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What this talk is about?

. Defining Safe Autonomous Systems

. The Insurance Problem

. The Guardian Angel Problem

. Connected Autonomous Vehicles



Defining Safety: A Driver’s License Test for Autonomous Vehicles
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« Under what criteria can we determine that an autonomous vehicle is safe?
« How can we verify its actions beyond simple tests?



Defining Safety: A Driver’s License for Autonomous Vehicles
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« SO what would the Autonomous Driver’s license consist of?
— Automatically verified models of control and decision algorithms

— For representative scenarios
— With quantitative statistics regarding the state of the ego and environment

— On a variety of roads



AV Perception, Planning, Control pipeline

Sense

Plan

€(£1,¢2)

= =

Hierarchical Planner Drive Pause
il [ Proceed to stopline Wait for gap
Mission Planner €(£3,L6)
€(L2,63
‘ 3 Turn Prefix Goal Failure
Execute turn Unrealizable
Sensors & _
Perception Behavioral Planner €(t3.t4)

\ )

Local Planner

Everything combined:

a function that generates a
sequence of steering and
acceleration inputs...

[ Turn Predicate

Complete turn

Scenario End
Scenario boundary




Defining Safety: A Driver’s License for Autonomous Vehicles

« Why its hard...

— Automatically verified models of control and decision algorithms: non-linear vehicle
dynamics and mode switching lead to intractable or undecidable decision problems.
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Hierarchical Planner

Mission Planner
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Assumptions on System or
environmental component
behavior design

Requirements for
system behavior

1. Ego vehicle obeys the speed limit.
Always [t tf] v <= speed limit

2. Ego vehicle does not crash
Always [t tf] distance >= buffer

3. Ego Vehicle completes lane change

Always[ttf] LC 2> Vego >W t> 4
Eventually [ttf] lane == ~lane
<
Vego " Venv = €
& Sxego - SXgny < buffer
*Continuous Dynamics Discrete Decision Controller

e.g. Change lanes



Requirement:
1. If car slips, recover within 3 seconds.
2. Stay within lane markers.
3. Maintain minimum distance to others.
Model is verified to satisfy this Requirement




A deployed system ALWAYS deviates from its model, and the environment ALWAYS deviates

from what we expect.
Successive refinements of a model deviate from each other.

Black ice (Environment
conditions)

Faster than modeled

(Other cars’ models) Slower actuator

reaction times
(AV model)



A deployed system ALWAYS deviates from its model, and the environment ALWAYS deviates
from what we expect.

Successive refinements of a model deviate from each other.

Does the system have an “error margin” to tolerate unforeseen disturbances and errors?




How can we automatically find diverse unsafe cases?
What about the marginal cases?










What about the marginal cases?

We should be interested in the spectrum of vehicle safety
P—— p— P—




What about the marginal cases?

We should be interested in a continuous measure of vehicle safety




Defining Safety: A continuous measure of vehicle safety

From:
Does the Autonomous Vehicle satisfy the design requirements?

To:
How robustly (how well) does it satisfy the requirements?



Safety (and more general correctness) as a continuous measure

Robustness
Increasingly correct / Increasingly
safe / ROBUST ) ~ incorrect / unsafe

AV can tolerate large AV can tolerate medium AV cannot tolerate
disturbances (e.g., wheel disturbances (e.g., wheel disturbances. Small deviations
slippage, delayed slippage, moderately between model and system
actuation, aggressive delayed actuation) invalidate verification results

drivers. etc)



Robustness Guided Veriﬂcation_

Use robust simulations to guide and accelerate almost-
exhaustive verification, so it can tackle these hard
problems in autonomy




A primer o
Metric Tem

N T

00

ne robustness of

ral Logic formulas

and its use in Autonomous
System falsification



Scenario Description Language: Operating Environment

The operating environment, or road agent,
is defined by:

« Static parameters such as geometry.

 External parameters such as the time of
day for the scenario.

Variations enter the search as unknown
parameters selected from a set.

For example:

« Choose road geometry from a discrete set of
models, {Location 1, Location 2}.

« Choose time from a continuous set in R,
[0,24].




Scenario Description Language: Other Traffic Participants

—
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A traffic participant instance is defined by static parameters such as its location and

velocity of other vehicles. Behaviors are influenced by external parameters such as
the goal of traffic agent. For example:

« Choose location from a continuous set in R2: x in [-25,-5] and y in [10, 12].
« Choose velocity from a continuous set in R: v in [0,30].

« Choose goal from a discrete set of actions: {Straight, Left Turn}.



Scenario Description Language: Ego-Vehicle Initialization

a,: Environment Vehicle as: Road &: Mobility Goal
d Gap Sensor
{ >t , & Scenario
' i End

L: Laws
1 \.

H - 5
Inite i (]

a;: Ego-Vehicle

The ego-vehicle instance is defined by static parameters such as its location and
velocity and goal. Additional parameters exist within its controllers. For example:

« Choose location from a continuous set in R2: x in [5,10] and y in [-20, -5 ].
« Choose velocity from a continuous set in R: v in [0,30].

« Choose goal from a from a continuous set in R?: x in [20,40] and y in [0, 5].



Ingredient 1: system simulation

A system has a set of
initial conditions X,,.

From every initial state
X(0) in X,, it produces a
state trajectory x(t).

For a deterministic system, the trajectory x is uniquely determined by its
first state x(0). That’s why robustness of a given formula is a function of
the initial state.



Ingredient 2: a specification
The simplest specification: safety

Green trajectory, obtained

by simulation, satisfies the
safety spec:

Distance to other vehicles X
must Always be < c.

(could also be velocity <
threshold, acceleration <
threhsold, etc)

Distance to other vehicles




A Primer on Robust Simulation

Distance to other vehicles

The robustness of the
trajectory x, in this special
case, is defined to be the
minimum distance
between the trajectory
and the red lines.

p(x) :: mtin |x(t) _ Cl ,,a/,' \\s\\ \\\\\\\\ ,’,,'




A Primer on Robust Simulation

Distance to other vehicles
The blue trajectory still
satisfies the spec.

But in a sense, it is less
robust than the green X
trajectory: it gets closer t
violating the spec.




Properties: Robustness

System e . T
Trajectory r the safety of this trajectory Projection of specmcatlorj -
Robustness Tube
Initial Set I / —_——— = = :K

= Simulwdl-ess of path t-hrough

tube, this trajectory is safe...
............................................ A

Time

However, any that ever leaves the robustness tube may be

unsafe.



Where should we spend the verification effort?

SAFE  Bal@ici.i.

Wﬂﬂﬁlﬁf§§~~’

[¢] =0

UNSAFE




Where should we spend the verification effort?

SAFE

HERE! —»7
le] =

UNSAFE




T-Junction Robustness Landscape

ay: Environment Vehicle

&: Scenario

End

Gap Sensor/\/—>

N\

— L: Laws

a;: Ego-Vehicle o

1

&: Mobility Goal



Practical Limitations: Testing

Environment Velocity vs. Environment Initial Position Robustness
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With testing you try to make a conclusion about the entire system from these samples.
What if the bad behavior is hiding between good behavior, and you never or rarely sample it?




Robustness-Guided Verification

Robustness-guided

falsification leads us to the ¢

low-robustness ellipsoid.

Near-exhaustive
verification decisively
verifies this smaller
behavior.

. Environment Velocity vs. Environment Initial Position Robustness

14+

12 f

—
—

Env. Velocity (m/s)
P

Env. Position (m)




How to define robustness for more complex MTL
specifications?

A more general mission requirement:
Prepare to exit highway through right lane in T seconds
[Refine] Sometime in the next T seconds, Position = right lane.

[Refine] Sometime in the next T seconds, (steering angle > 15 and acceleration >
0 ) until until Position = right lane.

[Refine] Sometime in the next T seconds, (steering angle > 15 and acceleration >
0 ) until until Position = right lane, UNLESS right lane is occupied

[MTL]
RightLane.isFree - Fjor((angle > 15 Aacc > 0)U(pos = right))



Modeling Framework: Agents operating within scenarios

Representative scenarios:

Merging area

&
L vt
L
]
L

P
Lane merge Roundabout

Stop signs

Understand common agents for more intuitive modeling:

________________

2oy SPEED I
A L N

Target Vehicle Road Network Traffic Laws Other Vehicles Pedestrians  Infrastructure ~ New Agents



Modeling Framework: Problem Statement

@
Lane merge Roundabout Stop signs Pedestrians

Does there exist an unsafe execution of the controller?




Robustness-Guided Verification:
Tool development



The tool-chain: One Scenario Entry Point

SCENARIO ENTRY

E1 = envCar();

E2 = envCar();

Ego = egoCar(a,b);
R =road(‘highway’)

Scenario
Definition
Language

€: Scenario End

L: Laws
h a, : Environment Vehicle

SPEED
LIMIT

50

Scenario

A : Parallel composition of agent objects
L : Trdffic Laws
® : Goal to be achieved
Init : Initialization
& : End conditions

i

Agent [Hybrid Automaton]
X : Continuous States
Xinit : Set of Initial States
L : Discrete Modes
E : Transitions
II : Output Function

Scenario [Off Ramp]

A : Ego-Vehicle, Environment, Road
L : Speed Limit, Maintain Spacing
®  : Exit Highway

Init  : Agent Poses, Ramp Length, etc.

-[> Agent [Road]
»| Agent [Environment Vehicle] I—

*| Agent [Ego Vehicle]

Behavioral Planner

— .
&€  : Goal Region and Timeout Motion Planner
Trajectory Tracker
/Tt =" [©
L
Pseudocode [Ego Vehicle] /
- w - N
Speed Control P Headway Control
A inimum Spacing Achieved FrRE
(Trock Speed Limit) (Mowmtain Spocing)

Sense: Meadway & Spacing Error Dynamics
Ritj= Headway. dR(4)idr = Clasing Spaed

E‘, Plan: Compute Trajectory to Gool
kit)= TRitgoali= Desired Path Currature

Act Trock Speed Limit

Dynamics: dx/de =fixjt k(t,u(t)

Wu= Acceferation Guard |:
Minimum Spacing Violated

Sense: Meadway & Spacing Error Dynamics
Rit}= Heodway, dRi)/dt = Closing Speed

Plan: Compute Trajectory to Goal
kit)=TPitgoal)= Deiired Poth Curvoture

Act Decelerare
W= Acceleration

Dynamics: dxiat =flx(e).kit,vt))




The tool-chain: Checking Engines

SCENARIO ENTRY

E1 = envCar();

E2 = envCar();

Ego = egoCar(a,b);
R =road(‘highway’)

Scenario Definition
Language

Falsification Engine
(e.g., S-TaLiRo)

Almost-Exhaustive
Verification Engine
(e.g., dReach)




The tool-chain: Common formalism for simulation and verification

SCENARIO ENTRY

E1 = envCar();

E2 = envCar();

Ego = egoCar(a,b);
R =road(‘highway’)

Scenario Definition
Language

K
Wy

.
Yo

Compute Trajectory
= bovg + 20 030+ 34502

YR

r, = g cos{ W)

Sp, = vg-min(Py)

v (b v + 2005t + 3d%¢%)

Guard 2:
(tschedule ==01)
Reset:

tschedule =©

~— "
Guard 1:
(ookahead == 04)

ay: Environment Vehicle

Reset:

S, =S, A S, =S8,
*a %o Yd o Vel

Common formalism
(Intermediate Representation)
for verification engines

€(01,L2)

0=

g = veos(de )

Sy =ven(d+o)

bave

[ Drive

b
. —
i

Init

{ &: Scenario|
End

a;: Ego-Vehicle

Pause
Proceed to stopline Wait for gap

—L: Laws

€(e2,t3

€(t2,L6)

Turn Prefix
Execute turn

Goal Failure
Unrealizable

(6(13,24)

Turn Predicate
Complete turn

) |

Scenario End
Scenario boundary

]

~ >
€(tat5)

Falsification Engine
(e.g., S-TaLiRo)

Almost-Exhaustive
Verification Engine
(e.g., dReach)

Mode Transitions
Guard [, 1,): 82 > 8a,,,, Guard: NA
Drive (1) Reset Re, ) t'=0 Reset: NA
Next State: Pause Next State: NA
Guard T4, ¢,): (t > tpause) A (dgap > dmin) Guard: T, ) (t > t7) A({=2)
Pause ({3) Reset Reqg, ) t' =0 Reset: NA
Next State: Turn Prefix Next State: Goal Failure
Guard Iy, ¢,y 8y < 57, Guard: NA
Turn Prefiz ({3) Reset Re(r, 1) 8y = Sz, 8y, = SysSego = 0 Reset: NA
o = WPays Sy, = wpy, Next State: Turn Predicate Next State: NA
Guard Ty, ¢,): sy < 55, Guard: NA
Turn Predicate (€1) | Reset Re(, 5): 84y = 8258y, = Sys Stgo = 0 Reset: NA

o = WPy, Sy, = WPy, Next State: Scenario Complete

Next State: NA




The tool-chain: Conversion from formalism to tool formats

SCENARIO ENTRY

Falsification Engine

E1 = envCar();

E2 = envCar();

Ego = egoCar(a,b);
R =road(‘highway’)

(e.g., S-TaLiRo)

Follow Trajectory
[,‘“J -8(%&)s

58 0 (S559) (3)+ ()

Scenario Definition
Language

S, =8, A S, =8,
*d X Yd o Vel

Common formalism for Almost-Exhaustive
verification engines Verification Engine
(e.g., dReach)




The tool-chain: Formal specification in Metric Temporal Logic

SCENARIO ENTRY

Falsification Engine

E1 = envCar(); (e.g., S-TaLiRo)

E2 = envCar();
Ego = egoCar(a,b); f:“ )
R = road('highWay') s % Follow Trajectory
= bowg + 20 050+ 3456 bu (Ghofd) o (&) - 6(%8) 8
L ir,m_y : ‘.l_‘(gtj”) ] - (fiﬂ‘civfi‘)[{},[?tﬁ).\

V=a.
g =veos(d+ o)
Sy = ven(d+o)

3y . b
Scenario Definition ?“)
Language
Common formalism for Almost-Exhaustive
verification engines Verification Engine
(e.g., dReach)

@ MTL Specification




The tool-chain: Robustness-Guided Verification

SCENARIO ENTRY

Falsification Engine
(e.g., S-TaLiRo)

E1 = envCar();

E2 = envCar();

Ego = egoCar(a,b);
R =road(‘highway’)

Scenario Definition
Language

Sy =Sy, A S, =S5,
*d X Yd o Vel

Common formalism for Almost-Exhaustive
verification engines Verification Engine
(e.g., dReach)

@ MTL Specification




The tool-chain: Integration and testing of real code ER=RETEEEER S

SCENARIO ENTRY

(e.g., S-TalLiRo)

0s O
E1 =envCar(); / , 02 é
E2 = envCar(); i L
Ego = egoCar(a,b); oy - -M;:g
R = road(‘highway’) L £ o
Compute M;g
e Vision T ~% %
Scenario Definition | e | Code J e
Language
\, K
Common formalism for Almost-Exhaustive

verification engines Verification Engine

(e.g., dReach)

U MTL Specification




The tool-chain: Visualization of accidents and violations

SCENARIO ENTRY

E1 = envCar();

E2 = envCar();

Ego = egoCar(a,b);
R =road(‘highway’)

Scenario Definition
Language

~N

Guard 1:
(tookahead == 04)
Reset: §

S, =8, A S, =8,
*d X Yd o Vel

Common formalism for
verification engines

Follow Trajectory

bu ()4 (&) -6 (%) 8

CalEb-Gl) g (GE-GE\ (4}, (Gt

Computer
Vision
Code

-

Falsification Engine
(e.g., S-TaLiRo)

Almost-Exhaustive
Verification Engine
(e.g., dReach)

MTL Specification

Visualization



Autonomous vehicle Plan verification and EXecution
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APEX Toolbox: Basic Scenario Library

Multi-lane Merges Curved Roads

Roundabouts




Case Study: Exiting the Highway




Case Study : Exiting the Highway

*  Mode 1 to Mode 2
* Large gap...
« Mode 1 to Mode 3
« Proximity to exit point, ordering 1.
Mode 1 to Mode 4
« Proximity to exit point, ordering 2.
Mode 1 to Mode 7
« Pass point of no return.
Mode 2 to Mode 1
* Exceeding safe speed
ode 2 to Mode 3
«  Proximity to exit point, ordering 1.
Mode 2 to Mode 4
* Proximity to exit point, ordering 2.
* Mode 2 to Mode 7
+ Pass point of no return.
*  Mode 3 to Mode 5
« At exit point, replan
*  Mode 4 to Mode 5
* At exit point, replan
*  Mode 5 to Mode 6
+ Exit Complete

An unsafe execution...



Case Study : Counterexample

| [Robustness _______[Falsified _[Time |
Run 1 2.923954853228472 0 1.015345936
Run 2 5.08758785008145 0 0.64356243
Run 3 1.58322571985417 0 0.739456261
Run 5 1.19092922455614 0 0.653613874
Run 6 0.7644210734606593 0 0.424821741
Run 7 3.50257488220876 0 0.417468565
Run 8 1.67075771080459 0 0.422870814
Run 9 -0.06934283643283 12 I 0.246647509
Run 10 0.840635324412428 0 0.416844002
Run 11 0.0583178152910584 0 0.412734793
Run 12 0.408473731737928 0 0.414736315
Exceeded allowable speed on curve. Forgot to change desired velocity on Run I3 0.0880809121895942 0 0.420027416
the exit ramp.. Run 14 0.323334605645278 0 0.399421832
Run 15 1.86618290153492 0 0.718619361
Run 16 0.357522415132801 0 0.637938451
Run 17 -0.424533871152353 1 0.677554789

Run 19 0.276072018492533 0 0.641657179
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Post Accident Analysis: Adversarial Search




Meanwhile: Things are getting serious...

Trailer turns left
in front of the Tesla

L
Gy '5:/\

Tesla doesn'’t stop, 9 ig
hitting the trailer and I
traveling under it

o ¥

Tesla veers off road "ENCE
and strikes two fences
and a power pole

Q\g(‘ﬁv\'E R POLE

Y



Embed self-reflective capacity in AV agents operating in a photeorealistic
open world, enabling robustness guided data synthesis, and unguided
scenario generation leveraging multiple agent experiences simultaneously




That's the truck it's going to crash into
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Simulation: Artificial Sensors




Multi-rendering from
single game instance...

Can mimic modern camera
based SDC systems ie AP2...

Top: RGB
Bottom: Depth

Clockwise:
Front
Back

Left

Right



roscore... X mokell... x mokell... x mokelly... x

header:
seq: 1481
stamp:
secs: O
nsecs: 0
frame_id: odom
child_frame_id: "'
pose:
pose:
position:
X: -676.73059082
y: -663.18762207
Z: 31.1107139587
orientation:
Xx: 0.0
RGB — Simulate Camera Depth — gives us ground truth y: 0.
T P G
. z < w: 0.
i

0
0
0
e

covarianc [6.8; 6.6, 8.0, 6.6, 6.8, 6.6,
.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, O
e, 6.0, 0.0, 0.0, 0.0, 0.0, 6.0, 0.0, 0.0, 0.4
, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0]
twist:

twist:

linear:
x: 0.
y: 0.
D
angular:
x: 0
y: ©
Zein

covariance: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
.6, 6.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, O
@, 0.0, 0.0, 0.0, 0.6, 0.0, 6.0, 0.0, 0.0, 0.4
, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
0.0, 0.0]

Segmentation - use mpc planners




AP EX The Guardian Angel Problem

Can we synthesize low robustness scenarios?




Scenario Search




Control Interfaces: APEX Robust Testing and Verification

6340

6330

6320

6310

6300

6290

Position, m

6280

6270

6260

6250

6240

1880 1900 1920 1940 1960 1980
Position, m



Control Interfaces: APEX Robust Testing...




End-to-End Learning




Control Interfaces: End-to-end CNN

QOutput: vehicle contro

Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional
feature map
64@1x18

Convolutional
feature map
64@3x20

Convolutional
feature map
48@5x22

Convolutional
feature map
36@14x47

Convolutional
feature map
24@31x98

Normalized
input planes
3@66x200

Input planes
3@66x200

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
xX[z,2,0] wO[:,:,0 Wiz, s,0] of:,:,0]
offoffofo o o o 0 o [o il it i 43
OUIZR 011020 S15 2 i 11 |1 1 (0 =1 4= |30 3]
Offr 210 1 1 0 10 |1 =10 S10N 10 115 |28 =2
Ol fON B 0N -0 F2 () wO[z,:,1 wli,2;11 ofz;%;1]
ol i [ 2 0 i [© ol EE UNE ] 21
0 Sl I 5 0 1T -1 I =5 G 3 6 2
0 0 0 0 0 1|1 )0 1 1 -1 -1 5 1
z wl[:,+,2 wl[3:3:2]

ATy 1 )
0o o |0 0O i
oz 5 -1t 0 -1 1
- ’1“1 ; : ?‘“1 1 i 00 A
o A 2 2 Bias b9(1x1x1) Bias bl (1x1x1)
Nl 112 [0 122 EE b0{:,:,0] bl[:;2,0]
00 10 1 0
0 0 0 0

t,2,2] . Uses AlexNet architecture....

. 8 hidden layers...
Do Eé 9 s . Maps to steering angle and throttle input.
0 0/ 2|12 142N (O . Very similar to NVIDIA DAVE2 project.
1 {0 0 0 0

Ml 23 B S KON B 5
O 1SN (Ol 2N K15 F2 (O
QNI (28 KIS 2 E10N B288 £0
0 0 0 0 0 0 O






AVCAD Toolchain - Testing in Synthetic Worlds

TEST HARNESS: SIMULATOR, AV CODE and TESTBENCH APPLICATION-SPECIFIC STUDY OF SIMULATION VALIDITY GENERAL STUDY OF SIMULATED DATA VALIDITY
(Section II) (Section IIL.A) (Section III.B)
FRAME SEQUENCES FROM FRAME SEQUENCES FROM FRAME SEQUENCES FROM FRAME SEQUENCES FROM
ACTUATION MULATOR RELEVANT NATURAL DATASETS SIMULATOR RELEVANT NATURAL DATASETS
WORLD SIMULATOR (Here, GTA) . (here, steering (here, KITTI and Udacity) (here, KITTI and Udacity)

and acceleration)

< ZMa-
BASED
INTERF
FRAMES and ACE
VEHICLE STATE
| l i
CV ALGORITHM (here, YOLO CV ALGORITHM FEATURE CALCULATIONS FEATURE CALCULATIONS
object detector) (here, Structural Information
P P and Colorfullness)
oo, Sk 2EiLE .
TESTBENCH: AUTOMATIC SEARCH FOR
DANGEROUS DRIVING SITUATIONS GROUND TRUTH GROUND TRUTH
DETECTION DETECTION
TRAJECTORIES OF ALL RESULTS RESULTS COMPARE COMPLEXITIES
TRAFFIC PARTICIPANTS l l
COMPUTE GV PERFORMANCE *
COMPUTE CV PERFORMANCE %
NEXT INITIALIZATION  , ‘ (here, ROCs) £
PERFORMANCE COMPARISONS 5

(here, compare ROCs)

o 50 100
‘Spatial Information



AVCAD: Robust Testing Interface

| FRAMERATE OBJECT DETECTION: YOLO2 (DARKNET) | MTL PATH PROPOSALS

ROBUSTNESS  F—
p—

———

SCENARIO SELECTOR

* SCENARIO 1: T-JUNCTION

* SCENARIO 2: MERGE A /
i ’ P .

* SCENARIO 3: HIGHWAY

* SCNEARIO 4: OFFRAMP

SIMULATOR CONTROLLER OPTICAL FLOW WNET 2.0 (CAFFE) ELASTIC FUSION
* START SCENARIO
* END SCENARIO

* USE GTA Al

* LOG DATA

WEATHER OPTIONS

* EXTRA SUNNY

» CLOUDS POINT CLOUD SEMANTIC SEGMENTATION: RESNET (TENSORFLOW) GLOBAL POSITION

* OVERCAST

SPECIFICATION
SPECIFICATION 1
SPECIFICATION 2

SPECIFICATION 3

ICATION 4

LONGITUDINAL ROTATIONAL VEHICLE PEDESTRIAN
VELOCITY N— VELOCITY DISTANCE DISTANCE
2.097508 (M/S) 0.001125 (DEG/S) 1.236216(M) 150.000000{M)




Colorfulness

How to Compare Synthetic and Real Images

120 I I T T T T T T T
GTA 19960 images
KITTI 5985 images
100 - UDACITY 12000 images |
MICHIGAN 8000 images
DARMSTADT
80 . n
.' . UDACITY MICHIGAN
60 - -
KITTI
40 -
20 .
0 po—
20 + |
| | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200

Spatial Information



Next Steps: Deep Learning & Vision

‘ OBJECT DETECTION

Based Perception
[ OBJECT DETECTION: YOLOZ (DARKNET) RoB

Sometimes perception works perfectly, but the controller doesn’'t know how to
handle the scenario, when does this happen, how often?

s the system still performant if a key sensor is unable to observe a traffic sign (i.e. it
leaves the field of view)?

How will weather affect the safety of the overall system?

Modeling, robust testing, and verification give us the tools to address these
questions in a meaningful way without building a fleet of vehicles.




Results: Implementation of Trajectory Generator

=0

W N\utoware

Integration with ROS and Autoware Open Source Vehicle OS

Use linear optimization to learn weights for a network of radial basis functions. Quickly compute
a variety of trajectories in the configuration space of the robot in order to create local plans...



Pennovation

Center

A dedicated physical lab for experimental and field-tested ideas

T
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A 23-acre brand new urban campus for Innovation




F1/70) Autonomous Racing

Development of Community Platforms for
Safe and Affordable Autonomy



Autonomous Racing
1/10 the scale. 10X the fun!

Rahul Mangharam ‘Madhur Behl ~ sertac Karaman Venkat Krovi
University of Pennsylvania University of Virginia MIT Clemson University
Bl e 3
& Penn Uy i WCLEMSON




Filters
LiDAR . M
B -
; Camera generation
IMU Computer
o Lo

Planning

Motor
Controller

Drive

Control

GPU accelerated
libraries

7 a0

LiDAR Camera IMU

Wi-fi Telemetry Onboard Computer

IR Depth Cameras

Motor
Controller

Battery

Sensor Integration

%

Scenario Sim ROSbag data

Vehicle and
environment

models in Gazebo

Cloud-Based Simulation Tool\




Fi/ BUILD / DRIVE / RACE

Basic ROS commands: rosrun

Sterpo_dmage..proc
razor_mu_9dof

hector._stam
Planning

Perception

#ROS

| Control

Highlights from the 2016 F1/10 Racing Competition

IIIiT" | BEAVER WORKS

heol of Engineerieq

Class of 2016

Courses and
hackathons
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“Essentially all models are wrong, but some are useful”
- George E.P. Box



