

Challenge Problems in Cyber Physical Systems and Industrial IoT

Prof. Rahul Mangharam

Director, Real-Time & Embedded Systems Lab Dept. Electrical & Systems Engineering Dept. Computer & Information Science University of Pennsylvania rahulm@seas.upenn.edu

What would you like for your Birthday?

A Tesla with Autopilot?

Mobility21
DoT National University Transportation Center [2017-2021]

Carnegie Mellon University

University of Pennsylvania Carnegie Mellon University

A Driver's License Test for Autonomous Vehicles

Prof. Rahul Mangharam
Penn Director, Mobility21 DoT UTC
University of Pennsylvania
rahulm@seas.upenn.edu

What this talk is about?

- 1. Defining Safe Autonomous Systems
- 2. The Insurance Problem
- 3. The Guardian Angel Problem
- 4. Connected Autonomous Vehicles

Defining Safety: A Driver's License Test for Autonomous Vehicles

- Under what criteria can we determine that an autonomous vehicle is safe?
- How can we **verify** its actions *beyond simple tests*?

Defining Safety: A Driver's License for Autonomous Vehicles

- So what would the Autonomous Driver's license consist of?
 - Automatically verified models of control and decision algorithms
 - For representative scenarios
 - With quantitative statistics regarding the state of the ego and environment
 - On a variety of roads

AV Perception, Planning, Control pipeline

Sense Plan $e_{(\ell_1,\ell_2)}$ Pause Drive Hierarchical Planner Proceed to stopline Wait for gap Mission Planner $e_{(\ell_2,\ell_6)}$ Goal Failure Turn Prefix Execute turn Unrealizable Sensors & Behavioral Planner $e_{(\ell_3,\ell_4)}$ Perception Turn Predicate Scenario End Scenario boundary Complete turn $e_{(\ell_4,\ell_5)}$ Local Planner Act Everything combined: a function that generates a sequence of *steering* and

acceleration inputs...

Defining Safety: A Driver's License for Autonomous Vehicles

- Why its hard...
 - Automatically verified models of control and decision algorithms: non-linear vehicle dynamics and mode switching lead to intractable or undecidable decision problems.

Requirement:

- 1. If car slips, recover within 3 seconds.
- 2. Stay within lane markers.
- 3. Maintain minimum distance to others.

Model is verified to satisfy this Requirement

A deployed system ALWAYS deviates from its model, and the environment ALWAYS deviates from what we expect.

Successive refinements of a model deviate from each other.

A deployed system ALWAYS deviates from its model, and the environment ALWAYS deviates from what we expect.

Successive refinements of a model deviate from each other.

Does the system have an "error margin" to tolerate unforeseen disturbances and errors?

Safe

Unsafe

How can we automatically find diverse unsafe cases? What about the marginal cases?

Safe

Unsafe

What about the marginal cases?

We should be interested in the spectrum of vehicle safety

Safe

Unsafe

What about the marginal cases?

We should be interested in a continuous measure of vehicle safety

Defining Safety: A continuous measure of vehicle safety

From:

Does the Autonomous Vehicle satisfy the design requirements?

To:

How robustly (how well) does it satisfy the requirements?

Safety (and more general correctness) as a continuous measure *Robustness*

A primer on the robustness of Metric Temporal Logic formulas

and its use in Autonomous System falsification

Scenario Description Language: Operating Environment

The operating environment, or *road agent*, is defined by:

- Static parameters such as geometry.
- External parameters such as the time of day for the scenario.

Variations enter the search as *unknown* parameters **selected from a set**.

For example:

- Choose road geometry from a discrete set of models, {Location 1, Location 2}.
- Choose time from a continuous set in R, [0,24].

Scenario Description Language: Other Traffic Participants

A traffic participant instance is defined by *static parameters* such as its **location** and **velocity** of other vehicles. Behaviors are influenced by *external parameters* such as the **goal** of traffic agent. **For example:**

- Choose location from a continuous set in R²: x in [-25,-5] and y in [10, 12].
- Choose velocity from a continuous set in R: v in [0,30].
- Choose *goal* from a discrete set of actions: {Straight, Left Turn}.

Scenario Description Language: Ego-Vehicle Initialization

The ego-vehicle instance is defined by *static parameters* such as its **location** and **velocity** and **goal**. Additional parameters exist within its controllers. **For example:**

- Choose *location* from a *continuous set* in R²: *x in [5,10] and y in [-20, -5]*.
- Choose *velocity* from a *continuous set* in R: *v in [0,30]*.
- Choose goal from a from a continuous set in R²: x in [20,40] and y in [0, 5].

Ingredient 1: system simulation

A system has a set of initial conditions X_0 .

From every initial state x(0) in X_0 , it produces a state trajectory x(t).

For a deterministic system, the trajectory x is uniquely determined by its first state x(0). That's why robustness of a given formula is a function of the initial state.

Ingredient 2: a specification The simplest specification: safety

 X_0

Green trajectory, obtained by simulation, satisfies the **safety** spec:

Distance to other vehicles must Always be < c.

(could also be velocity < threshold, acceleration < threhsold, etc)

A Primer on Robust Simulation

The **robustness** of the trajectory x, in this special case, is defined to be the minimum distance between the trajectory and the red lines.

$$\rho(x) \coloneqq \min_{\mathsf{t}} |x(\mathsf{t}) - c|$$

A Primer on Robust Simulation

The blue trajectory still satisfies the spec.

But in a sense, it is less robust than the green trajectory: it gets closer t violating the spec.

Properties: Robustness

However, any signal that ever leaves the robustness tube *may be* unsafe.

Where should we spend the verification effort?

Where should we spend the verification effort?

T-Junction Robustness Landscape

Practical Limitations: Testing

When can we draw high-confidence conclusions about *whole system behavior* from a finite number of tests?

Example:

Every point is a sample execution of system. Green = good, red = bad

Note how green and red mix, which requires a lot of samples in that area to draw high-confidence conclusions

With testing you try to make a conclusion about the entire system from these samples. What if the bad behavior is hiding between good behavior, and you never or rarely sample it?

Robustness-Guided Verification

Robustness-guided
falsification leads us to the 13 low-robustness ellipsoid. 12

Near-exhaustive verification decisively verifies this smaller behavior.

How to define robustness for more complex MTL specifications?

A more general mission requirement:

Prepare to exit highway through right lane in T seconds

[Refine] Sometime in the next T seconds, Position = right lane.

[Refine] Sometime in the next T seconds, (steering angle > 15 and acceleration > 0) until until Position = right lane.

[Refine] Sometime in the next T seconds, (steering angle > 15 and acceleration > 0) until until Position = right lane, UNLESS right lane is occupied

[MTL]

 $RightLane.isFree \rightarrow F_{[0,T]}((angle > 15 \land acc > 0)U(pos = right))$

Modeling Framework: Agents operating within scenarios

Representative scenarios:

Roundabout

Stop signs

Pedestrians

Understand common agents for more intuitive modeling:

Target Vehicle

Road Network

Traffic Laws

Other Vehicles

Pedestrians

Infrastructure

New Agents

Modeling Framework: Problem Statement

For a given scenario, vehicle model, & requirements specified over a finite time...

Lane merge

Roundabout

Stop signs

Pedestrians

Does there exist an unsafe execution of the controller?

Robustness-Guided Verification: Tool development

The tool-chain: One Scenario Entry Point

The tool-chain: Checking Engines

Falsification Engine (e.g., S-TaLiRo)

Almost-Exhaustive Verification Engine (e.g., dReach)

The tool-chain: Common formalism for simulation and verification

Falsification Engine (e.g., S-TaLiRo)

Common formalism (Intermediate Representation) for verification engines

Almost-Exhaustive Verification Engine (e.g., dReach)

Mode	Transitions		
	Guard $\Gamma_{(\ell_1,\ell_2)}$: $s_x \ge s_{x_{stop}}$	Guard: NA	
Drive (ℓ_1)	Reset $Re_{(\ell_1,\ell_2)}$: $t' = 0$	Reset: NA	
	Next State: Pause	Next State: NA	
Pause (ℓ_2)	Guard $\Gamma_{(\ell_2,\ell_3)}$: $(t > t_{pause}) \land (d_{gap} > d_{min})$	Guard: $\Gamma_{(\ell_2,\ell_6)}$ $(t > t_f) \land (\ell = 2)$	
	Reset $Re_{(\ell_2,\ell_3)}$: $t' = 0$	Reset: NA	
	Next State: Turn Prefix	Next State: Goal Failure	
Turn Prefix (ℓ_3)	Guard $\Gamma_{(\ell_3,\ell_4)}$: $s_y < s_{f_{y_1}}$	Guard: NA	
	Reset $Re_{(\ell_3,\ell_4)}$: $s'_{x_0} = s_x, s'_{y_0} = s_y, s'_{eqo} = 0$	Reset: NA	
	$s'_{x_{goal}} = wp_{x_1}, s_{y_{goal}} = wp_{y_1}$ Next State: Turn Predicate	Next State: NA	
Turn Predicate (ℓ_4)	Guard $\Gamma_{(\ell_4, \ell_5)}$: $s_y < s_{f_{y_2}}$	Guard: NA	
	Reset $Re_{(\ell_4,\ell_5)}$: $s'_{x_0} = s_x, s'_{y_0} = s_y, s'_{eqo} = 0$	Reset: NA	
	$s'_{x_{goal}} = wp_{x_2}, s_{y_{goal}} = wp_{y_2}$ Next State: Scenario Complete	Next State: NA	

The tool-chain: Conversion from formalism to tool formats

The tool-chain: Formal specification in Metric Temporal Logic

The tool-chain: Robustness-Guided Verification

The tool-chain: Integration and testing of real code

Falsification Engine (e.g., S-TaLiRo)

The tool-chain: Visualization of accidents and violations

Autonomous vehicle Plan verification and EXecution

APEX

APEX Toolbox: Basic Scenario Library

Case Study: Exiting the Highway

An unsafe execution...

- Proximity to exit point, ordering 1.
- Proximity to exit point, ordering 2.
- Pass point of no return.
 - Exceeding safe speed
 - Proximity to exit point, ordering 1.
 - Proximity to exit point, ordering 2.
- Pass point of no return.
- At exit point, replan
- At exit point, replan
- Exit Complete

Case Study: Counterexample

Exceeded allowable speed on curve. Forgot to change desired velocity on the exit ramp...

	Robustness	Falsified	Time
Run 1	2.923954853228472	0	1.015345936
Run 2	5.08758785008145	0	0.64356243
Run 3	1.58322571985417	0	0.739456261
Run 4	-1.33481474494335	1	0.647890734
Run 5	1.19092922455614	0	0.653613874
Run 6	0.7644210734606593	0	0.424821741
Run 7	3.50257488220876	0	0.417468565
Run 8	1.67075771080459	0	0.422870814
Run 9	-0.0693428364328312	I	0.246647509
Run 10	0.840635324412428	0	0.416844002
Run II	0.0583178152910584	0	0.412734793
Run 12	0.408473731737928	0	0.414736315
Run 13	0.0880809121895942	0	0.420027416
Run 14	0.323334605645278	0	0.399421832
Run 15	1.86618290153492	0	0.718619361
Run 16	0.357522415132801	0	0.637938451
Run 17	-0.424533871152353	1	0.677554789
Run 18	-1.52676106159999	1	0.652093781
Run 19	0.276072018492533	0	0.641657179

Meanwhile: Things are getting serious...

Simulation: Artificial Sensors

Multi-rendering from single game instance...

Can mimic modern camera based SDC systems ie AP2...

Top: RGB *Bottom:* Depth

Clockwise:

Front Back Left

Right

The Guardian Angel Problem

Can we synthesize low robustness scenarios?

Control Interfaces: APEX Robust Testing and Verification

Control Interfaces: APEX Robust Testing...

Control Interfaces: End-to-end CNN

AVCAD Toolchain - Testing in Synthetic Worlds

AVCAD: Robust Testing Interface

How to Compare Synthetic and Real Images

Next Steps: Deep Learning & Vision Based Perception

- Sometimes perception works perfectly, but the controller doesn't know how to handle the scenario, when does this happen, how often?
- Is the system still performant if a key sensor is unable to observe a traffic sign (i.e. it leaves the field of view)?
- How will weather affect the safety of the overall system?
- Modeling, robust testing, and verification give us the tools to address these
 questions in a meaningful way without building a fleet of vehicles.

Results: Implementation of Trajectory Generator

Integration with ROS and Autoware Open Source Vehicle OS

Use linear optimization to learn weights for a network of radial basis functions. Quickly compute a variety of trajectories in the configuration space of the robot in order to create local plans...

Pennovation Center

A dedicated physical lab for experimental and field-tested ideas

A 23-acre brand new urban campus for Innovation

Development of Community Platforms for Safe and Affordable Autonomy

Autonomous Racing 1/10 the scale. 10X the fun!

LIDAR

Camera

IMU

IR Depth Cameras

Wi-fi Telemetry

Onboard Computer

Battery

Chassis Design

Software System Architecture

Cloud-Based Simulation Tool

GPU accelerated **libraries**

Scenario Sim

ROSbag data

Vehicle and environment models in Gazebo

f1tenth.org: Video Tutorials, lectures, and code walkthroughs

Highlights from the 2016 F1/10 Racing Competition

MIT Beaver Works Summer Institute – 24 schools, 46 students

Courses and hackathons

"Essentially all models are wrong, but some are useful"
- George E.P. Box

