners. The red bar on the upper right corner of each
map is an indicator for 1 meter.

During the inference of the reverse path, we sample latent
vector z and calculate a batch of inferred poses. We can use
the covariance of each batch as the confidence of the network.
To demonstrate this, we use an Extended Kalman Filter to
fuse the network outputs with vehicle odometry. The EKF
uses a kinematic bicycle model as the motion model, and the
pose output and covariance from the INN as the observation
model.

Table I presents localization absolute mean and RMS
errors in each environment. We see that not only the lo-
calization performance is comparable to particle filter, but
the error and RMS also do not increase with vehicle speed.
On the contrary, we see the error increase with the particle
filter. This is because Local INN does not directly rely on
the smoothness of the state’s history, but only relies on the
zoning provided by the previous state. Table II compares the
runtime of the Local INN with the GPU-accelerated particle
filter we used. We are comparing the latency of Local INN
and particle filter. Other latencies are not accounted for. With
runtime optimizations like TensorRT, Local INN can output
localization results with much lower latency than particle
filter with almost no decrease in performance, which is
crucial in latency-sensitive applications such as high-speed
racing [40].

https://f1tenth.org/
https://f1tenth.org/

TABLE I
MAP RECONSTRUCTION AND LOCALIZATION ERRORS WITH 2D LIDAR

Race Track (Simulation) Hallway (Real) Outdoor (Real)

Original Map
Reconstruction
Test Trajectory

xy(m) ω(→) xy(m) ω(→) xy(m) ω(→)

Online PF (1m/s) 0.045± 0.058 0.400± 0.512 0.039± 0.066 0.482± 0.808 0.013± 0.018 0.358± 0.456
Local INN (1m/s) 0.050± 0.102 0.201± 0.532 0.196± 0.433 0.528± 0.792 0.034± 0.047 0.924± 1.130
↑ + EKF 0.039± 0.077 0.182± 0.464 0.093± 0.139 0.536± 0.797 0.034± 0.047 0.917± 1.129
↑ + TensorRT 0.039± 0.076 0.177± 0.443 0.104± 0.159 0.547± 0.802 0.033± 0.046 0.930± 1.142

Online PF (5m/s) 0.139± 0.168 1.463± 2.107 0.071± 0.117 0.943± 1.738 0.033± 0.047 0.940± 1.371
Local INN+EKF (5m/s) 0.034± 0.056 0.133± 0.284 0.100± 0.147 0.565± 0.900 0.032± 0.046 0.915± 1.130

TABLE II
RUNTIME COMPARISONS ON NVIDIA JETSON NX

Online PF 45 Hz
Local INN (Pytorch) 48 Hz
Local INN+TensorRT 270 Hz

B. 3D Open Space LiDAR Localization

We then extended our experiments to using 3D LiDAR
data, for which we also have three different environments:
Town 10 in the CARLA simulator [41], KAIST in Mulran
dataset [42], and Columbia Park in Apollo dataset [22].
For CARLA, we used the simulator to sample all drivable
surfaces in the town. To fully train the Local INN, simulating
a large amount of data from the map is preferred. But
for comparison with existing works, we just used provided
data points for Mulran and Apollo datasets. When testing
the network, we report numbers from in-session and out-
session localization. For in-session results, in CARLA, we
have additionally sampled points; in Mulran and Apollo, we
randomly picked and set aside 20% of the dataset for testing.
For out-session tests, the network is tested with sequences
that are captured at another date. We provide in-session
performances to show that the network is able to interpolate
between the training data.

We treat 3D LiDAR scans as range images for the 3D ex-
periments. To correctly reconstruct the out-of-range LiDAR
points, we added a mask layer to the range images, and an
L2 loss on it. The structure and dimension of the network are
mostly unchanged for the 3D experiments. The only additions
are 6 layers of 2D convolution and transpose convolution
layers to the encoder and decoder of the VAE for the range
images.

The quality of the map reconstruction is again qualitatively
examined as some examples are shown in Fig. 3. Because
we simulated many more data points from the CARLA

environment, we can see the reconstruction is very close to
the original point cloud.

Table III shows a comparison of RMS errors between our
method and existing works in localization experiments with
3D LiDARs. Due to the simplicity of our 3D setup, we are
comparing to a method from Chen et al [19] that only uses
range images from 3D LiDARs, and a method from Yin et al
[43] that also uses a neural network with convolution layers
to treat LiDAR information. We can see that our results on
par with the state-of-the-art.

TABLE III
COMPARISON OF LOCALIZATION RMS ERRORS WITH 3D LIDAR

Methods (xy[m], ω[→]) CARLA Mulran Apollo

Local INN in-session 0.27, 0.12 0.29, 0.24 0.50, 0.26

Local INN out-session →,→ 1.41, 1.00 1.22, 0.53
Chen et al. 0.48, 3.87 0.83, 3.14 0.57, 3.40
RaLL (Yin et al.) →,→ 1.27, 1.50 →,→

C. Global Localization
Global localization is needed when a robot starts with an

unknown pose or when the robot encounters the kidnapping
problem. MCL algorithms usually do global localization
by spreading the covariance all around the map and using
iterations of control inputs and measurements to decrease the
covariance. For Local INN, the global localization process
mainly involves simultaneously tracking multiple assump-
tions of zoning on the map and a selection process to narrow
down the assumptions.

Algorithm 1 shows our global localization process. We
track a set C of n conditional inputs, each with a weight wi

for i = 1 . . . n. The set C is initialized by randomly sample
N states in the state space S . We set the total number of
latent vectors z sampled from normal distribution as nM for
a constant M . Initially, every ci → C has the same weight
wi, so each one gets M samples of z.

Fig. 3. 3D Map Reconstruction for Mulran and CARLA. Orange boxed thumbnails are original maps. Reconstructions are produced by evaluating the
forward path of the Local INN with poses exterior to the training set.

Algorithm 1 Local INN Global Localization
1: n ⇒ N,mi ⇒ M,wi ⇒ 1/M for i = 1 . . . n
2: X rand ⇒ random sample(S, n)
3: C0 ⇒ convert to cond inputs(X rand)
4: while new LiDAR scan yt+1 coming do
5: for i = 1 . . . nt do
6: xt+1,i ⇒ Local INN reverse(yt+1, ci,mi)
7: Xt+1.append(xt+1,i)
8: yinn,i ⇒ Local INN forward(xt+1,i, ci)
9: wi ⇒ 1/↘yinn,i ≃ yt+1↘1

10: end for
11: Ct+1 ⇒ convert to cond inputs(Xt+1)
12: nt+1 ⇒ |Ct+1|
13: for i = 1 . . . nt+1 do
14: mi ⇒ normalized(wi)nt+1M
15: end for
16: end while

When a new LiDAR scan arrives, for each ci → C, we
evaluate the reverse path of the Local INN with mi samples
of latent vector z. The output poses from Local INN become
the next C. We then update the weight wi for every ci
using the reciprocal of the scan error, calculated with the
current sensor measurement, and inferred LiDAR scan from
evaluating the forward path of the Local INN. We favor the
ci → C that have higher weights by redistributing z samples
based on the weights. Those with higher weights will have
more z samples, which in turn may result in better pose
estimations. It also should be noted that the size of C will
decrease as iterations go because repeated elements in C are
combined. Hence, we design a selection process to find the
best-fit candidate. Lastly, we record the accumulated weights
for every iteration and the ci with the highest accumulated
weights will be the most likely zone that the robot exists in.

We test out the above algorithm with different environ-
ments. We define a Converged as the correct pose having
the highest weight and a Tracking as the correct pose
within the top 5 on the tracking list. Table IV presents the
percentage of Converged cases, Tracking cases, and
the absolute mean errors if the correct pose is picked or in

tracking at the 10th iteration. The starting poses are randomly
picked and the rates are out of 2k tests in each environment.
We use the test trajectory for the 2D maps and out-of-session
test sets for the 3D maps. The result shows the neural network
can quickly identify correct poses with only 10 LiDAR scans.
We can also see in the Hallway map, that the convergence of
the assumptions is slower, which is expected in this highly
symmetrical environment. As the algorithm keeps iterating
with new LiDAR data, it will eventually converge to the
correct pose.

TABLE IV
GLOBAL LOCALIZATION SUCCESS RATES IN DIFFERENT

ENVIRONMENTS AT ITERATION 10

Map Converged Tracking !xy , !ω

Race Track 79.5% 99.5% 0.075, 0.274
Hallway 66.4% 91.1% 0.258, 0.538
Outdoor 98.5% 100% 0.049, 0.911
Mulran 93.5% 95.0% 0.884, 0.454
Apollo 82.5% 83.0% 1.569, 0.122

V. CONCLUSION

In this paper, we present a normalizing flow-based frame-
work to solve the robot localization problem. The trained INN
provides a bijective mapping between map information and
robot poses. While localizing, sampling the latent space gives
us a mean and covariance, which can be used as uncertainty
estimation for the fusing with other data sources. In our
2D experiments, Local INN is on par with particle filer on
accuracy by providing localization with errors as low as 0.032
m and 0.915↑, while much fast by running 270Hz on an
embedded platform. Such low latency combined with the
fact that its error does not significantly increase with robot
velocity makes it suitable for high-speed applications. We
also show that Local INN has great potential in 3D LiDAR
localization with errors of 0.29 m, 0.24↑ in-session, and 1.41
m, 1.00↑ out-of-session on the Mulran dataset. Moreover,
with our global localization algorithm, Local INN has a
convergence rate of 93.5% in the Mulran dataset at the 10th
iteration.

REFERENCES

[1] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo local-
ization for mobile robots,” in Proceedings 1999 IEEE international
conference on robotics and automation (Cat. No. 99CH36288C), vol. 2.
IEEE, 1999, pp. 1322–1328.

[2] S. Thrun, “Probabilistic robotics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.

[3] V. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello, “Bayesian
filtering for location estimation,” IEEE pervasive computing, vol. 2,
no. 3, pp. 24–33, 2003.

[4] R. Dube, A. Cramariuc, D. Dugas, H. Sommer, M. Dymczyk, J. Nieto,
R. Siegwart, and C. Cadena, “Segmap: Segment-based mapping and
localization using data-driven descriptors,” The International Journal
of Robotics Research, vol. 39, no. 2-3, pp. 339–355, 2020.

[5] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From coarse
to fine: Robust hierarchical localization at large scale,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 12 716–12 725.

[6] E. G. Tabak and E. Vanden-Eijnden, “Density estimation by dual ascent
of the log-likelihood,” Communications in Mathematical Sciences,
vol. 8, no. 1, pp. 217–233, 2010.

[7] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
real nvp,” arXiv preprint arXiv:1605.08803, 2016.

[8] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1x1 convolutions,” Advances in neural information processing systems,
vol. 31, 2018.

[9] G. Papamakarios, E. T. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan, “Normalizing flows for probabilistic modeling
and inference.” J. Mach. Learn. Res., vol. 22, no. 57, pp. 1–64, 2021.

[10] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini,
R. S. Klessen, L. Maier-Hein, C. Rother, and U. Köthe, “Analyzing
inverse problems with invertible neural networks,” arXiv preprint
arXiv:1808.04730, 2018.

[11] L. Ardizzone, C. Lüth, J. Kruse, C. Rother, and U. Köthe, “Guided
image generation with conditional invertible neural networks,” arXiv
preprint arXiv:1907.02392, 2019.

[12] T. J. Adler, L. Ardizzone, A. Vemuri, L. Ayala, J. Gröhl, T. Kirchner,
S. Wirkert, J. Kruse, C. Rother, U. Köthe et al., “Uncertainty-aware
performance assessment of optical imaging modalities with invertible
neural networks,” International journal of computer assisted radiology
and surgery, vol. 14, no. 6, pp. 997–1007, 2019.

[13] M. Xiao, S. Zheng, C. Liu, Y. Wang, D. He, G. Ke, J. Bian, Z. Lin,
and T.-Y. Liu, “Invertible image rescaling,” in European Conference
on Computer Vision. Springer, 2020, pp. 126–144.

[14] R. Zhao, T. Liu, J. Xiao, D. P. Lun, and K.-M. Lam, “Invertible image
decolorization,” IEEE Transactions on Image Processing, vol. 30, pp.
6081–6095, 2021.

[15] T. Wehrbein, M. Rudolph, B. Rosenhahn, and B. Wandt, “Probabilistic
monocular 3d human pose estimation with normalizing flows,” in
International Conference on Computer Vision (ICCV), Oct. 2021.

[16] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, !. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[18] C. Zhang, M. H. Ang, and D. Rus, “Robust lidar localization for au-
tonomous driving in rain,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 3409–
3415.

[19] X. Chen, I. Vizzo, T. Läbe, J. Behley, and C. Stachniss, “Range Image-
based LiDAR Localization for Autonomous Vehicles,” in Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[20] X. Chen, T. Läbe, L. Nardi, J. Behley, and C. Stachniss, “Learning
an overlap-based observation model for 3d lidar localization,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2020, pp. 4602–4608.

[21] I. A. Barsan, S. Wang, A. Pokrovsky, and R. Urtasun, “Learning to
localize using a lidar intensity map,” arXiv preprint arXiv:2012.10902,
2020.

[22] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, “L3-net: Towards
learning based lidar localization for autonomous driving,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 6389–6398.

[23] R. Clark, S. Wang, A. Markham, N. Trigoni, and H. Wen, “Vidloc:
A deep spatio-temporal model for 6-dof video-clip relocalization,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 6856–6864.

[24] M. A. Uy and G. H. Lee, “Pointnetvlad: Deep point cloud based
retrieval for large-scale place recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp.
4470–4479.

[25] Y. Cho, G. Kim, S. Lee, and J.-H. Ryu, “Openstreetmap-based lidar
global localization in urban environment without a prior lidar map,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4999–5006,
2022.

[26] L. Sun, D. Adolfsson, M. Magnusson, H. Andreasson, I. Posner, and
T. Duckett, “Localising faster: Efficient and precise lidar-based robot
localisation in large-scale environments,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
4386–4392.

[27] M. Cai, C. Shen, and I. Reid, “A hybrid probabilistic model for camera
relocalization,” 2019.

[28] A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning
for camera relocalization,” in 2016 IEEE international conference on
Robotics and Automation (ICRA). IEEE, 2016, pp. 4762–4769.

[29] H. Deng, M. Bui, N. Navab, L. Guibas, S. Ilic, and T. Birdal, “Deep
bingham networks: Dealing with uncertainty and ambiguity in pose
estimation,” International Journal of Computer Vision, pp. 1–28, 2022.

[30] X. Wei, I. A. Bârsan, S. Wang, J. Martinez, and R. Urtasun, “Learning
to localize through compressed binary maps,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 10 316–10 324.

[31] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp.
99–106, 2021.

[32] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit map-
ping and positioning in real-time,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 6229–6238.

[33] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and
M. Pollefeys, “Nice-slam: Neural implicit scalable encoding for slam,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 12 786–12 796.

[34] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, “Neural
spline flows,” Advances in neural information processing systems,
vol. 32, 2019.

[35] H. Wu, J. Köhler, and F. Noé, “Stochastic normalizing flows,” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 5933–
5944, 2020.

[36] Q. Zhang and Y. Chen, “Diffusion normalizing flow,” Advances in
Neural Information Processing Systems, vol. 34, pp. 16 280–16 291,
2021.

[37] C. Winkler, D. Worrall, E. Hoogeboom, and M. Welling, “Learn-
ing likelihoods with conditional normalizing flows,” arXiv preprint
arXiv:1912.00042, 2019.

[38] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth:
An open-source evaluation environment for continuous control and
reinforcement learning,” in Proceedings of the NeurIPS 2019 Competi-
tion and Demonstration Track, ser. Proceedings of Machine Learning
Research, H. J. Escalante and R. Hadsell, Eds., vol. 123. PMLR,
08–14 Dec 2020, pp. 77–89.

[39] C. Walsh and S. Karaman, “Cddt: Fast approximate 2d ray casting
for accelerated localization,” vol. abs/1705.01167, 2017. [Online].
Available: http://arxiv.org/abs/1705.01167

[40] J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi,
and R. Mangharam, “Autonomous Vehicles on the Edge: A Survey
on Autonomous Vehicle Racing,” IEEE Open Journal of Intelligent
Transportation Systems, vol. 3, pp. 458–488, 2022.

[41] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[42] G. Kim, Y. S. Park, Y. Cho, J. Jeong, and A. Kim, “Mulran: Multimodal
range dataset for urban place recognition,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
6246–6253.

[43] H. Yin, R. Chen, Y. Wang, and R. Xiong, “Rall: end-to-end radar
localization on lidar map using differentiable measurement model,”
IEEE Transactions on Intelligent Transportation Systems, 2021.

http://arxiv.org/abs/1705.01167

PoseINN: Realtime Visual-based Pose Regression and Localization
with Invertible Neural Networks

Zirui Zang, Ahmad Amine, Rahul Mangharam

Abstract—Estimating ego-pose from cameras is an important
problem in robotics with applications ranging from mobile
robotics to augmented reality. While SOTA models are becoming
increasingly accurate, they can still be unwieldy due to high
computational costs. In this paper, we propose to solve the
problem by using invertible neural networks (INN) to find the
mapping between the latent space of images and poses for a
given scene. Our model achieves similar performance to the
SOTA while being faster to train and only requiring offline
rendering of low-resolution synthetic data. By using normalizing
flows, the proposed method also provides uncertainty estimation
for the output. We also demonstrated the efficiency of this
method by deploying the model on a mobile robot.

I. INTRODUCTION

Visual pose regression is the task of finding camera
poses of images within a trained environment. The matured
geometric-based pipeline [1]–[3] can lead to expensive com-
putation and long latency. On the other hand, learning-based
pose regression [4]–[8] has improved efficiency but can be
cumbersome to deploy due to their low accuracy and long
training time. Recently, with aid from neural radiance fields
(NeRF) [9], learning-based pose regression methods have
greatly improved their accuracy [10], [11]. Direct feature-
matching with online-rendered images and synthetic training
data generation are two ways people use NeRF to improve
pose regression. Despite that, these efforts either need online
rendering with NeRF or long-time synthetic data preparation.

To address these limitations, we propose to use NeRF to
render a large number of low-resolution images and view
the problem as finding a mapping between the distributions
of camera poses and images with normalizing flows. NeRF
enabled us to conveniently sample in the image space and
fully utilize the 3D spatial information embedded in the
training dataset. During the evaluation, we can find the full
posterior distribution of poses given the images by sampling
the latent space of the INN. We summarize our contributions
as the following:

1) We extend Local INN [12] from LiDAR to cameras,
which expands the usability for real robots. The method
is tested on common benchmark datasets and the per-
formance is on par with state-of-the-art.

2) We realize a fast data preparation pipeline with NeRF
[9], [13], which further lowers the deployment burden.

3) We demonstrate the balance of performance and effi-
ciency of the proposed method by deploying it on a
real mobile robot.

All authors are with the University of Pennsylvania, Department of
Electrical and Systems Engineering, 19104, Philadelphia, PA, USA. Emails:
{zzang, aminea, rahulm}@seas.upenn.edu

Fig. 1. We propose to learn a mapping between the latent space of the images
and camera poses in an environment with an invertible neural network.
We use NeRF to guide camera pose sampling and render synthetic images.
Evaluating the reverse path of the INN outputs the full posterior distribution
of camera poses given a test image.

II. RELATED WORK

A. Visual Pose Regression

The pioneering work in pose regression by PoseNet [4]
used simple CNN + average pooling layers to regress camera
poses. Since that, the state-of-the-art (SOTA) was yearly
refreshed by people trying more complex neural network
architectures, such as using separate outputs for position
and orientation [5], translational invariant layers [6], [8],
or LSTM [14], auto-encoders [15], transformers [16], etc.
To show the effectiveness of our method, we are using an
encoder that is also simply CNN + average pooling and yet
still performs on par with the SOTAs.

Recently, pose regression tasks benefited from NeRF’s
ability to render photo-realistic images from novel camera
poses. LENS [10] augments the training data by rendering
synthetic images with a trained NeRF-W from a grid-based
novel pose sampling. The limitation of LENS is the days-
long training time and high-resolution image rendering time.
On the other hand, Direct-PoseNet [17] uses a photometric
loss to compare the test images with NeRF-rendered images
at test poses. DFNet [11] improved that with direct feature-
matching in the feature space instead of pixel-value space.
However, these methods require expensive online rendering
from NeRF. Different from the SOTA’s complex approach, we
claim that offline rendering of many low-resolution images
is enough to perform the localization. Given a test image,
our method also produces the posterior distribution of camera

poses, which can be used as uncertainty estimations [6], [18],
[19] to improve robustness and deployability.

B. Normalizing Flows
Normalizing flows use a series of bijective transformations

to map a source distribution to a target distribution. They
provide efficient density estimation [20], [21] and sampling
of the target distribution. Ardizonne et al. [22]–[24] proposed
a framework for using normalizing flows to solve ambigu-
ous inverse problems. The use of INNs in solving inverse
problems has been applied to various fields [22], [25]–[27].
Recently, Local INN [12] has shown the effectiveness of
INNs in performing robot localization, which is naturally
an ambiguous inverse problem. However, [12] uses LiDAR
ranges, which can be simulated with high fidelity given an
occupancy map of the environment. Although LiDAR data
provide reliable distance measurements, the sensor is expen-
sive and lacks color information about the world. We extend
that framework for visual 6DoF pose regression which is a
more common problem. For that we developed a synthetic
pose sampling policy with NeRF guidance.

III. METHOD

Our approach to visual pose regression is to view it as
finding a mapping from the distribution of the image to that
of camera poses. Effectively sampling enough corresponding
data points in both distributions is the key to finding such
mapping. We train a Neural Radiance Fields (NeRF) model
of the environment and use it to render images at randomly
sampled novel camera poses as in Fig. 2. We propose a
random camera pose sampling and synthetic image rendering
pipeline that is fundamental to the final pose regression result.

Once we have generated enough image samples, based on
[12], we use normalizing flows combined with variational
autoencoder (VAE) to learn the mapping from pose to images.
To reduce the dimensionality of image data, we use a VAE
to encode images into a latent space. Then, we use coupling-
based normalizing flows to learn the mapping from encoded
images to poses. The latent space of the normalizing flows is
sampled according to a normal distribution during training.
During the evaluation, we evaluate only the encoder of
the VAE and the reverse path of the normalizing flows
with repeatedly sampled INN latent space to reveal the full
posterior distribution of the poses given an input image.

A. Generate Synthetic Views with NeRF
A NeRF model stores 3D spatial information of an en-

vironment implicitly within two neural networks: A density
MLP and a color MLP, which can be queried for any point in
the continuous 3D space. Images can be rendered by tracing
rays from the environment to the image plane, integrating the
density and color information provided by the two MLPs.
We train a NeRF model with a set of images with known
camera poses, optimizing the rendering loss. However, if the
learned density and color information is noisy or missing,
the rendered images will contain artifacts or be a complete
mess. Therefore, selecting suitable rendering poses while
sufficiently sampling the wanted 3D space is challenging.

We used nerfacto [13] as our NeRF model. After training
the model, we output a sparse point cloud from NeRF by
thresholding the density of the environment. To generate
novel camera poses, we first uniformly randomly sample
positions in the region. The orientations of these sampled
camera poses are given as RnoiseRrand

training, where Rrand
training is

a randomly picked camera orientation from the training set
and Rnoise is an added perturbation. We generated random
rotation Rnoise for up to 3.6 degrees using [28].

Fig. 2. Sampling of Novel Camera Poses. Point clouds represent high-
density points in the environment. Small pyramids represent training poses,
testing poses, and sampled poses.

For each sampled camera pose, we verify that we have
sufficient spatial information by finding a subset Pin-view of
the NeRF point cloud that is within the field of view (in-view)
of the sample camera. We want every sampled camera pose
to have enough Pin-view, i.e. enough density information for
rendering, and not blocked by a very close point in Pin-view.
We then filter out the sampled camera poses according to the
following three rules:

• The distance ωtraining from the sampled pose to the
nearest pose in the training set cannot be larger than
0.5 meters.

• For Nin-view = |Pin-view|, we first find the range of
Nin-view of the poses in training set. Then we limit the
Nin-view of sampled poses according to that range.

• The distance ωin-view from the sampled pose to the nearest
point in Pin-view is also limited with the range of ωin-view
of the poses in training set.

Because we use a sparse point cloud, we can sample 50k
poses within minutes. Synthetic images at the sampled poses
are then rendered with the trained NeRF model.

B. Learning the Pose-Image Mapping

Normalizing flows are a series of transformations that
are mathematically invertible and with learnable parameters.
Fig. 3, shows the structure of the network. The normalizing
flows side of the network is identical to [12], please refer
to that paper for details. We use Real-NVP [20], [21] for
its efficiency, which uses affine coupling blocks to achieve
invertibility. c is the optional conditional input [23]. For
a fair comparison with other methods, we don’t use c for
the absolute pose regression experiments. It’s only for real
robot localization experiments. Normalizing flows require the
input and output to have the same dimension due to their
invertibility. The 6DoF camera poses, x = [x, y, z, εz, εx, εy]

Fig. 3. Network Structure of the PoseINN. The forward path (solid) is from pose to image. The reverse path (dashed) is from image to pose.

are augmented with Positional Encoding [29] [9] from R6 to
R12L.

ϑ(p) = (sin(20ϖp), cos(20ϖp), . . . ,

sin(2L→1ϖp), cos(2L→1ϖp)).
(1)

We use L = 5 for camera poses and the output is con-
catenated with the original 6-dimensional pose to form an
input x̂ → R12L+6 for the INN. On the image side, we use
a VAE to encode the image y into ŷ → R12L, which is
concatenated with a 6-dimensional latent vector z ↑ N (0, 1)
to form the output of the INN. Different from [12], in the
VAE encoder, we use a pre-trained EfficientNet-B0 backbone
[30] connected with an average-pooling layer to output one
number for each feature channel. At test time, we can sample
the latent vector to reveal the full posterior distribution of the
pose given an image [23].

We train the network the same way as in [12], where with
each batch of data, we evaluate both the forward and reverse
paths of the network and losses are added together before an
optimizer step. To handle the 6DoF poses more efficiently, we
used the geodesic distance [31] Lgeo between two rotations:

Lgeo = cos→1((tr(MpredM
→1
gt)↓ 1)/2). (2)

The EfficientNet backbone in the VAE is loaded with pre-
trained weights when initialized and also optimized with the
rest of the network in training.

IV. EXPERIMENTS

We validated our method with two types of tasks. To
directly compare it with other pose regression methods, we
tested on public absolute pose regression datasets. We also
deployed a sequential version on a mobile robot to show the
performance of our method on an embedded platform.

A. Camera Pose Regression on Public Dataset

TABLE I
DATA GENERATION STRATEGY COMPARISON

(ERROR DATA FROM 7SCENE)

Model
(backbone)

Pose Error
(m/→)

Synthetic
Resolution

Rendering
Cost

Generation
Mode

LENS(EB3) 0.08/3.00 High Expensive Offline
DFNet(EB0) 0.08/3.47 Low Cheap Online
Ours(EB0) 0.09/2.65 Low Cheap Offline

With the 7scene [32] dataset, we trained the nerfacto model
for 50k epochs, which takes about 20 mins on our setup
with an NVIDIA A6000 GPU. Then 50k synthetic camera-
pose images are rendered for each scene, which takes about
40 mins. The rendering resolution for the 7scene dataset is
160x120. The original training set images are then mixed
with the rendered images and resized to 128x128 for training
the INN. We trained the network for 300 epochs with batch
size 200 and a learning rate of 5e-4 exponentially decaying to
5e-5, which takes around 8 hours. Table I shows a comparison
of the data generation strategy with LENS [10] and DFNet
[11]. The inputs for the other two methods are from [11]. Our
strategy is the most efficient while outputting on-par results.

B. Visual Localization on Real-world Mobile Robot

Fig. 4. Examples of training and rendered images in real-world testing (Up:
Indoor, Down: Outdoor)

With a small network size, PoseINN is suitable for embed-
ded platforms. To demonstrate that, we deployed PoseINN on
an F1TENTH racecar [33], which is a 1/10 scale autonomous
racing car equipped with a Hokuyo 30LX LiDAR, an RGB
camera, and an NVIDIA Jetson Xavier NX. We used LiDAR
to collect ground truth poses for training images and used the
camera for localization tests. For the 2D localization exper-
iment, we train for 3 degrees of freedom: xy positions and
the car’s heading. Similar to [12], the network architecture

https://f1tenth.org/

TABLE II
MEDIAN LOCALIZATION ERRORS WITH 2D LIDAR VS. CAMERA

Experiment Platform Indoor Outdoor

train trajectory
test trajectory

sampled points

(xy[m], ω[→]) (xy[m], ω[→])

Online PF (45Hz) 0.01, 0.23 0.02,0.36
PoseINN (154Hz) 0.02, 0.31 0.12, 0.72
PoseINN + EKF 0.02,0.22 0.10, 0.65

we used for the 2D localization experiments takes a rounded
previous state of the mobile robot as conditional input c,
which is encoded by a separate MLP. This one-step historical
information makes the inverse problem easier and it’s used
in traditional robot localization methods like particle filters
[34], [35].

We set up an indoor and an outdoor experiment. The maps
shown in the Table II are captured with LiDAR scan using
ROS SLAM toolbox. We use an offline particle filter [36]
with an infinite computation budget for ground truth poses
and training data for NeRF. An online version of the particle
filter with fewer particles is used as the baseline comparison.
Training and testing trajectories are also shown on the map.
We capture RGB images as the car navigates along the
trajectories. Fig. 4 shows the training and rendered images.
We can see even without the super-accurate image renderings,
the trained model is still able to provide localization.

The translation and rotation error results in Table II show
that when the training data sufficiently cover the test tra-
jectory, this method can provide localization comparable to
LiDAR-based PF. When the test trajectory moves outside the
sampled zone, then the performance drops. As for runtime on
the Jetson Xavier NX, PoseINN runs at 154Hz while eval-
uating batches with 50 randomly sampled z for uncertainty
estimation, whereas the compared online particle filter runs
at 45Hz.

C. Uncertainty Estimation

TABLE III
OUTPUT FILTERING WITH UNCERTAINTY ESTIMATION

(ERROR DATA FROM CAMBRIDGE [4])

(xy[m], ω[→]) Raw Mean Error With Filtering

Kings 0.93, 1.02 0.58, 0.96
Hospital 0.87, 1.14 0.64, 0.97
Shop 0.59, 5.00 0.20, 1.04
Church 0.81, 2.43 0.52, 1.21

Average 0.84, 2.55 0.68, 1.87

We can then calculate the variance of the output distribu-
tion as uncertainty estimations. To demonstrate the effective-
ness, we use the covariance of the 2D localization results with
an Extended Kalman Filter (EKF) to fuse the output with
odometry data from the mobile robot, which improves the

accuracy. For the 3D pose regression experiments, we show
that filtering the inferred poses with their variance reduces
noise levels. In Table III, we show the average error of the
raw outputs of PoseINN on the left. We then filter out outputs
with variance values larger than the median variance value of
the testing set. The average errors of outputs after filtering are
in the right column. Because average values can be influenced
by extreme values, a large improvement shows the output is
more robust.

V. DISCUSSION & LIMITATIONS

Using NeRF to efficiently sample camera poses and RGB
images in an environment, we reduce the problem of pose
regression into learning a mapping between two distributions.
Results in Table I show that with a large amount of lower-
resolution rendering, we can achieve the same performance
without using more complex methods or higher resolutions
as in the compared methods. Results in Table II show the
proposed method is very efficient and can provide accurate
localization if proper training data is provided. The uncer-
tainty estimation that naturally comes with the normalizing
flows also makes it suitable for deployment on robot plat-
forms.

Some limitations remain in this work. First, we didn’t deal
with the domain gap between NeRF-rendered images and
the real images that change dramatically with the weather,
camera parameters, etc. We tried to have the VAE reconstruct
rendered images from real images, but the effect was not
prominent. Second, we can see from our experiment that
better-covered training data is crucial for the final results. Al-
though our camera pose sampling pipeline, reduced instances
of bad renderings, having a more deeply related rendering
pipeline will be very helpful.

VI. CONCLUSION

We showcase how this [12] invertible neural network ar-
chitecture can be used for image-based localization at SOTA
performance by only changing an image encoder. To achieve
that, we used NeRF as a camera simulator to efficiently
sample images within an environment. The efficiency and
robustness of the model are illustrated by deploying it on an
embedded mobile robot.

REFERENCES

[1] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4104–4113.

[2] A. Fisher, R. Cannizzaro, M. Cochrane, C. Nagahawatte, and J. L.
Palmer, “Colmap: A memory-efficient occupancy grid mapping frame-
work,” Robotics and Autonomous Systems, vol. 142, p. 103755, 2021.

[3] T. Sattler, B. Leibe, and L. Kobbelt, “Improving image-based local-
ization by active correspondence search,” in Computer Vision–ECCV
2012: 12th European Conference on Computer Vision, Florence, Italy,
October 7-13, 2012, Proceedings, Part I 12. Springer, 2012, pp.
752–765.

[4] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” in Proceedings of
the IEEE international conference on computer vision, 2015, pp. 2938–
2946.

[5] J. Wu, L. Ma, and X. Hu, “Delving deeper into convolutional neu-
ral networks for camera relocalization,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
5644–5651.

[6] A. Moreau, N. Piasco, D. Tsishkou, B. Stanciulescu, and
A. de La Fortelle, “Coordinet: uncertainty-aware pose regressor for
reliable vehicle localization,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2022, pp. 2229–2238.

[7] I. Melekhov, J. Ylioinas, J. Kannala, and E. Rahtu, “Image-based
localization using hourglass networks,” in Proceedings of the IEEE
international conference on computer vision workshops, 2017, pp.
879–886.

[8] R. Liu, J. Lehman, P. Molino, F. Petroski Such, E. Frank, A. Sergeev,
and J. Yosinski, “An intriguing failing of convolutional neural net-
works and the coordconv solution,” Advances in neural information
processing systems, vol. 31, 2018.

[9] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp.
99–106, 2021.

[10] A. Moreau, N. Piasco, D. Tsishkou, B. Stanciulescu, and
A. de La Fortelle, “Lens: Localization enhanced by nerf synthesis,”
in Conference on Robot Learning. PMLR, 2022, pp. 1347–1356.

[11] S. Chen, X. Li, Z. Wang, and V. A. Prisacariu, “Dfnet: Enhance abso-
lute pose regression with direct feature matching,” in Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–
27, 2022, Proceedings, Part X. Springer, 2022, pp. 1–17.

[12] Z. Zang, H. Zheng, J. Betz, and R. Mangharam, “Local inn: Implicit
map representation and localization with invertible neural networks,”
arXiv preprint arXiv:2209.11925, 2022.

[13] M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, J. Kerr, T. Wang,
A. Kristoffersen, J. Austin, K. Salahi, A. Ahuja, D. McAllister, and
A. Kanazawa, “Nerfstudio: A modular framework for neural radiance
field development,” arXiv preprint arXiv:2302.04264, 2023.

[14] B. Wang, C. Chen, C. X. Lu, P. Zhao, N. Trigoni, and A. Markham,
“Atloc: Attention guided camera localization,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 06, 2020, pp.
10 393–10 401.

[15] Y. Shavit and Y. Keller, “Camera pose auto-encoders for improving
pose regression,” in Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
X. Springer, 2022, pp. 140–157.

[16] Y. Shavit, R. Ferens, and Y. Keller, “Learning multi-scene absolute
pose regression with transformers,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 2733–2742.

[17] S. Chen, Z. Wang, and V. Prisacariu, “Direct-posenet: absolute pose
regression with photometric consistency,” in 2021 International Con-
ference on 3D Vision (3DV). IEEE, 2021, pp. 1175–1185.

[18] A. Kendall and R. Cipolla, “Modelling uncertainty in deep learning
for camera relocalization,” in 2016 IEEE international conference on
Robotics and Automation (ICRA). IEEE, 2016, pp. 4762–4769.

[19] F. Zangeneh, L. Bruns, A. Dekel, A. Pieropan, and P. Jensfelt, “A
probabilistic framework for visual localization in ambiguous scenes,”
arXiv preprint arXiv:2301.02086, 2023.

[20] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
real nvp,” arXiv preprint arXiv:1605.08803, 2016.

[21] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1x1 convolutions,” Advances in neural information processing systems,
vol. 31, 2018.

[22] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini,
R. S. Klessen, L. Maier-Hein, C. Rother, and U. Köthe, “Analyzing
inverse problems with invertible neural networks,” arXiv preprint
arXiv:1808.04730, 2018.

[23] L. Ardizzone, C. Lüth, J. Kruse, C. Rother, and U. Köthe, “Guided
image generation with conditional invertible neural networks,” arXiv
preprint arXiv:1907.02392, 2019.

[24] C. Winkler, D. Worrall, E. Hoogeboom, and M. Welling, “Learn-
ing likelihoods with conditional normalizing flows,” arXiv preprint
arXiv:1912.00042, 2019.

[25] T. J. Adler, L. Ardizzone, A. Vemuri, L. Ayala, J. Gröhl, T. Kirchner,
S. Wirkert, J. Kruse, C. Rother, U. Köthe et al., “Uncertainty-aware
performance assessment of optical imaging modalities with invertible
neural networks,” International journal of computer assisted radiology
and surgery, vol. 14, no. 6, pp. 997–1007, 2019.

[26] T. Wehrbein, M. Rudolph, B. Rosenhahn, and B. Wandt, “Probabilistic
monocular 3d human pose estimation with normalizing flows,” in
International Conference on Computer Vision (ICCV), Oct. 2021.

[27] R. Zhao, T. Liu, J. Xiao, D. P. Lun, and K.-M. Lam, “Invertible image
decolorization,” IEEE Transactions on Image Processing, vol. 30, pp.
6081–6095, 2021.

[28] J. Arvo, “Fast random rotation matrices,” in Graphics gems III (IBM
version). Elsevier, 1992, pp. 117–120.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, !. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[30] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[31] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity
of rotation representations in neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 5745–5753.

[32] B. Glocker, S. Izadi, J. Shotton, and A. Criminisi, “Real-time rgb-
d camera relocalization,” in 2013 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR). IEEE, 2013, pp. 173–179.

[33] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth:
An open-source evaluation environment for continuous control and
reinforcement learning,” in Proceedings of the NeurIPS 2019 Competi-
tion and Demonstration Track, ser. Proceedings of Machine Learning
Research, H. J. Escalante and R. Hadsell, Eds., vol. 123. PMLR,
08–14 Dec 2020, pp. 77–89.

[34] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo local-
ization for mobile robots,” in Proceedings 1999 IEEE international
conference on robotics and automation (Cat. No. 99CH36288C), vol. 2.
IEEE, 1999, pp. 1322–1328.

[35] S. Thrun, “Probabilistic robotics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.

[36] C. Walsh and S. Karaman, “Cddt: Fast approximate 2d ray casting
for accelerated localization,” vol. abs/1705.01167, 2017. [Online].
Available: http://arxiv.org/abs/1705.01167

http://arxiv.org/abs/1705.01167

	a4ac834a-aeaf-4f6f-a25e-efde5e8c0f72.pdf
	Introduction
	Related Work
	Lidar-based Localization
	Normalizing Flows

	Methodology
	Conditional Normalizing Flow
	Positional Encoding
	Variational Autoencoder
	Optimization

	Experiments
	2D LiDAR Localization on Real-world Robot
	3D Open Space LiDAR Localization
	Global Localization

	Conclusion
	References

	966ebb11-790d-40e4-a506-b1ab2f0d380e.pdf
	Introduction
	Related Work
	Visual Pose Regression
	Normalizing Flows

	Method
	Generate Synthetic Views with NeRF
	Learning the Pose-Image Mapping

	Experiments
	Camera Pose Regression on Public Dataset
	Visual Localization on Real-world Mobile Robot
	Uncertainty Estimation

	Discussion & Limitations
	Conclusion
	References

